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1. Introduction

In this paper we study global bifurcation diagrams and exact multiplicity of positive solutions
u € C*(~L, L)NC[~L, L] for the one-dimensional prescribed mean curvature problem arising
in electrostatic MEMS

W@\ A
—(\/1+(u'<x>)2> =T Vb ~D<e<i
u(~L) = »(L) =0,

(1.1)

where A > 0 is a bifurcation parameter, and p,L > 0 are two evolution parameters. The

singular nonlinearity
1
flu)= Ao P >0
satisfies
f(0) =1, liIZ{l_ f(u) = o0, and f'(u), f’(u) >0 on [0,1). (1.2)

Notice that the improper integral of f over [0, 1) satisfies

1 00 ifp>1,
[; f(“)duz{ s <oo if0<p<l.
The prescribed mean curvature problem
/
v(z) 7
| —7—==—=| =Af(uv), —L<z<lL, (13)
1+ (w/(z))? '
u(—L) =u(L) =0,

and n-dimensional problem of it, with general nonlinearity f () or with many different types
nonlinearities, like exp(u), (1 +w)? (p > 0), exp(uv) — 1, «? (p > 0), a* (a > 0), u — u3,
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and v? + u? (0 < p < ¢ < 00) have been recently investigated by many authors, see e.g.
1, 2, 3, 4, 5, 6]. The methods for (1.3) they used are based on a detailed analysis of time
maps. Note that, in geometry, a solution u(z) of (1.3) is also called a graph of prescribed
(mean) curvature Af(u).

A solution v € C%(~L,L) N C[-L, L] of (1.3) with v’ € C([-L, L], [—00,00]) is called
classical if |u/(£L)| < oo, and it is called non-classical if w/(—L) = oo or w'(L) = —oo,
see [5]. In this paper we always allow that solutions u € C?(—L, L) N C[-L, L] satisfy v’ €
C([-L, L], [~00,0]). Notice that it can be shown that (see [5]):

(i) Any non-trivial solution u € C*(—L, L) N C[—L, L] of (1.1) is concave and positive on
(=L, L).

(i) A positive solution u € C?(~L,L) N C[—L, L] of (1.1) must be symmetric on [-L, L].
Thus v'(—L) = —u'(L).

(iii) A classical solution u € C*(—L, L) N C|~L, L] of (1.1) belongs to C*[-L, L].
(iv) A non-classical solution u € C*(—L,L) N C[-L, L] of (1.1) satisfies [u'(£L)| =
For any fixed p, L > 0, we define the bifurcation diagram C, of (1.1) by
Cpr = {(\ llurlly) : A > 0 and u, is a positive solution of (1.1)}.

We say the bifurcation diagram Cj, 1, is D-shaped (see e.g. Fig. 1(i) depicted below) if there
exists A* > 0 such that Cj,; consists of a continuous curve with exactly one turning point at
some point (\*, ||ux+||,,) where the bifurcation diagram C;, 1 turns to the left.

This research is motivated by very recent papers of Pan and Xing [6] and Brubaker and
Pelesko [1, 7). Brubaker and Pelesko [7] studied existence and multiplicity of positive solutions
of the prescribed mean curvature problem

A
—div Vu = = u<l, x€Qy,
Jiewep A9 (1.4)
u=0, xe€oQ,

where A > 0 is a bifurcation parameter and Q; C R™ (n > 1) is a smooth bounded domain
depending on some parameter L > 0. Problem (1.4) with an inverse square type nonlinearity
f(u) = (1 —w)™P, p = 2 is a derived variant of a canonical model used in the modeling
of electrostatic Micro-Electro Mechanical Systems (MEMS) device obeying the electrostatic
Coulomb law with the Coulomb force satisfies the inverse square law with respect to the
distance of the two charged objects, which is a function of the deformation variable (cf. [8,
p. 1324].) The modeling of electrostatic MEMS device consists of a thin dielectric elastic
membrane with boundary supported at 0 below a rigid plate located at +1. In (1.4), u is the
unknown profile of the deflecting MEMS membrane, )\ is the drop voltage between the ground
plate and the deflecting membrane, and the term |Vu|? is called a fringing field (cf. [7]). When
a voltage ) is applied, the membrane deflects towards the ceiling plate and a snap-through
may occur when it exceeds a certain critical value A", referred to as the “pull-in voltage”.
(So if voltage \ exceeds pull-in voltage A*, an equilibrium defection is no longer attainable
and the lower surface will touch up on the upper plate.) This creates a so-called “pull-in
instability” which greatly affects the design of many devices. Also, in the actual design of a
MEMS device, typically, one of the primary device design goals is to achieve the maximum



