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1 Classical formulation of the binormal curva-
ture flow

The equations for the evolution of a family $(\gamma_{t})_{t\in I}$ of smooth curves in $\mathbb{R}^{3}$

according to their binormal curvature are written in terms of an arc-length
parametrization $\gamma$ : $I\cross \mathbb{R}arrow \mathbb{R}^{3}$ by

$\partial_{t}\gamma=\partial_{s}\gamma\cross\partial_{ss}\gamma$ (1)

where $t\in I$ is the time variable, $s\in \mathbb{R}$ is the arc-length parameter, and $\cross$

denotes the vector product in $\mathbb{R}^{3}$ . In geometric terms, equation (1) takes its
name from its equivalent form

$\partial_{t}\gamma=\kappa b$

where $\kappa$ and $b$ are the curvature function and the binormal vector field along $\gamma_{t}$

respectively. Note that the arc-length parametrization condition $|\partial_{s}\gamma(t, s)|^{2}=$

$1$ is always compatible with equation (1) since $\partial_{t}(|\partial_{S}\gamma|^{2})=2\partial_{s}\gamma$ $\partial_{st}\gamma=$

$2\partial_{s}\gamma\cdot(\partial_{s}\gamma\cross\partial_{sss}\gamma)=0$ whenever (1) is satisfied. In particular, closed curves
evolved by the binormal curvature flow equation (1) all have the same length.

数理解析研究所講究録
第 1837巻 2013年 119-131 119



Equation (1) first appeared in the 1906 Ph. $D$ . thesis of L.S. Da Rios [5],
whose work was promoted in a series of lectures in 1931 in Paris by its advi-
sor T. Levi-Civita [17]. The problem considered by Da Rios and Levi-Civita
goes back to the work of H. Helmholtz [7] in 1858 on the motion of a three
dimensional incompressible fluid in rotation. In part of [7], Helmholtz consid-
ered configurations called “vortex-filaments of indefinitely small cross-section”
(at least in its translation [8] by P.G. Tait) : in that case, the vorticity field
$\omega;=$ curl(v) associated to the velocity field $v$ of the fluid at a given time
$t$ is concentrated along a closed oriented curve $\gamma_{t}$ , parallel to it and vanish-
ing rapidly away from it. Helmholtz could notl rigorously answer the ques-
tion of the persistence in time of such vortex-filaments under the Euler flow
$\partial_{t}\omega+v$ $\nabla\omega=\omega$ $\nabla\omega$ . Nevertheless, he obtained important contributions
in that direction. $A$ few years later in 1867, Lord Kelvin announced in [12]
and published in [13] (thirteen years later!) the first result on linear stability
of circular vortex-filaments. The latter, also called vortex rings, correspond
in the asymptotic of infinitely small cross-section to the travelling wave solu-
tions of equation (1) given by $\gamma(t, s)=\gamma_{r,\vec{e}}(s)+\frac{t}{r}\vec{e}$, where $\gamma_{r,\vec{e}}$ is an arc-length
parametrization of a circle of radius $r$ in a plane perpendicular to the unitary
vector $e^{arrow}\in \mathbb{R}^{3}$ . It is only in 1906, with the help of progress made in potential
theory, that Da Rios formally obtained the speculated general motion law (1).
One hardly finds any reference to equation (1) in the literature in the interval
of time between Da Rios thesis in 1906 and the two papers [1] by R.J. Arms
and F.R. Hama and [3] by R. Betchov both in 1965. Actually, in alarge part of
the fluid dynamics community, equation (1) was long (mistakenly) attributed
to Betchov and$/or$ Arms and Hama. It is the author’s pleasure to mention
that not only Da Rios contribution was forgotten on those occasions, since it
appears that a formal derivation of (1) was also conducted in 1937 (We were
told it was presented as $a$ (3 pages) homework for students!) in the paper
[19] by the Japanese mathematicians Y. Murakami, H. Takahasi, Y. Ukita
and S. Fujihara2 As will becomes clear in the remaining, Japan as played a
prominent role in every perspective in the study of (1) so far.

