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1. Introduction

In this paper we study the global bifurcation and exact multiplicity of positive solutions of

w'(z) + A fe(u) =0, —1<z<1, u(-1)=u(l)=0, (1.1)
fe(u) = —eud + 0u? — ku+p, M\ e >0, )
where A, ¢ are two bifurcation parameters. Moreover, we mainly consider that
o,p >0, (1.2)
and
0 <k < 4/op. (1.3)

If fc(u) satisfies (1.1)—(1.3), for any & > 0, it is easy to see that cubic polynomial fe(u) has
a unique inflection point at v, = 0/(3¢) > 0 and has a unique positive zero at some 3, > v,
such that f. satisfies

(©) fe(0) = p > 0 (positone), f{(0) = —& <0, f.(u) >0 on (0,4,) and f.(8,) =0,

(ii) fe(u) is strictly convex on (0,7,) and is strictly concave on (y,,00). (So f. is convex-
concave on (0, 8,).)

Note that it is easy to see that 8, is a continuous, strictly decreasing function of ¢ > 0.
In addition, lim, o+ B, = 00 and lim. o, B, = 0. Three possible graphs of fe(u) satisfying
(1.1)—(1.3) are depicted in Fig. 1.
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Fig. 1. Three possible graphs of f.(u) satisfying (1.1)-(1.3).

For any ¢ > 0, on the (), ||ul|.,)-plane, we study the shape and structure of bifurcation
curves S. of positive solutions of (1.1), defined by

Se = {(A\ |luall) : A > 0 and w, is a positive solution of (1.1)}.

We say that, on the (), ||u||,,)-plane, the bifurcation curve S is S-shaped if S; is a continuous
curve and there exist two positive numbers A\, < A* such that S, has ezactly two turning
points at some points (A, ||ux+||,) and (A, |lua.||), and

(1) A < A" and |luxe
(i) at (A", ||lua«

o < lua.

oo

) the bifurcation curve S, turns to the left,
(iii) at (A, |lua.|l,,) the bifurcation curve S, turns to the right.

See Fig. 2(i) depicted below for example.

Problem (1.1) was first systematically studied by a celebrated paper by Smoller and Wasser-
man [8]. In particular, they considered (1.1) with ¢ = 1 and that cubic nonlinearity f.—;(u)
has three real zeros a < b < c. In this paper we discuss the general case with ¢ > 0 and
o,p,k € R, so that f.(u) may have exactly one positive zero, two distinct positive zeros or
three distinct positive zeros. If (¢ < 0, p,k € R) or (p < 0, 0,x € R), by applying the
methods used in [8], we can prove that the structure of bifurcation curve S, of (1.1) is one of
the following cases:

(i) The bifurcation curve S, of (1.1) is an empty set (that is, (1.1) has no positive solution
for all A > 0). :

(ii) The bifurcation curve S; of (1.1) is a monotone curve on the (X, ||u||)-plane.

(iii) The bifurcation curve S, of (1.1) has exactly one turning point where the curve turns
to the right on the (X, ||u|,,)-plane.

More precisely, we can give a classification of totally three qualitatively different bifurcation
curves S; if (0 < 0, p,k € R) or (p <0, 0,k € R). In these cases, (1.1) has at most two
positive solutions for each A > 0. So we mainly consider the remaining case (1.1), (1.2). In
this case, it is more difficult to determine precisely the shape of the bifurcation curve S, and
the exact multiplicity of positive solutions of (1.1), (1.2) since S, may have two turning points
and (1.1), (1.2) may have three positive solutions for a certain range of positive A.
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Fig. 2. Global bifurcation of bifurcation curves S, of (1.1), (1.2), and (either (1.3) or (1.4))

with varying € > 0.

P
+ >

Hung and Wang [1] very recently developed some time-map techniques to study the shape
of the bifurcation curve S, and the exact multiplicity of (1.1), (1.2) with

k < 0. (1.4)

For (1.1), (1.2), (1.4), they [1, Theorem 2.1] proved that there exists a positive number & =
&(o, Kk, p) satisfying
25 0'3 1/2 - O'3 1/2
(é‘é(m)) <e< (2—7;)
such that, on the (X, ||ul|_,)-plane,
(i) For 0 < e <&, the bifurcation curve S, of (1.1), (1.2), (1.4) is S-shaped (see Fig. 2(i)).

(ii) Fore = , the bifurcation curve Sz of (1.1), (1.2), (1.4) is monotone increasing. Moreover,
(1.1), (1.2), (1.4) has exactly one (cusp type) degenerate positive solution u; (see Fig.

2(ii)).

(iif) Fore > &, the bifurcation curve S of (1.1), (1.2), (1.4) is monotone increasing. Moreover,
all positive solutions uy of (1.1), (1.2), (1.4) are nondegenerate (see Fig. 2(iii)).

Our results in this paper are extensions of those of Hung and Wang [1] from « < 0 to
k < 4/op. In Theorem 2.1 stated below for (1.1)—(1.3) with varying ¢ > 0, we prove the same
global bifurcation results of bifurcation curves S.. Hence we are able to determine the exact
number of positive solutions by the values of ¢ and ). In addition, we give lower and upper
bounds of the critical bifurcation value Z. See Fig. 2.

While for any A > 0, on the (e, |||l )-plane, it is interesting to study the shape and
structure of bifurcation curves X, of positive solutions of (1.1), defined by

Zx = {(e, |luells) : € > 0 and wu, is a positive solution of (1.1)}.

(Note that we allow that bifurcation curve = consists of two (or more) connected components.)
We say that, on the (e, ||u||.,)-plane, the bifurcation curve T, is reversed S-shaped if I, is a
continuous curve and there exist two numbers ¢, < &* such that S; has eractly two turning
points at some points (&, ||ue,||,,) and (¢*, ||ue ||, ), and

(i) e« <e&* and ||u,,

oo < “uE"

0!