possible stable steady-state deflection (that is, ||ux«]|,, (< 1), cf. Theorems 1-2 and Figs. 1-2
below), referred to as the “pull-in distance”, with a relatively small applied voltage. We refer
to [7] and the book [9] for detailed discussions on MEMS devices modeling. We also refer to
the book [10] for mathematical analysis of electrostatic MEMS problem (1.4). Notice that
the physically relevant dimensions are n = 1 (In this case , is a rectangular strip with two
opposite edges at z = +L fixed (2L is the length of the strip) and the remaining two edges
free, the deflection u = u(x,y) may be assumed a function of z only.) and n = 2 (Q is a
planar bounded domain with smooth boundary, and L is the characteristic length (diameter)
of the domain. In particular, 0, is a circular disk of radius L.)

With general p > 0, (1.1) is a generalized MEMS problem under the assumption that the
Coulomb force satisfies the inverse p-th power law with respect to the distance of the two
charged objects, where p > 0 characterizes the force strength. See [11, 12, 13, 14] for related
references in which the Coulomb force satisfies inverse p-th power law with various positive
numbers p # 2.

Pan and Xing [6] and Brubaker and Pelesko [1] studied global bifurcation diagrams and
exact multiplicity of positive solutions for the one dimensional problem of (1.4),

v '= At pew
(\/1+(u'(a:))2) oy Wb ThResh 49

u(—L) =w(L) =0.

(Notice that, problem (1.1) reduces to problem (1.5) when p = 2.) Pan and Xing [6, Theorem
1.1] and Brubaker and Pelesko [1, Theorem 1.1] independently proved that there exists L* > 0
such that, on the (A, ||lu||,)-plane, the bifurcation diagram Ca 1, of (1.5) consists of a (contin-
uous) D-shaped curve when L > L*, and as L transitions from greater than or equal to L* to
less than L* the upper branch of the bifurcation diagram Co s, of (1.5) splits into two parts.
See Fig. 1 and see [6, Theorem 1.1] and [1, Theorem 1.1] for details. Note that Brubaker and
Pelesko [1, Theorem 1.1] showed that L* = 0.3499676 and they also gave some computational
results, see [1, Fig. 2].
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Fig. 1. Global bifurcation diagrams C,, ;, with p > 1.
(i) L > L*. (i) L= L* (iii) 0 < L < L*.
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In this paper we extend and improve the results of Pan and Xing {6, Theorem 1.1] and
Brubaker and Pelesko [1, Theorem 1.1] by generalizing the nonlinearity f(u) = (1 — u)~2
in (1.5) to f(u) = (1 — u)™P with general p € [1,00), see Theorem 2.1 stated below. Our
results (Theorems 2.1 and 2.2) also answer an open question raised by Brubaker and Pelesko
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[1, section 4] on the (possible) extension of (global) bifurcation diagram results of generalized
MEMS problem (1.1) under the assumption that the Coulomb force satisfies the inverse p-th
power law with respect to the distance of the two charged objects, where p > 0 characterizes
the force strength. To this open question, we find and prove that global bifurcation diagrams
Cp,r for 0 < p < 1 are different to and more complicated than those for p > 1; compare
Fig. 2 depicted below with Fig. 1. Thus p is also a bifurcation parameter to prescribed
mean curvature problem (1.1). This result is of particular interest since p is not a bifurcation
parameter to the corresponding semilinear problem of quasilinear problem (1.1),

(1—-u)p’

u(—L) =u(L) =0.