2 $A$ new form of (in)stability estimate
In [10], one of our goals with R.L. Jerrard was to extend the classical formu-
lation (1) to a larger class the regular parametrized curves. The motivation
to do so was two-fold: first, since it deals with parametrized curves it is nec-
essarily insensitive to self-intersections, by which we mean lack of injectivity
of the map $\gamma(t, \cdot)$ . This is surely unsatisfactory if one believes that such flows

lAs anybody so far!
2The author would actually be grateful to receive some copy of it.
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arise as limits from three dimensional fluid dynamics. Our formulation in [10]
in principle would be able to detect such self-intersections, as well as possible
collisions between elements of disconnected vortex filaments and changes of
topology. Second, there are presumably important configurations of curves
which are too singular to be considered under formulation (1). Invoking dis-
tributional derivatives on can give a meaning to equation (1) in a variety of
spaces, but those spaces just fail to include the case of curves which are at most
Lipschitz. On the other hand, in numerical simulations of the Euler equation
or the Gross-Pitaevskii equation for quantum fluids, it is observed (see e.g.
S. Kida and M. Takaoka [15] (still Japan!) or J. Koplik and H. Levine [16] $)$

that vortex-filaments often tend to recombine by exchanging strands in cases
of collisions or self-intersections. Those recombinations, when the intersections
are transverse, inevitably create curves which are at most Lipschitz.

It is not our purpose here to present the details of the new formulation
proposed in [10], these involve a number constructions based on notions related
to Geometric Measure Theory which are not appropriate for a short survey.
Instead, we will focus on the main ingredient in the corresponding (weak-
strong) uniqueness theory which happens to have a counterpart with its own
interest also in the framework of parametrized solutions of (1). As far as we
know, it is the first rigorous stability (actually: control of instabilities) estimate
for filament flows.

In order to measure distances between curves, without attaching too much
importance in their parametrizations but still, we define the following notion
of distance.

Definition 1. $A$ curve in $\mathbb{R}^{3}$ parametrized by arc-length is a Lipschitz map
$\gamma$ : $\mathbb{R}arrow \mathbb{R}^{3}$ such that

$|\gamma’(s)|=1$ for a.e. $s\in \mathbb{R}.$

A closed curve in $\mathbb{R}^{3}$ of period $l>0$ is a curve in $\mathbb{R}^{3}$ parametrized by arc-length
and such that

$\gamma(s+\ell)=\gamma(s)$ , $\forall s\in \mathbb{R}.$

Given two closed curves $\gamma$ and $\Gamma$ in $\mathbb{R}^{3}$ , we define the parametric distance

$d_{\mathcal{P}}( \Gamma, \gamma):=\inf_{p\in p(L,\ell)}\sup_{s\in \mathbb{R}}|\Gamma(s)-\gamma(p(s))|_{p\in \mathcal{P}}=int_{L)}^{\sup_{s\in \mathbb{R}}}|\gamma(s)-\Gamma(p(s))|,$

where $\ell$ and $L$ are the periods of $\gamma$ and $\Gamma$ respectively, and for $0<s_{0},$ $s_{1},$

$\mathcal{P}(s_{0}, s_{1})=\{p\in \mathcal{C}(\mathbb{R}, \mathbb{R}) s.t. p(s+s_{0})=p(s)+s_{1}, \forall s\in \mathbb{R}\}.$

$\square$
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Clearly,
$d_{\mathcal{H}}(\Gamma, \gamma)\leq d_{\mathcal{P}}(\Gamma, \gamma)$ ,

where $d_{\mathcal{H}}$ is the Hausdorff distance between sets.
In the sequel, $\gamma\in C^{2}(\mathbb{R}, \mathbb{R}^{3})$ is a periodic curve of period $\ell>0$ and $\Gamma$

is a periodic curve of period $L>0$ . We denote by $r_{\gamma}$ the minimal radius of
curvature of $\gamma$ :

$r_{\gamma}:=( \max_{s\in[0,\ell]}|\gamma"(s)|)^{-1}\in(0, +\infty],$

and by $C_{\gamma}$ the tubular neighborhood :