(ii) at (e, ||te, ||o,) the bifurcation curve Xy turns to the right,
(iii) at (e*,||uer||,,) the bifurcation curve Xy turns to the left.

See Fig. 3(iii) for example.
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Fig. 3. Global bifurcation of bifurcation curves £ of (1.1), (1.2), and (either (1.3) or (1.4))
with varying A > 0.

For (1.1), (1.2), (1.4), Hung and Wang [1, Theorem 2.3] proved that there exist two positive
numbers Ay (= Xo(0, K, p)) < A (= A(0, K, p)) such that, on the (e, ||u||,,)-plane,

(i) For 0 < X < \g, the bifurcation curve I of (1.1), (1.2), (1.4) has two disjoint connected
components, the upper branch is D-shaped with exactly one turning point, and the lower
branch is a monotone decreasing curve (see Fig. 3(i)).

(ii) For A = )q, the bifurcation curve X, of (1.1), (1.2), (1.4) has two disjoint connected
components, the upper branch is D-shaped with exactly one turning point, and the lower
branch is a monotone decreasing curve (see Fig. 3(ii)).

(iii) For Ap < A < A, the bifurcation curve £, of (1.1), (1.2), (1.4) is reversed S-shaped (see
Fig. 3(iii)).

(iv) For A = }, the bifurcation curve X5 of (1.1), (1.2), (1.4) is monotone decreasing. More-

over, (1.1), (1.2), (1.4) has exactly one (cusp type) degenerate positive solution u;z (see
Fig. 3(iv)).

(v) For A > A, the bifurcation curve y of (1.1), (1.2), (1.4) is monotone decreasing. More-
over, all positive solutions u. of (1.1), (1.2), (1.4) are nondegenerate (see Fig. 3(v)).



In Theorem 2.2 stated below for (1.1)-(1.3) with varying A > 0, we prove the same global
bifurcation results of bifurcation curve ¥,. Hence we are able to determine the exact number
of positive solutions by the values of A and e. See Fig. 3.

We study, in the (¢, A, ||u||.)-space, the shape and structure of the bifurcation surface T
of positive solutions of (1.1), defined by

I'= {(,\ lucall.) : €,A > 0 and w, , is a positive solution of (1.1)}
which has the appearance of a folded surface with the fold curve
Cr = {(&, A [|ueplly,) : €, A > 0 and u, 5 is a degenerate positive solution of (L1)}.

Let Fy denote the first quadrant of the (¢, A)-parameter plane. We also study, on F,, the
bifurcation set

Br={(¢,A) :6,A > 0 and u, , is a degenerate positive solution of (1.1)}

which is the projection of the fold curve Cr onto F,. Let M denote the bounded, open
connected subset of Fy, which is ‘inside’ Br.

For (1.1), (1.2), (1.4), Hung and Wang (1, Theorem 2.4] proved that the following assertions
(i)-(iv) (see Figs. 4 and 5):

(i) The fold curve Cr of (1.1), (1.2), (1.4) is a continuous curve in the (e, ), [lul| ., )-space.
Moreover, Cr = C; U C, where

C1 = {(e, \(e), ”us,,\,(s)”w) :0<e<E} and C= {(¢,\*(¢), Hus,»(E)Hm) :0<e<éE}.

(ii) The bifurcation set Br of(1.1),(1.2),(1.4) satisfies Br = B; U By where

Bi={(e,M\(e)):0<e <&} and By = {(¢,\*(g)): 0 < e < &}.

(iif) Ax(e) and A*(e) are both continuous, strictly increasing on (0, &].

(iv) Problem (1.1), (1.2), (1.4) has exactly three positive solutions for (¢,\) € M, exactly
two positive solutions for (¢,A) € Br \ {(§,1)}, and exactly one positive solution for
(€:2) € (Fg \ (BrU M) U{(E, M)}



(& 5‘7 "ut,X"N)

Fig. 4. The bifurcation surface I' with the fold curve Cr = C; U Cs, and the projection

of I" onto F,. Br

Fig. 5. The pro

= B, U B, is the bifurcation set and (Z, 5\) is the cusp point on Fj,.

4+
1 positive solution 23
(€N
2 positive solutions 1'\ ositive solution
A* ( € ) ) X P
B,

3 positive solutions,” 2 positive solutions

1 positive solution

A(e)

€

0
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bifurcation set and (£, A) is the cusp point on F.



In Theorem 2.3 stated below for (1.1)—(1.3), we prove the same structure of the bifurcation
set Br and the fold curve Cr. Hence we are able to determine the exact number of positive
solutions of (1.1)—(1.3) by the values of ¢ and ). See Figs. 4 and 5.

The paper is organized as follows. Section 2 contains statements of the main results: The-
orems 2.1-2.3. Section 3 contains several lemmas needed to prove Theorems 2.1-2.3. Section
4 contains the proofs of Theorems 2.1-2.3. Finally, in Section 5, we give three conjectures on
the shape of bifurcation curves S, of positive solutions of (1.1), (1.2) with evolution parameter
K> \/0p.

In this section, finally, we note that our main results (Theorems 2.1-2.3) in this paper
extend those of Hung and Wang [1, Theorems 2.1, 2.3 and 2.4] from x < 0 to k < NG
and the proofs are more complicated. One of the main difficulties is that f.(u) can initially
decrease, but then increases to a peak before falling to zero on (0, 8,], see Fig. 1(i).