A
—a - — —_
{ (z) u<l, L<z<lI, (1.6)

For (1.6) with any p > 0 and L > 0, by applying (1.2) and Laetsch [15, Theorems 2.5, 2.9
and 3.2], we obtain that, on the (), ||ul|,.)-plane, the bifurcation diagram of positive solutions
consists of a (continuous) D-shaped curve which starts from the origin and ends at (0,1), cf.
Fig. 1(i).

The paper is organized as follows. Section 2 contains statements of main results. Section
3 contains several lemmas needed to prove the main results. Section 4 contains the proofs of
the main results.

2. Main results

4 lulloo 4 llulloo 4 lullo
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Fig. 2. Global bifurcation diagrams C,; with 0 < p < 1.
(i)-(i) L > L*. (ili) L=L*. (iv) Ly< L< L*. (v) L= L,. (vi) 0 < L < L,.



The main results in this paper are next Theorems 2.1 and 2.2 for (1.1).

Theorem 2.1 (See Fig. 1). Consider (1.1) with p > 1. There exists L* = L*(p) > 0 such
that the following assertions (i)—(iii) hold:

(i) (See Fig. 1(i).) If L > L*, then there exists \* > 0 such that (1.1) has exactly two
positive solutions uy, vx with |lux|, < [[vall, for 0 < A < X*, exactly one positive
solution uy for A = \*, and no positive solution for A > \*.

(ii) (See Fig. 1(ii).) If L = L*, then there exist 0 < X (= A(p)) < A* such that (1.1) has
exactly two positive solutions uy, vy with |lux||,, < |lvall,, for 0 < A < X*, exactly one
positive solution uy for A = \*, and no positive solution for A\ > \*.

(iii) (See Fig. 1(iii).) If0 < L < L*, then there exist 0 < A < X < \* such that (1.1) has
exactly two positive solutions uy, vy with Hu,\“ < |loall, for0 < A< Xand X < X < ¥,

exactly one positive solution uy for A < A < X and A = \* , and no positive solution for
A> AN

Theorem 2.2 (See Fig. 2). Consider (1.1) with 0 < p < 1. There exist 0 < L. (= L.(p))
< L* (= L*(p)) such that the following assertions (i)-(iv) hold:

(i) (See Fig. 2(i)-(ii).) If L > L*, then there exist 0 < A\, < A\* such that (1.1) has exactly
two positive solutions uy, vy with ||uall,, < ||vall,, for A < A < X*, exactly one positive
solution uy for 0 < A < A, and X\ = \*, and no positive solution for A > \*.

(ii) (See Fig. 2(iii).) If L = L*, then there exist 0 < A\, < X (= A(p)) < A\* satisfying \, <
1 —p < X such that (1.1) bas exactly two positive solutions ux, vx with ||uy ||, < ||valls
for Ay < XA < X*, exactly one positive solution uy for 0 < A < A\, and A = X*, and no
positive solution for \ > \*.

(iii) (See Fig. 2(iv).) If L, < L < L*, then there exist 0 < A\, < A < X < A* satxsijmg
A < 1—p < A such that (1 1) has exactly two positive solutions uy, vy with ||u,l|
”UA“ for A, <A < Aand A < A < X*, exactly one positive solution uy for 0 < A < A
A<i<Xand A= A*, and no positive solution for A > \*.

(iv) (See Fig. 2(v)-(vi).) If0 < L < L,, then there exist 0 < A < \* satisfying l-p< \ such
that (1.1) has exactly two positive solutions uy, vx with ||us]|o, < [|valle for A < A < X7,
exactly one positive solution uy for 0 < A < X\ and A = )\*, and no positive solution for
A> AN

3. Lemmas

In this section, in the next Lemmas 3.1-3.8, we develop some time-map techniques to prove
Theorems 2.1-2.4. First, we introduce the time-map method used in [4, 5|. Let F(u) =
Jy f(t)dt. We have that:

D Ifp>1,F:[0,1) — [0,00) and hence F~! is well defined on [0,00). Then for any
A > 0, the time map formula for (1.1) takes the form as follows:

. / 1+ AF(u) — AF(r)
0 1= [1+AF(u) = AF(r)

du, r=lule € OFAF (1)
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where
“ _ ) —log(l-w) ifp=1,
F(u) —/0 f(t)dt = { —1+g;_—;421—r if p € (1,00). (3.2)
Notice that it can be proved that Ty(r) € C?((0, F~1(3)]), see [2, Lemma 3.1].