$C_{\gamma}:=\{x\in \mathbb{R}^{3}, s.t. d(x, \gamma)<r_{\gamma}/8\}.$

For $s_{0}\in \mathbb{R}$ and $x_{0}\in \mathbb{R}^{3}$ such that $|x_{0}-\gamma(s_{0})|<r_{\gamma}/8$ , it can be proved that
there exists a unique $\xi_{0}=:\xi(\mathcal{S}_{0}, X_{0})\in \mathbb{R}$ (the “best” orthogonal projection)
such that

1. $\xi_{0}\in(s_{0}-r_{\gamma}/4, s+r_{\gamma}/4)$ ,

2. $(x_{0}-\gamma(\xi_{0}))$ . $\gamma’(\xi_{0})=0.$

Moreover, the function $\xi$ : $\Xi_{\gamma}arrow \mathbb{R},$ $(s, x)\mapsto\xi(s, x)$ defined on the open set

$\Xi_{\gamma}:=\{(s, x)\in \mathbb{R}^{4}s.t. |x-\gamma(s)|<r_{\gamma}/8\}$

is of class $C^{1}$ on $\Xi_{\gamma}$ and for every $(s, x)\in\Xi_{\gamma}$ we have

3. $(s+\ell, x)\in\Xi_{\gamma}$ and $\xi(s+\ell, x)=\xi(s, x)+\ell,$

4. $\partial_{S}\xi(s, x)=0,$

5. $D_{x} \xi(s, x)=(1+\frac{(x-\gamma(\xi(s,x)))\cdot\gamma"(\xi(s,x))}{1-(x-\gamma(\xi(s,x)))\cdot\gamma’(\xi(s,x))})\gamma’(\xi(s, x))$ .

We have

Corollary 2. Assume that $d_{\mathcal{P}}(\Gamma, \gamma)<r_{\gamma}/8$ and let $p\in \mathcal{P}(L, \ell)$ be such that

$\sup_{s\in \mathbb{R}}|\Gamma(s)-\gamma(p(s))|<r_{\gamma}/8.$

The function $\sigma$ : $\mathbb{R}arrow \mathbb{R},$ $s\mapsto\sigma(s)$ $:=\xi(p(s), \Gamma(s))$ is the unique continuous
function which satisfies, for any $s$ in $\mathbb{R},$

1. $\sigma(s+L)=\sigma(s)+\ell,$

2. $|\Gamma(s)-\gamma(\sigma(s))|<r_{\gamma}/8,$
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3. $(\Gamma(s)-\gamma(\sigma(s)))\cdot\gamma’(\sigma(s))=0,$

4. $|\sigma(s)-p(s)|<r_{\gamma}/4.$

a
A continuous function $\sigma$ that satisfies 1, 2 and 3 in Corollary 2 is called

a reparametrization of $\gamma$ for $\Gamma$ . Notice that when each point $x$ in $C_{\gamma}$ has a
unique orthogonal projection $P(x)$ on $\gamma$ (this can happen only if $\gamma$ has no self-
intersection), then there exist a unique reparametrization $\sigma$ of $\gamma$ for $\Gamma$ (modulo
a constant multiple of $P$ ), and it is determined by $\gamma(\sigma(s))=P(\Gamma(s))$ .

The following discrepancy measure between $\Gamma$ and $\gamma$ is better suited to our
needs than $d_{\mathcal{P}}.$

Definition 3. For $r>0$ , we set

$F_{\gamma,r}( \Gamma) :=\inf_{\sigma}F_{\gamma,\sigma,r}(\Gamma)\equiv\inf_{\sigma}\int_{0}^{L}\mathcal{F}(\Gamma, \gamma, \sigma, r, s)ds$ , (2)

where

$\mathcal{F}(\Gamma, \gamma, \sigma, r, s):=1-f(|\Gamma(s)-\gamma(\sigma(s))|^{2})\gamma’(\sigma(s))\cdot\Gamma’(s)$,

the function $f\equiv f_{r}$ : $[0, +\infty)arrow[0, +\infty)$ is given by

$f(d^{2}):=\{\begin{array}{ll}1 -- (\frac{d}{r})^{2}, for 0\leq d^{2}\leq r^{2},0, for d^{2}\geq r^{2},\end{array}$

and the infimum in (2) is taken over all possible reparametrizations of $\gamma$ for $\Gamma.$