2. Main results

Theorem 2.1. Consider (1.1)<(1.3) with varying ¢ > 0. There exists a positive number
& = &(o, K, p) satisfying

(25 ( o3

32°27p

such that the following assertions (i)—(iii) hold:

W2 < < (o
27p

(i) (See Fig. 2(i).) For 0 < ¢ < &, the bifurcation curve S, is S-shaped on the (), |[ul|,)-
plane. Moreover, there exist two positive numbers A\, < \* such that (1.1)—(1.3) has
exactly one degenerate positive solution u,, and uy» for A = A\, and A = \*, respectively.
More precisely, (1.1)—(1.3) has:

(a) exactly three positive solutions uy, vy, wy With wy < uy < vy for A, < A < A%,

(b) exactly two positive solutions wy, uy with wy < uy for A = )\, and exactly two
positive solutions uy, vy with uy < vy for A = \¥,

(c) exactly one positive solution wy for 0 < A < \,, and exactly one positive solution
vy for A > \*.

Furthermore,

(d) limy_o+ [lwall = 0 and limy_,o [|0a]] o, = Be-

(ii) (See Fig. 2(ii).) For ¢ = &, the bifurcation curve Sz is monotone increasing on the
(A, llullo)-plane. Moreover, (1.1)—~(1.3) has exactly one (cusp type) degenerate positive
solution us. More precisely, for all A > 0, (1.1)—(1.3) has exactly one positive solution
uy satisfying limy_o+ [|ua|l,, = 0 and limy o |jus], = B.-

(iii) (See Fig. 2(iii).) For ¢ > , the bifurcation curve S. is monotone increasing on the
(A llullo)-Plane. Moreover, all positive solutions uy of (1.1)—(1.3) are nondegenerate.
More precisely, for all A > 0, (1.1)<(1.3) has exactly one positive solution uy satisfying
lim)‘_,0+ ”’U:,\”oo =0 and lim)‘_m ||u>‘|[°° = ﬂe'

Theorem 2.2. Consider (1.1)—~(1.3) with varying A\ > 0. There exist two positive numbers
Ao (= Xo(o,,p)) <X (= Ao, &, p)) such that the following assertions (i)—(v) hold:



(i) (See Fig. 3(i).) For 0 < A < A, on the (¢, ||ul|,)-plane, the bifurcation curve £ has two
disjoint connected components, the upper branch is D-shaped with exactly one turning
point, and the lower branch is a monotone decreasing curve. Moreover, there exists a
positive number e* such that (1.1)—(1.3) has exactly one degenerate positive solution u.«
for ¢ = &*. More precisely, (1.1)—(1.3) has:

(a) exactly three positive solutions u., v, we with w, < u, < v, for 0 < e < &*,
(b) exactly two positive solutions w,, u. with w, < u, for e = €*,

(c) exactly one positive solution w, for € > e*.
Furthermore,

(d) 0 =lim. o0 ||wellp < limemot ||Welloo < limeso+ [|te]loy < limeot ||veloo = 00.

(ii) (See Fig. 3(ii).) For A = X, on the (g, ||ul|,)-plane, the bifurcation curve £, has two
disjoint connected components, the upper branch is D-shaped with exactly one turning
point, and the lower branch is a monotone decreasing curve. Moreover, there exists a
positive number e* such that (1.1)—(1.3) has exactly one degenerate positive solution uc.
for € = €*. More precisely, (1.1)—«(1.3) has:

(a) exactly three positive solutions u., ve, we. with w, < u. < v, for 0 < e < ¢*,
(b) exactly two positive solutions w,, u, with w, < u. for e = €*,
(c) exactly one positive solution w, for € > €*.

Furthermore,

(d) 0 = lim; o0 || Well oo < limemso+ [|Welloo = limeoot [|Ue|lo < lime—ot ||Ve] oo = 00.

(iii) (See Fig. 3(iii).) For A\g < A < X, the bifurcation curve I is reversed S-shaped on the
(e, ||ulloo)-plane. Moreover, there exist two positive number e, < €* such that (1.1)-
(1.3) has exactly one degenerate positive solution u., and u.. for € = ¢, and € = €*,
respectively. More precisely, (1.1)—(1.3) has:

(a) exactly three positive solutions u., v, we wWith we < uc < ve fore, < e <¢”,

(b) exactly two positive solutions u., v. with u. < v, for ¢ = ¢,, and exactly two
positive solutions w,, u. with w. < u, for € = &*,

(c) exactly one positive solution v, for 0 < € < €, and exactly one positive solution
w, for e > &*.
Furthermore,

(d) lim,_o+ ||ve[lo, = 00 and lim, e [|we||o, = O.

(iv) (See Fig. 3(iv).) For A\ = ), the bifurcation curve T is monotone decreasing on the
(¢, ||u|l)-plane. Moreover, (1.1)—(1.3) has exactly one (cusp type) degenerate positive
solution uz. More precisely, for all ¢ > 0, (1.1)—(1.3) has exactly one positive solution u,
satisfying lim._o+ ||uc|, = 00 and lim._,c ||%c||,, = 0.

(v) (See Fig. 3(v).) For A > }, the bifurcation curve ¥, is monotone decreasing on the
(e, |lull o )-plane. Moreover, all positive solutions u. of (1.1)~(1.3) are nondegenerate.
More precisely, for all ¢ > 0, (1.1)—(1.3) has exactly one positive solution u, satisfying
lim, o+ ||uell,, = 00 and lim,_,c0 ||el| oo = O.



We give next remark to Theorem 2.2.

Remark 1. Considering (1.1)~(1.3) with e > 0 generalized to e € R, we define the bifurcation
curve

= {(e, l|luell) : € € R and wu, is a positive solution of (1.1)}.
Actually, it can be easily proved that:

(i) For 0 < A < )Xo, the bifurcation curve £, is reversed S-shaped on the (e, lull)-plane.
Moreover, there exists e, < 0 such that (1.1)—(1.3) has exactly two positive solutions
We, Ue With w, < u, for e, < € < 0, and exactly one positive solution u, for € = ¢,, and
no positive solution for € < ¢,. See Fig. 6(i).