(I) f0<p<1,F:[0,1] — [0, %] and hence F~! is only defined on [0, ;%;]. Then the
time map formula for (1.1) takes the form as follows:

26

I R T O TP N (0, F1(})] ifA>1-p,
o /0 V1-[14AF() - AF(r)]zd e { 0,1) f0<Asl-p,
(3.3)
where
N _1-—(1—u)1"”
Flu) = /0 Sl = 2= (3.4)

Note that the time map formula 7)(r) in (3.3) with 0 < p < 1 is the same as that in
(3.1) with p > 1. But the domain of T)\(r) in (3.3) with 0 < p < 1 is different from
that in (3.1) with p > 1, since lim,_;- f(u) = oo and F~' : [0, 15;) — [0,1) when
0 < p < 1. Notice that it also can be proved that Ti\(r) € C2((0, F}(})]) if A>1-p
and Ty (r) € C?((0,1)) f0 <A< 1-p.

Observe that positive solutions u, for (1.1) correspond to
||U)‘“°° =r and TA(T) = L. (35)

Thus, studying of the exact number of positive solutions of (1.1) for any fixed A > 0 is
equivalent to studying the shape of the time map T (r) on its domain.
First, we determine the limit behaviors of T)(r) and Tj(r) in the following lemma.

Lemma 3.1. Consider T)(r). Then
(i) For fixed p > 0, lim,_o+ T)\(r) = 0 and lim, o+ T} (r) = oo for any A > 0.
(ii) For fixed p > 1, T} (F~(3)) < 0 for any A > 0.

(iii) For fixedp € (0,1), T} (F~'(3)) < 0 for any A > 1—p and lim,_,;- T}(r) = —oo for any
0<A<L1l-p.

Proof of Lemma 3.1. First, the results in parts (i)—(ii) follow from [4, Propositions 2.6, 2.7,
2.10] since f(0) =1 > 0 and f'(u) = p(1 —u)™P* >0 on [0,1). _

Finally, for part (iii), for fixed p € (0,1), the result T} (F~}(1/A)) < 0if A > 1—p
follows from [4, Propositions 2.10]. The remaining part of the proof of part (iii) is to prove
lim, ;- T{(r) = —oo for 0 < A <1 —p.

Let u = rs, then (3.3) becomes

1 1+ ,\F('rs) - /\F('f‘)
Ty(r) =r
A /o \/1 — [L+ AF(rs) — AF(r))?

‘We compute that

ds, r€(0,1).

TU(r) = L(r) + (r), e (0,1), (3.6)



27

where
14+ AF(rs) — AF(r)

T)—/ V1= [L+AF(rs) — AF(r)P

! Ar[f(rs)s — f(r)]
I(r) =
#{r) / {1-[1+AF(rs) - \F(r)2}*

ds,

and

We compute that

1
lim ) = lim 1+ AF(rs) — AF(r)
r=1 o 1 L4 AF(rs) - A ()P
, 1 >
_ lim. 14+ AF(rs) — AF(r)
0 " 1= [L4+ AF(rs) — AF(r)]?
1- 20322

1-p ds

/ \/ /\Q—_l—s_?r

1 1-y)(1-p) T;LP' 1-p
/ Y L 2 dy (set y=1- /\(L——i)—)
1-25 V/1—¢2 A , 1-p
_ (1~1))T{7’/1 y(1-y™
AT -7 /11— y? v
< o0 3.7
by simple analysis of the last integral for y near 1~.