The functional $F_{\gamma,r}$ , which plays a central role in the following (in)sta-
bility estimate, can be related to more standard discrepancy measures, like
the distances $d_{\mathcal{H}}$ or $d_{\mathcal{P}}$ between the curves, or the $L^{2}$ distance between the
parametrizations of their tangents (see [9] Section 3 for details).

We come back now to equation (1) and assume that $\gamma\in L^{\infty}(I, H_{1oc}^{4}(\mathbb{R}, \mathbb{R}^{3}))$

and $\Gamma\in L^{\infty}(I, H_{1oc}^{\frac{3}{2}}(\mathbb{R}, \mathbb{R}^{3}))$ be two solutions3 of the binormal curvature flow
equation (1) on $I\cross \mathbb{R}$ , where $I=(-T, T)$ for some $T>0$ . Assume moreover
that $\gamma$ and $\Gamma$ are both periodic with respective periods $\ell>0$ and $L>0$ . For
$t\in I$ , we set

$\gamma_{t}:=\gamma(t, \cdot) , \Gamma_{t}:=\Gamma(t, \cdot)$ ,

and define4
$r_{\gamma} := \max_{t\in\overline{I}}(\max_{s\in \mathbb{R}}|\partial_{\mathcal{S}S}\gamma(t, s)|)^{-1}\in(0, +\infty].$

3Then necessarily $\gamma\in C(\overline{I}, C^{3}(\mathbb{R}, \mathbb{R}^{3}))$ and $\Gamma\in \mathcal{C}(I, C(\mathbb{R}, \mathbb{R}^{3}))$ .
4We have defined above a quantity called $r_{\gamma}$ for a curve with no time dependence. One

is the natural extension of the other and there shouldn’t be any possible confusion.
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Assume that at time zero we have

$d_{\mathcal{P}}(\Gamma_{0}, \gamma_{0})<r_{\gamma}/8,$

and let therefore $\sigma_{0}$ be a reparametrization of $\gamma_{0}$ for $\Gamma_{0}$ (the existence of which
being ensured by Corollary 2).

Theorem 4. Fix $0<r\leq r_{\gamma}/8$ and assume that

$F(0):=F_{\gamma 0,\sigma 0^{\gamma}},( \Gamma_{0})<F_{r}:=r(\sqrt{2}+\frac{r}{L})^{-1}$ (3)

Define then
$T_{r}:= \frac{1}{K}\log(F)$ ,

where
$K:= \frac{8}{r^{2}}+\frac{32}{r_{\gamma}^{2}}+(2+32\frac{r}{r_{\gamma}})\Vert\partial_{sss}\gamma\Vert_{L^{\infty}(I\cross \mathbb{R})},$

and set $J_{r}=[-T_{r}, T_{r}]\cap(-T, T)$ . There exists a unique $\sigma\in C(J_{r}\cross \mathbb{R}, \mathbb{R})$

such that $\sigma(0, \cdot)=\sigma_{0}$ and $\sigma_{t}$ $:=\sigma(t, \cdot)$ is a reparametrization of $\gamma_{t}$ for $\Gamma_{t}$ , for
every $t\in J_{r}$ . The function $F$ defined on $J_{r}$ by $F(t)$ $:=F_{\gamma_{t},\sigma_{t},r}(\Gamma_{t})$ is Lipschitz
continuous on $J_{r}$ and satisfies for almost every $t\in J_{r}$ the inequality

$|F’(t)|\leq KF(t)$ .