(ii) For X\ = )Xo, the bifurcation curve %, is reversed S-shaped on the (e, l|ull o) -Plane.
Moreover, (1.1)—(1.3) has exactly one positive solution u, for ¢ = 0, and no positive
solution for € < 0. See Fig. 6(ii).
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Fig. 6. Global bifurcation of bifurcation curves £, of (1.1)~ (1.3) with € > 0 generalized to
¢ € R and with varying A € (0, \).

Notice that, in Theorem 2.1, on the (), ||u|| . )-plane, the bifurcation curve S, is S-shaped
for 0 < & <&, see Fig. 2. Wh11e in Theorem 2.2 and Remark 1, on the (e, ||u||,, )-plane, the
bifurcation curve ¥, is reversed S-shaped for 0 < A < ), see Fig. 6.

Let & = &(d, k, p), Xo = Xo(0, K, p), X = A(0,K,p), M = A(€), A = X*(e), &4 = &.()) and
g* = €*()\) be the values in Theorems 2.1 and 2.2 for (1.1)~(1.3). We study the structure of
the bifurcation set Br in the next theorem.

Theorem 2.3 (See Fig. 5). Consider (1.1)~(1.3) with (¢, \) € F,. Then the bifurcation set
Br = B; U By where

By ={(e,\(e)):0<e <&} and By = {(e,\*(¢)): 0 < e < &}.

Moreover, (1.1)=(1.3) has exactly three positive solutions for (¢, \) € M, exactly two positive
solutions for (¢,)) € Br \ {(¢,\)}, and exactly one positive solution for (e,A) € (Fg\ (BrU
M)) U{(,A)}. More precisely, the following assertions (i) and (ii) hold:

(i) Functions \.(e) and X*(¢) are both continuous, strictly increasing on (0,&] and satisfy
0 = im0+ Au(€) < lime_or X*(€) = Ao < A = A (B) = M (B).
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(ii) Function *()) is continuous, strictly increasing on (0, )| and satisfies limy o+ €*(X) =0

and €*(\) = & Function ¢,()\) is continuous, strictly increasing on (Ao, A] and satisfies
lim, s €«(A) = 0 and &.(}) =&.

In next remark, we give a precise characterization of the fold curve Cr in the (g, A, ||u|,,)-
space.

Remark 2 (See Fig. 4). Consider (1.1)—(1.3). Then, by Theorem 2.3(i), the fold curve
Cp = 01 U 02 where

C, = {(s,)\.(s), Hue,,\_(e)“oo) 10<e< é} and Cp = {(5,/\*(6), ”""EN(E)HOO) :0<e< é} .

Moreover, by applying (4.4)—4.7) stated below, we are able to prove that:

@) fler@lloo > lterc@llo for 0 < & <2 and [luza.ie)loe = uen@lloo = lluesllo:

(i) ”us‘,\_(e) ||oo is a continuous, strictly decreasing function of ¢ € (0, &] and "uS,A'(E)Hw isa
continuous, strictly increasing function of € € (0, &|.

(iii) Cr is a continuous curve in the (g, A, ||u||.,)-space.

Observe that both A\*(¢) and \,(e) have continuous inverse functions on (0,&]. Indeed,
e+()) is the inverse function of A*(¢) on (Mg, A] and €*() is the inverse function of A.(¢) on
(0, A].

3. Lemmas

To prove our results (Theorems 2.1-2.3), we need the following Lemmas 3.1-3.8 in which we
develop new time-map techniques different from those developed in [1]. In particular, Lemma
3.3 is a key lemma in the proofs of Theorems 2.1-2.3. In Lemma 3.3, for any fixed € > 0, we
prove that the bifurcation curve S, is either monotone increasing or S-shaped on the (\, ||u||.)-
plane. To apply the time-map techniques for (1.1)—(1.3), in the following, we consider ¢ > 0.
The time map formula which we apply to study (1.1)—(1.3) takes the form as follows:

VA= %/Oa [F.(a) — Fo(u)]™?du=Ti(a) for 0<a < B, ande >0, (3.1)

where F,(u) = [ f.(t)dt and B, the unique positive zero of cubic polynomial f,(u) for ¢ > 0,
and we let 3 0o. Observe that positive solutions u, ) for (1.1)—(1.3) correspond to

=0=
el = @ and Ti(a) = VA, (3.2)

Thus, studying of the exact number of positive solutions of (1.1)—(1.3) for fixed ¢ > 0 is
equivalent to studying the shape of the time map T.(a) on (0, 8,); and studying the exact
number of positive solutions of (1.1)—(1.3) for fixed A > 0 is equivalent to studying the number
of roots of the equation Ty(a) = v/X on (0, 3,) for varying ¢ > 0. Note that it can be proved
that T.(c) is a thrice differentiable function of « € (0, 8,) for € > 0. The proof is easy but
tedious; we omit it.

We call a positive solution u. of (1.1)—(1.3) is degenerate if T.(||ucx]l0) = O and is
nondegenerate if T.(||ue||o0) # 0. So to find the degenerate positive solutions of (1.1)-(1.3),
we only need to find the critical points of T.(«) on (0,3,). It is known that a degenerate



positive solution u. of (1.1)~(1.3) is of cusp type if T (||ue|lo0) = 0 and T2 (|luez]loo) # O,
see Shi [6, p. 497] and [7, p. 214].

The main difficulty in proving our main results is to determine the exact number of critical
points of the time map T.(«) on (0,8,) for all ¢ > 0. This question is partially answered in
the following Lemmas 3.1 and 3.2. Lemma 3.1 follows from [5, Theorems 2.6, 2.9 and 3.2] and
Lemma 3.2 mainly follows by applying [2, Theorem 2.1]; we omit the proofs.

Lemma 3.1. Consider (1.1)<1.3). For any fixed ¢ > 0, the following assertions (i) and (ii)
hold:

() limg—o+ Te(e) = 0 and lim,_,5_ Te(cr) = oo.

(i) If T.(c) is not strictly increasing on (0,7,), then T.() is strictly increasing on (0,7,)
and strictly decreasing on (7,,,) for some ¥, € (0,7,).

Lemma 3.2. Consider (1.1)~(1.3). Then the following assertions (i) and (ii) hold:

(i) For any fixed ¢ > (%)1/ 2, T.(a) is a strictly increasing function on (0, 3,).

(ii) For any fixed positive € < (%(;—;))V 2, T.() has exactly one local maximum and one
local minimum on (0, 8,).

However, there is a gap, what about the case where ¢ is between (1-76(%))1/ 2 and (2173;)1/ 22
First, in the next Lemma 3.3, we prove

Lemma 3.3. Consider (1.1)~(1.3). For any fixed ¢ > 0, T.() is either a strictly increasing
function or has exactly two critical points, a local maximum and a local minimum, on (0, Be)-

To prove Lemma 3.3, we develop some new time-map techniques. First, we define the

auxiliary function ,
Ge(a) = 8v202T" (). (3.3)

Note that the auxiliary function G.(c) = 8/2a5T”(a) used in this paper is different from
the auxiliary function 12v/2T/(a) + 8v/2aT(a) used in Hung and Wang [1]. Moreover, the
techniques used in [1, Lemmas 3.4-3.5] for s < 0 fails here under condition (1.3) 0 < & < VP,
though it is expected that similar results hold. So we need to develop new techniques to obtain
the following Lemma 3.4. The proof of Lemma 3.4 is rather long and technical; we omit it.

LenEma 3).4. Consider (1.1)—(1.3). For any fixed ¢ € [(%(_;7_1))1/2, (2%3,;)1/2], GL(a) > 0 for
o€ v, B.).

For any fixed o > 0, let
In={¢>0:2€(0,8,)}-

Since 3, is a continuous, strictly decreasing function of ¢ > 0, and lim,_ ¢+ B, = oo and
lime o0 B, = 0, we obtain that I, = (0,e(a)) where o = 8,,), and () is strictly decreasing
in a.

Lemma 3.5. Consider (1.1)—(1.3). For any fixed o > 0, T!(«) is a continuously differentiable,
strictly increasing function of € € I, U {0}.

11
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Proof of Lemma 3.5. First, for any fixed o > 0, it can be proved that T,(«) is a continuously
differentiable function of € € I, U {0}. The proof is easy but tedious; we omit it.

Secondly, since f.(u) = —eud + ou? — ku+p, Fe(u) = [ f.(t)dt and by (3.1), we compute
that

, s(cu fe(av)v
T'(a) = / d
@ = 7 / Foa) - (av)]1/2 " 22 o [Fua) = Fua)]
1 /"‘ B o R C u) du
- 4 2 2 3/2
2v2a Jo [ (oduf) | ple2d) _ kLo E")+p(a—U)] /
and
9
'5€'Te(a)
1 * (a* — u?) [Be(at — ut) + 20(a® — ud) — 12k(a? ——u2)+42p(a—u)]d
B 96\/504 0 —U (a3—u?) (a’—'u?) 5/2
[—eletzed 4 oletoet) _ olefoel) ) o — )]
1 * (o* — u?)(a — u) [0(a? + au + u?) — 6k(a + u) + 21p]
” 48\/50& 0 (ot —ut) (of—u8) (a2-u?) 5/2 du. (34)
[—5 T+ 0=~ ki +p(a—u)]
Let

Hu) = o(a®+ ou+u?) —6k(a+1u)+21p
= oul+ (ca —6k)u + (0a® — 6ka + 21p).

Therefore, the proof is complete if we can prove that
H(u) >0 for any given numbers o, p,a >0, 0 < k < ,/op. (3:5)

Note that the discriminant of quadratic polynomial H (u) is —30%a2+120ka+ (36x%—840p) =
H(a). By the assumption that x < \/0p, the discriminant of quadratic polynomial H(a) is
1440%(4k? — Top) < 0. So H(e) < 0 for any given numbers 0,p > 0, 0 < k < ,/Gp. This
implies that (3.5) holds. By (3.4) and (3.5), for any fixed o > 0, T/(«) is a strictly increasing
function of € € I, U {0}.

The proof of Lemma 3.5 is complete. B

We are now in a position to prove Lemma 3.3.
Proof of Lemma 3.3. First, we prove that, for any fixed ¢ > 0, T.(«) is either a strictly
increasing function or has a local maximum and a loca.l minimum, on (0, 3,). By Lemma 3.2,
we only need to consider the case (10(2.,p))1/2 <e< (% )1/2

For any fixed (35(& p))1/2 <e<(#F )1/2 by Lemma 3.1(ii) (resp. Lemma 3.4), we know
that all (possible) critical points of T, (a) on (0,7,] (resp. on [v,, 3,)) are discrete. Moreover,
since lim,o+ T() = 0 and lim,_,4- T:(a) = oo and by Lemma 3.1(i), we obtain that T!(cx)
changes sign an even number of times or infinitely times. Assume that T, () is neither a strictly
increasing function nor does it have exactly one local maximum and one local minimum on
(0, B.)- Then there exist three numbers ay, as, a3 € (0, 3,) such that a; < as < ag are critical

points of T.(c), a4, a3 are local maxima, and o is a local minimum. Thus T (a;), T (a3) < 0
and T/ (ag) > 0.