Therefore by Gronwall Lemma

$F(t)\leq\exp(K|t|)F(O) , \forall t\in J_{r},$

and in particular
$d_{p}(\Gamma_{t}, \gamma_{t})<r, \forall t\in J_{r}.$

Since, as mentionned above, $F$ can be related to more usual forms of dis-
crepancy measures (like Haussdorff disntance e.g.), the final estimate in the
previous theorem allows to control the “distance” between a reference smooth
solution and a rough solution by constants which only depend on the smooth
solution.

3 $A$ short excursion into two related worlds
(after H. Hasimoto)

If $\gamma\in L^{\infty}(I, H_{loc}^{3/2}(\mathbb{R}, \mathbb{R}^{3}))$ is a solution to the binormal curvature flow equation
(1), then the map $u$ $:=\partial_{s}\gamma\in L^{\infty}(I, H_{loc}^{1/2}(\mathbb{R}, S^{2}))$ , parametrizing the evolution
in time of the unit tangent vectors to the curves $\gamma(t, \cdot)$ , satisfies

$\partial_{t}u=\partial_{t}\partial_{s}\gamma=\partial_{s}\partial_{t}\gamma=\partial_{s}(u\cross\partial_{s}u)$ (4)
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in the sense of distributions on $I\cross \mathbb{R}$ . In other words, $u$ is a solution of the
Schr\"odinger map equation (4) for maps from $\mathbb{R}$ to $S^{2}$ , and the binormal cur-
vature fl$ow$ equation is therefore a primitive equation of the Schr\"odinger map
equation.

Conversely, let $u\in L^{\infty}(I, H_{loc}^{1/2}(\mathbb{R}, S^{2}))$ be a solution to the Schr\"odinger
map equation (4) and define the function $\Gamma_{u}\in L^{\infty}(I, H_{loc}^{3/2}(\mathbb{R}, \mathbb{R}^{3}))$ by

$\Gamma_{u}(\cdot t, s):=\int_{0}^{s}u(t, z)dz$. (5)

In the sense of distributions on $I\cross \mathbb{R}$ , we have

$\partial_{s}(\partial_{t}\Gamma_{u}-\partial_{s}\Gamma_{u}\cross\partial_{ss}\Gamma_{u})=0$ . (6)

By construction, the primitive curves $\Gamma_{u}(t, \cdot)$ all have their base point $\Gamma_{u}(t, 0)$

fixed at the origin. For smooth solutions, equation (6) would directly imply
the existence of a function $c_{u}$ depending only time only and such that

$\gamma_{u}(t, s):=\Gamma_{u}(t, s)+c(t)$

is a solution to the binormal curvature flow equation (1). The function $c_{u}$

indeed represents the evolution in time of the actual base point of the curves.
For solutions barely in $H^{3/2}$ the same conclusion holds with slightly more
involved argument.

Besides the above sort of equivalence between the binormal curvature flow
equation and the Schr\"odinger map equation presented just above, H. Hasi-
moto [6] (Japan once more!) exhibited in 1972 an intimate relation between
the binormal curvature flow equation (1) and the cubic focusing nonlinear
Schr\"odinger equation. Let $\gamma$ : $I\cross \mathbb{R}arrow \mathbb{R}^{3}$ be a smooth and biregular solution
of the binormal curvature flow equation (1), and denote by $\kappa$ and $T$ respec-
tively the curvature and torsion functions of $\gamma$ . Then, the function $\Psi$ defined
on $I\cross \mathbb{R}$ by the Hasimoto transform

$\psi(t, s) :=\kappa(t, s)\exp(i\int_{0}^{s}T(t, z)dz)$

is a solution to
$\partial_{t}\psi+\partial_{ss}\psi+\frac{1}{2}(|\psi|^{2}-A(t))\psi=0$

where
$A(t):=(2 \frac{\partial_{ss}\kappa-\kappa T^{2}}{\kappa}+\kappa^{2})(t, 0)$ .

If $\gamma$ is $2\pi$-periodic in $s$ , that is if $\gamma$ : $I\cross T^{1}arrow \mathbb{R}^{3}$ , then $\Psi$ is only quasiperiodic
unless $\int_{0}^{2\pi}T(t, z)dz\in 2\pi \mathbb{Z}$ . Nevertheless, it is possible to recover a $2\pi$-periodic
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function $\Psi$ by means of a Galilean transform. One can also get rid of the $A(t)$

factor by means of a phase shift. More precisely, the function

$\Psi(t, s) :=\psi(t, s-\frac{b}{2}t)\exp(i(bs-b^{2}t-\int_{0}^{t}\frac{1}{2}A(z)dz))$ ,

where
$b:=1- \frac{1}{2\pi}\int_{0}^{2\pi}T(O, z)dz=1-\frac{1}{2\pi}\int_{0}^{2\pi}T(t, z)dz$

is well-defined on $I\cross T^{1}$ and is a solution to the cubic focusing nonlinear
Schr\"odinger equation

$\partial_{t}\Psi+\partial_{ss}\Psi+\frac{1}{2}|\Psi|^{2}\Psi=0$ (7)

on $I\cross T^{1}$

Equation (7) is integrable and known to be solvable by the inverse scattering
method since the works of Zakharov and Shabat [20] in 1971 for the vanishing
case and Ma and Ablowitz [18] in 1981 for the periodic case. Therefore the
binormal curvature flow equation (1) and the Schr\"odinger map equation (4) are
also integrable, in the weak sense that they can be mapped to an integrable
equation. In particular, solitons of NLS give rise to solitons on a filament
(Hasimoto’s original title). Notice however that the inverse of the Hasimoto
transform, whenever it is well defined5, involves a big deal of nonlinearity.

4 $A$ beautiful class of special solutions
(after S. Kida)

Besides the soliton solutions of Hasimoto, another special class of solutions of
(1) was singled out in 1981 by S. Kida [14] (guess what?!). He studied the set
of initial curves in $\mathbb{R}^{3}$ for which the solution map of the binormal curvature
flow equation reduces to a family of rigid motions. Using the symmetries of (1)
and its conservations laws, such motions are necessarily the superposition of a
constant speed rotation around a fixed axis (which we may always assume to
be the $x_{3}$-axis after a fixed rotation) and a constant speed translation parallel
to that same axis. Following [14], we denote by $\Omega$ and $V$ the speeds of rotation
around $e_{3}$ and of translation along $e_{3}$ respectively, and by $C$ the speed of the
slipping motion of the curve along itself6 , so that

$\gamma(t, s)=\gamma(0, s-Ct)\cdot(-\sin(\Omega t)\cos(\Omega t)0\cos(\Omega t)sin(\Omega t)0001)+V(0,0, t)$

$\overline{5Vanishing}$of $\Psi$ yields underdetermination.
6Even though the speed given by the binormal curvature flow equation is perpendicular

to the tangent vector, in a non-orthogonal frame like $(\partial_{s}\gamma, \gamma\cross e_{3}, e_{3})$ the component $C$ of
$\partial_{t}\gamma$ along $\partial_{s}\gamma$ may not be zero. For the rigid motions we consider, $C$ is a constant function
of space and time.
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and therefore $\gamma$ satisfies the additional equation

$\partial_{t}\gamma=-C\partial_{s}\gamma+\Omega e_{3}\cross\gamma+Ve_{3}$ . (8)

Combining (1) and (8) we write

$\partial_{s}\gamma\cross\partial_{ss}\gamma=-C\partial_{S}\gamma+\Omega e_{3}\cross\gamma+Ve_{3}$ . (9)

Taking the scalar product of (9) with $\partial_{s}\gamma$ yields

$-C+\Omega r^{2}\theta’+Vz’=0$ , (10)

where we wrote $(\gamma^{1}(0, \cdot), \gamma^{2}(0, \cdot))=:(r(\cdot)\cos(\theta(\cdot)), r(\cdot)\sin(\theta(\cdot)))$ and $\gamma^{3}(0, \cdot)=$ :
$z(\cdot)$ . Taking the vector product of (9) with $\partial_{s}\gamma$ instead yields