By Lemma 3.4, for any fixed (-1%(—2‘1%))1/2 <e< (%)1/2, G.(a) = 8203 T"(a) is a strictly
increasing function on [v,, 8,). Since ay > v, by Lemma 3.1(ii), we obtain that

8v/2a] T (03) = Ge(as) > Gelas) = 8vZad T (az) > 0.

Therefore T/ (a3) > 0. This contradicts to that T”(as) < 0. So T.(a) is either a strictly
increasing function or has exactly one local maximum and one local minimum on (0, 3,).

Next, suppose that T.(c) has exactly a local maximum oy, and a local minimum o, for
some fixed € > 0. Then 0 < ays < o, < B, by Lemma 3.1(i). We can prove that T;(«) has
exactly two critical points oy, o, on (0, 8,) by applying Lemma 3.5 and similar arguments
used in the proof of [1, Lemma 3.3]; we omit it.

The proof of Lemma 3.3 is complete. B

Let

B { € > 0: T.(o) has exactly two critical points, }
~ | alocal maximum and a local minimum, on (0,3,) [~

By Lemma 3.3, for any ¢ > 0, T.(«) is either a strictly increasing function or has exactly two
critical points, a local maximum and a local minimum, on (0, 3,). Thus

E={e>0:T/() <0 for some o € (0,5,)}. (3.6)

We obtain the following two lemmas by modifying the same arguments used in the proof of
(1, Lemmas 3.7-3.8]; we omit the proofs.

Lemma 3.6. The set F is open and connected.
Lemma 3.7. (0, (%(%))1/2] CE.

The following Lemma 3.8(i) determine the shape of T.—o(c) on (0, 00), and Lemma 3.8(ii) is
a basic comparison theorem for the time map formula. Lemma 3.8(i) follows from [5, Theorem
3.2] and Lemma 3.8(ii) by modifying [5, Theorems 2.3 and 2.4]; we omit the proofs.

Lemma 3.8. Consider (1.1)<1.3). The following assertions (i) and (ii) hold:

(i) Te—o(«) has exactly one critical point at some op, a maximum, on (0,00). Moreover,
limg o+ Te—o(e) = limg— 00 Temo(a) = 0.

(i) For any fixed o > 0, T.(c) is a continuous, strictly increasing function of ¢ € I, U {0}.

4. Proofs of the main results

We first recall that a positive solution u. of (1.1) is degenerate if T!(||uex|lo) = O and is
nondegenerate if T.({lucx||s0) # 0. Also, a degenerate positive solution w,  of (1.1) is of cusp
type if T2 (|t lle) = 0 and T7(ffugrJo) # 0.

Proof of Theorem 2.1. To prove Theorem 2.1, by (3.1) and Lemma 3.1(i), it suffices to
prove that there exists a positive number & = &(o, &, p) such that the following parts (I)—(III)
hold:

(I) For 0 < & < &, on (0,8,), T.(a) has exactly two critical points, a local maximum at
some o, and a local minimum at some o} (> «f), satisfying \* = (T.(a7))? and
X = (Tu(a)).

13
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(II) For ¢ = &, T:(e) is a strictly increasing function and has exactly one critical point, at
some &, on (0, 3;). Moreover, Ti(&) = 0, Tz(a) > 0 for o € (0, 8;) \ {&}, T¥(&) = 0 and
T{"(&) # 0 (So (1.1)—~(1.3) has exactly one (cusp type) degenerate positive solution uj
with A = (T:(&))? and & = |u;]|eo-)

(III) For ¢ > &, T.(a) is a strictly increasing function and has no critical point on (0, 3,).
Moreover, T/(c) > 0 for o € (0, B,)-

Note that, by (3.2) and the above parts (I)—(III), we obtain immediately the exact mul-
tiplicity result of positive solutions of (1.1)—(1.3) for 0 < ¢ < & and the uniqueness result
of positive solution of (1.1)-(1.3) for € > & Moreover, ordering properties and asymptotic
behaviors of positive solutions of (1.1)—(1.3) in parts (I)—(III) can be obtained easily. We then
prove parts (I)—(III) as follows.

By Lemmas 3.2, 3.6 and 3.7, we obtain that £ = (0,&) where £ = sup E satisfies
(3—2(2173’;))1/2 <E< (2%)1/2. So, for 0 < ¢ < &, on (0,3,), T.(a) has exactly two critical
points, a local maximum at some o and a local minimum at some a} (> o), satisfying
X = (Te(a7))? and A\, = (Te(aF))?. So part (I) holds.

For ¢ > &, by Lemma 3.5 and (3.6), we obtain that

T,(a) > T(e) 2 0 for o € (0,8,) C (0, B),
and hence T.(«) has no critical point on (0, 8,). So part (III) holds.

T.(a) E>E E=E e=€py €=Ex

5»

I
!
!
! !
L} ]
| 1
1 [
0

* oF
Cn+1 aln

Fig. 7. Graphs of T.(«) for a € (0, 8,) with varying ¢ > 0.

[
3
0 o a‘-n a‘n+l a

We prove the remaining part (II). For € = &, we know that
Ti(a) >0 on (0, ;). (4.1)

We first prove the existence of a critical point of T;(«) on (0, 3;). Choose a sequence {&,} C
E = (0,&) such that e, /&€ as n — 00. Let a;, < a} be two critical points of T, () on
(0,8,,) for each n € N (see Fig. 7). Then by Lemma 3.5 again, we obtain that
(af ) =0.

En+l

T (af,,) <T.,(oz.)=0 and T, (af ) <T:

En+1 En+1 €n+1 €n+1



15

Hence o <o  <of <o and

€n-+1 €n+1

ag, <& = lim af <at Ehma+<a+ for all n € N.

n—oo n—oo

These imply that
T, (&), T. (37) <0 for alln € N.

By Lemma 3.5, we obtain that 7/(«) is a continuous function of € € I,,. Thus

Ty(@) = lim T/ (&7) <0 and Ti(a*) = lim T, (&) < 0. (4.2)
So Ti(&~) = Ti(&*) = 0 by (4.1) and (4.2), and hence Tz(c) has critical points at &~,&* on
(Oa ﬁé)

We then prove the uniqueness of critical point of Tx(c) on (0, 3:). That is, we prove that
& = & = &' is the unique critical point of Tx() on (0,3;). Suppose that & < & are two
critical points of Tx() on (0, 8;). We know that all (possible) critical points of T, () on (0, 3.)
are discrete as in the proof of Lemma 3.3. Hence there exist positive numbers o; < & < ap < &
such that

Ti(1), Ti(ag) > 0.

By Lemma 3.5, we obtain that T.(c) is a continuous, strictly increasing function of € € I,.
Hence there exists a positive & < & such that

Ti(a1) > 0, TL(&) < 0, Ti(ag) > 0, Ti(&) < 0.

Thus Tz () has at least two local maxima on (0, 3;), which contradicts to the facts that &é € E
and T:(«) has exactly one local maximum on (0, 3;). So Tx(«) has at most one critical point
on (0, 3;). By the above analysis,

Ti(@) =0 and Ti(a) >0 fora € (0,5:)\ {&}. (4.3)

Next, if T7'(&) > 0 (resp. TY(&) < 0), then Tx(«) has a local minimum (resp. a local
maximum) at &, which contradicts to (4.3). So 7¢(&) = 0. By Lemma 3.1(ii), we have

of >v,, >7; forallneN,

&

and hence & = lim,,, o > 7;. By Lemma 3.4, Gi(«) > 0 for all « € [z, Bz). So
GL(a) = a3 [2of V(&) + 8v/2 aT’”(a)]

Therefore T;"(&) > 0 since TY(&) = 0. This completes the proof of part (II).
The proof of Theorem 2.1 is complete.
Proof of Theorem 2.2. Recall (3.1) with ¢ > 0,

= % /0"‘ [F(a) — Fo(uw)]™?du=T.(a) for 0<a< B.,

where 3. the unique positive zero of cubic polynomial f.(u) for € > 0 and S._ = co. Thus,
studying the exact number of positive solutions of (1.1)—(1.3) for fixed A > 0 is equivalent
to studying the number of roots of the equation T.(a) = v/ on (0, 8.) for varying ¢ > 0.
Since we have studied the behaviors of T.(«) for all varying € > 0 (see the proofs of Theorem
2.1 and Lemma 3.8(i) and Fig. 7), there exist two positive numbers Xy (= Ao(c, &, p)) < A
(= X(a, &, p)) such that the following parts (I)—(III) hold:
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(I) For 0 < X < )\, there exists a positive number ¢* = ¢*()\) such that the equation
T.(e) = v/ has exactly three roots on (0,8,) for 0 < ¢ < &*, exactly two roots on
(0, 3,) for € = ¢*, and exactly one root on (0, 3,) for ¢ > &*.

(I1) For Ay < A < X, there exist two positive number ¢, (= &,())) < &* (= €*())) such that
the equation T,(a) = v/X has exactly three roots on (0, 8,) for ¢, < € < €*, exactly two
roots on (0, B,) for ¢ = ¢, and € = ¢*, and exactly one root on (0, 8,) for 0 < ¢ < e, and
€>¢".

(III) For A > A, the equation T.(c:) = v/X has exactly one root on (0, 3,) for all € > 0.

Notice that Mg = (Ti=o())? and X = (T:(&))?, where ay is the unique critical point of
T.—o(@) and & be the unique critical point of Tz(«). Hence (3.2) and the above parts (I)~(III)
imply immediately the exact multiplicity result of positive solutions of (1.1)—(1.3) for A € (0, A)
and the uniqueness result of positive solution of (1.1)~(1.3) for A > X. Moreover, ordering
properties and asymptotic behaviors of positive solutions of (1.1)-(1.3) in parts (I)—(III) can
be obtained easily.

The proof of Theorem 2.2 is complete. B
Proof of Theorem 2.3. By Theorem 2.1, for any ¢ > &, we obtain that (1.1)—(1.3) has
exactly one positive solution for all A > 0. In addition, for any ¢ € (0,&), there exist two
positive numbers A,(¢) < A*(¢) such that (1.1)—(1.3) has exactly three positive solutions for
A(g) < X < A*(e), exactly two positive solutions for A = A.(¢) and A\*(e), and exactly one
positive solution for 0 < A < A,(¢) and A > X*(¢), where A\ (¢) = (Te(of))? and X*(¢) =
(T.(e))? in which o < o are two critical points of T.(a) on (0, 3.).

First, letting o = af = &, we prove that o (resp. o) is a continuous, strictly increasing
(resp. strictly decreasing) function on (0,&] and lim, o+ &7 = ap (resp. lim. o+ af = o0) as
follows (cf. Fig. 7.) By similar arguments in the proof of Theorem 2.1, we obtain that o
(resp. o) is a strictly increasing (resp. strictly decreasing) function on (0, &]. For any fixed
a € (ap, &), by Theorem 2.1(ii) and Lemma 3.8(i), we obtain that

T!_o(a) <0 and Ti(a)> 0.