$z”=- \Omega rr’=-\frac{\Omega}{2}R’$ , (11)

where $R=r^{2}$ After integration, (11) leads to

$z’= \frac{\Omega}{2}[A-R]$ (12)

for some integration constant $A\in \mathbb{R}$ . Assume that $\Omega\neq 0$ . Combining (10) and
(12) we obtain

$\theta’=\frac{1}{2}V+(C-\frac{1}{2}AV\Omega)/(\Omega R)$ , (13)

and then combining (1) with (12) and (13) we finally obtain

$(R’)^{2}+f(R)=0$ , (14)

where

$f(R)= \Omega^{2}R^{3}+(V^{2}-2A\Omega^{2})R^{2}+(4V(C-\frac{1}{2}AV\Omega)/\Omega+\Omega^{2}A^{2}-4)R$

(15)
$+4(C- \frac{1}{2}AV\Omega)^{2}/\Omega^{2}$

Playing on the many parameters $A,$ $C,$ $V,$ $\Omega$ , it is then possible to identify a
subclass leading to smooth closed curves. Nice examples and pictures can be
found in the original paper [14]. In [9], we have used this family in order
to construct counter-examples to some form of continuity properties for the
Schr\"odinger map equation (4) mentionned in the previous section.
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$5A$ puzzling class of special solutions
Since open problems are particularly welcomed in RIMS proceedings, we shall
end this short survey by numerical curiosities which presumably have interest-
ing theoretical roots (and may be related to integrability).

As mentionned in the second section, our existence theory in [10] allows to
consider initial curves for (1) (or rather for its extended formulation) that are
barely Lipschitz, and in particular polygonal lines. In order to get some insight
on the corresponding solutions, we performed numerical simulations according
to an algorithm due to Buttke [4] (after all even smooth curves when discretized
become polygonal lines $\ldots$ ). If $\gamma$ is a solution to (1), the corresponding tangent
vector $u:=\partial_{s}\gamma$ : $I\cross(\mathbb{R}/I\mathbb{Z})arrow S^{1}$ satisfies the Schr\"odinger map equation
(4). Buttke’s algorithm simulates the binormal curvature flow equation (1) by
the Crank-Nicolson type discretization

$\frac{u_{n}^{j+1}-u_{n}^{j}}{\triangle t}=(\frac{u_{n}^{j}+u_{n}^{j+1}}{2})\cross(\frac{u_{n-1}^{j}+u_{n+1}^{j}}{2(\triangle x)^{2}}+\frac{u_{n-1}^{j+1}+u_{n+1}^{j+1}}{2(\triangle x)^{2}})$

of (4), and numerical integration to recover $\gamma$ from $u$ . The implicit scheme for
$u$ can be resolved by a fixed point method if $\Delta t<\sigma(\triangle x)^{2}$ for some explicit
$\sigma>0$ ; it has the advantage that the constraint $|u_{n}^{j}|=1$ , the mean $\sum_{n}u_{n}^{j}$ , and
the discrete squared $\dot{H}^{1}$ norm $\sum_{n}|u_{n}^{j}-u_{n+1}^{j}|^{2}$ are conserved quantities of the
scheme.

Doing so, we have observed some phenomena which we did not expect, and
for which we have no clear explanation7.

In the following pictures, we present the shape of the simulated solution at
different (well chosen) times for a 5000 points discretization of a unit square
parallel to the $xy$-plane as initial datum.

$r$Ftow Te $m\infty$ Tr $\triangleright\alpha$

7L. Vega (Univ. of Bilbao) recently told us that he believes to have some kind of expla-
nation and should publish it shortly. See also [2] for related questions.
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$b\mathfrak{a}om\cdot 1R,\approx 0079\Phi$ $e_{\{\mathfrak{d}\circ m}\cdot|FMT\cdot 0(oe\theta 1$

$a\cap\pi m\cdot I$ Flow $T\cdot 0$ 15878

As it may suggests, at some times close to 0.05296, 0.07948, 0.10591 and
0.15878, the (or $a$”) solution seems to turn again polygonal. Notice that
the symmetries of the square are preserved (intermediate shapes have 8 or 12
sides), and that the square in the last picture is rotated by $\pi/4$ with respect
to the initial one. At times intermediate between those special moments the
simulated solution looks quite irregular and has not been represented. Also,
running the simulation further in time suggests that this sequence is repro-
duced in $a$ (quasi)periodic manner. It is of course tempting to believe that
solitons could play a role here (notice in particular the ratios of those special
times); on the other hand polygons are the worst possible examples for the
Hasimoto transform (the solution is not smooth and the curvature vanishes
almost everywhere!).