Then by Lemma 3.5, T (a) is a continuously differentiable, strictly increasing function of
e € [0,&]. This implies that there exists a unique ¢ € (0, &) such that T(a) = 0. So

a7 : (0,&] — (ap, @] is a strictly increasing, surjective function, (4.4)

and hence of is a continuous function on (0, Z] and lim,_,o+ o = ap. Similarly, we can prove
that
o : (0,&] — [&,00) is a strictly decreasing, surjective function, (4.5)

and hence o} is also a continuous function on (0, €] and lim,_¢+ af = oo.
Secondly, let

A(0) = 0, A*(0) = Ao = (Temo(@))?, and M (&) = V(&) = ) = (Tx(&))%.

By (4.4), (4.5), Lemma 3.5 and Lemma 3.8(ii), it can be proved that \* = (T.(c;))? and
M = (Te(af))? satisfy

A*(€) : [0,] = [, A] is a continuous, strictly increasing function (4.6)

A(€) : [0, — [0,]] is a continuous, strictly increasing function. (4.7)
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Moreover, -
li%1+ A*(e) = Ao, lir51+ A(e) =0, and A\(8) = \*(E) = A\ (4.8)

The proofs are easy but tedious and hence we omit them.

Finally, by (4.6)—(4.8), A*(¢) and X.(e) both have continuous inverse functions on (0, &].
Indeed, by Theorem 2.2 and (3.1), &,(A) = (A\*)7(¢) on (Ao, A] and &*(\) = (\,)~(¢) on (0, ]
where €,(}) = ¢*(1) = &. So we obtain that

*(\) : (0,A] = (0,2] is a continuous, strictly increasing function

and
ex(A) : (Mo, A] = (0,2] is a continuous, strictly increasing function.

Moreover,
lim e*(\) = lim e.(A) =0.

A—0+ )\—-»A

The proof of Theorem 2.3 is complete. B

5. Conjectures

In this section, we analyze (1.1), (1.2) more precisely. First, if

K < \Jop,

the exact multiplicity results of positive solutions for (1.1), (1.2) was determine precisely
by Theorem 2.1 and [1, Theorem 2.1]. By some numerical simulations, we give next three
conjectures on the shape of bifurcation curves S of positive solutions of (1.1), (1.2) with

K> \/Tp.
Conjecture 5.1. Consider (1.1), (1.2) where

Vop <k < 4/30p.

Then there exists a positive number & = (o, k, p) satisfying satisfying

25, 0% i a3 1
(Gl <E<(3)
such that all results in Theorem 2.1(i)—(iii) hold.
While
30p, (5.1)

we remark that there exists some & > 0 such that cubic nonlinearity fé(u) has three positive
zeros a < b < c and [° fs(t)dt > O (see Fig. 8(i).) For which f:(u), it is easy to check that
a+c > 2b and there exists u € (b, c) such that [* f:(t)dt = 0. So problem (1.1), (1.2), (5.1)
can be written as

{ u'(z) + Xe(u—a)(u—b)(c—u) =0, —1<z<1, u(-1)=u(l)=0,

ANE>OD, O0<a<b<ec a+c> 2D (5.2)
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Fig. 8. (i) The graph of f:(u) in (5.2). (ii) The conjectured bifurcation curve of (5.2).

It was conjectured that the bifurcation curve of positive solution of (5.2) is broken S-shaped
(see Fig. 8(ii)) on the (A, |lu||,)-plane. A proof was claimed by Smoller and Wasserman
[8, Theorem 2.1}, but their proof has a gap. Assuming additional different conditions on
constants a, b and ¢, Wang [9] and Korman, Li and Ouyang [3] gave partial proofs of the
above conjecture independently. For this conjecture, Korman, Li and Ouyang [4] gave a
computer-assisted proof. Further investigation on this long-standing conjecture is needed. We
give next two conjectures for (1.1), (1.2), (5.1).

Conjecture 5.2. Consider (1.1), (1.2) where

V/30p < k < 2,/ap. (5.3)

Then there exist two positive numbers & = &o(o,Kk,p) < &9 = eo(0, K, p) such that the
following assertions (i)—(iii) hold:

(i) (See Fig. 2(i).) If 0 < € < &, then the bifurcation curve S, is S-shaped on the (X, ||ul|)-
plane. Moreover, the exact multiplicity results of positive solutions in Theorem 2.1(i)
hold.

(ii) (See Fig. 8(ii).) If &y < € < ¢€q, then the bifurcation curve S, is broken S-shaped on the
(A, llullo)-plane. Moreover, there exist \* > 0 such that (1.1), (1.2), (5.3) has exactly
three positive solutions for A > \*, exactly two positive solutions for A = \*, and exactly
one positive solution for 0 < A < \*.

(iii) (See Fig. 2(iii).) If ¢ > &g, then the bifurcation curve S, is a monotone curve on the

(A, ||ul|oo)-plane. Moreover, (1.1), (1.2), (5.3) has exactly one positive solution for all
A>0.

Conjecture 5.3. Consider (1.1), (1.2) where
Kk > 2,/0p. (5.4)

Then there exists a positive number g9 = €o(0, , p) such that the following assertions (i) and
(ii) hold:

(i) (See Fig. 8(ii).) If 0 < € < &, then the bifurcation curve S, is broken S-shaped on the
(A, |lullo)-plane. Moreover, there exist \* > 0 such that (1.1), (1.2), (5.4) has exactly
three positive solutions for A > \*, exactly two positive solutions for A = \*, and exactly
one positive solution for 0 < A < \*.



(i) (See Fig. 2(iii).) If ¢ > &g, then the bifurcation curve S, is a monotone curve on the
(A ||ul|oo)-plane. Moreover, (1.1), (1.2), (5.4) has exactly one positive solution for all
A>0.
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