This kind of phenomena seems rather robust to some changes in the initial
polygon. This history of (1) so far should convince japanese mathematicians
to spend some time on that problem!

References
[1] R.J. Arms and F.R. Hama, Localized-induction concept on a curved vortex

and motion of an elliptic vortex ring, Phys. Fluids 8 (1965), 553-559.

[2] V. Banica and L. Vega, On the stability of a singular vortex dynamics,
Comm. Math. Phys. 286 (2009), no. 2, 593-627.

129



[3] R. Betchov, On the curvature and torsion of an isolated vortex filament,
J. Fluid Mech. 22 (1965), 471-479.

[4] T. F. Buttke, A numerical study of superfluid turbulence in the self-
induction approximation. Thesis, University of California, Berkeley, 1986.

[5] L. S. Da Rios, Sul moto di un filetto vorticoso di forma qualunque, Rend.
del Circolo Mat. di Palermo 22 (1906), 117-135 and 29 (1910), 354-368.

[6] H. Hasimoto, A soliton on a vortex filament, J. Fluid Mech. 51 (1972),
477-485.

[7] H. Helmholtz, Uber Integmle der hydrodynamischen Gleichungen welche
den Wirbelbewegungen entsprechen, J. Reine Angew. Math. 55 (1858),
25-55.

[8] H. Helmholtz (translated by P.G. Tait), On the integrals of the hydrody-
namical equations which express vortex-motion, Phil. Mag. Series 4, 33
(1867), 485-512.

[9] R.L. Jerrard and D. Smets, On Schr\"odinger maps from $T^{1}$ to $S^{2}$ , Annales
scientifiques de I’ENS 45, fascicule 4 (2012), 637-680.

[10] R.L. Jerrard and D. Smets, The motion of a curwe by its binormal curva-
ture, submitted.

[11] T. Kambe and T. Takao, Motion of Distorted Vortex Rings, Jour. Phys.
Soc. Japan 31 (1971), no. 2, 591-599.

[12] Lord Kelvin, On Vortex Atoms, Proceedings of the Royal Society of Ed-
inburgh 6 (1867), 94-105.

[13] Lord Kelvin, Vibrations of a columnar vortex, Phil. Mag. 10 (1880), 155-
168.

[14] S. Kida, A vortex filament moving without change of form, J. Fluid Mech.
112 (1981), 397-409.

[15] S. Kida and M. Takaoka, Vortex reconnection, Annual review of fluid
mechanics, Vol. 26, 169-189, Annual Reviews, Palo Alto, CA, 1994.

[16] J. Koplik and H. Levine, Vortex reconnection in superfluid helium, Phys.
Rev. Lett., 71 (1993), 1375-1378.

[17] T. Levi-Civita, Attrazione newtoniana dei tubi sottili e vortici filiformi,
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 1 (1932), no. 1-2, 1-33 and no.
3, 229-250.

130



[18] Y.C. Ma and M.J. Ablowitz, The periodic cubic Schrodinger equation,
Stud. Appl. Math. 65 (1981), no. 2, 113-158.

[19] Y. Murakami, H. Takahasi, Y. Ukita and S. Fujihara, On the oscillations
of a vortex filament (in Japanese), Oyo Butsuri 6 (1937), 151-153.

[20] V.E. Zakharov and A.B. Shabat, Exact theory of two-dimensional self-
focusing and one-limensional self-modulation of waves in nonlinear me-
dia, Soviet Physics JETP 34 (1972), no. 1, 62-69.; translated from?.
Eksper. Teoret. Fiz. 61 (1971), no. 1, 118-134.

131