On the other hand, we show that lim,_,;- I5(r) = —oo. For any fixed r € (0,1), since both
F and f are increasing function on (0, 1), we obtain that f(rs)s — f(r) < 0 for s € (0,1) and

{L=[1+XF(rs) - AF("))*} 32 is strictly decreasing in s € (0,1). Hence we compute that
! Ar [f(rs)s — f(r)]
Ir) =
20 / {1 =1+ AF(rs) = AF(r)]2}*
/1 Ar [f(rs)s — f(r)]
o {1-[1-AFE)P}*

ds

ds

IA

Ar
- i [ 19y - s ds
_ o [RSSESEE Y
{1--2Fr@}? L A-p)@-p)(1—r)r

This implies that

hm I(r) < lim
=17 {1 - 1= AR ()2}

Combining (3.6)—(3.8), we obtain that
lim T (r) = liI%'I_ ILi(r)+ ﬁI{l_ L(r)=—00 for0<A<1-p.

r—1-

1 (1—r)p+p,,.__1_,r2(1_p)2 e
[(1—p)(2—p)(1—r)"r2 ]— - (38
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This completes the proof of Lemma 3.1. B
In the next lemma, we then prove that 7)(r) has exactly one critical point, a local maxi-
mum, on its domain.

Lemma 3.2. Consider T)(r). Then

(i) For fixed p > 1, T\(r) has exactly one critical point, a local maximum, on (0, F~1(1/)))
for any A > 0.

(i) For fixedp € (0,1), T\(r) has exactly one critical point, a local maximum, on (0, F~1(1/)))
for any A > 1 —p.

(iii) For fixed p € (0,1), Th(r) has exactly one critical point, a local maximum, on (0, 1) for
any0<A<1-p.

Proof of Lemma 3.2. For part (i) with p > 1 be fixed. Since f(0) =1 > 0, f'(u) =
p(1—u)™P 1 >0on [0,1), and f"(u) = p(p+ 1)(1 —u)P2 > 0 on [0,1), (1.1) has at most
two positive solutions for any A, L > 0 by [3, Theorem 3.4]. Suppose that, on the contrary,
part (i) does not hold. Then by Lemma 3.1(i)—(ii), 7)(r) has at least two critical points, a
local maximum and a local minimum, on (0, F~1(1/X)). So by (3.5), (1.1) has at least three
positive solutions for some A, L > 0, which contradicts to the fact that (1.1) has at most two
positive solutions. So part (i) follows.

The proofs of parts (ii) and (iii) are similar to that of part (i), so we omit them.

The proof of Lemma 3.2 is complete. B

For any p > 1, let

hp(A) = sup {T)‘(T) :r € (0, F”l(—i—)]} , A>0. (3.9)

Forany 0 <p < 1, let

sup {T\(r) : 7 € (0, F71(3)]} ifA>1—p,

he(A) = { sup {T\(r) : r € (0,1)} fo<A<1-p. (3.10)

We mainly determine some basic properties of h,()) in the following lemma.
Lemma 3.3. Consider T)(r) and h,(\) with fixed p > 0. Then

(i) For fixedr € (0,1), T\(r) is a continuous, strictly decreasing function of A\ > 0. Moreover,
lim)‘_*o+ T)‘(’r‘) = 00.

(i) hp(X) is a continuous, strictly decreasing function of A > 0. Moreover, lim,_ g+ hy()\) =
0o and limy e hp(A) = 0.

Proof of Lemma 3.3. Let p > 0 be fixed.
(i) First, for fixed » € (0, 1), it can be proved that T)(r) is a continuous function of A > 0.
The proof is easy but tedious and we omit it. For any fixed »r € (0,1) and 0 < w < 7,

\/IH[':; (;i_)’\i (;)( = is strictly decreasing in A since 0 < F(r) — F(u) < 1/A. So T)(r) is a
- u)—AF(r
strictly decreasing function of A > 0. Moreover, limy_,o+ T3(r) = 0o follows directly from the

time map formula (3.1). So part (i) follows.
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(ii) By Lemma 3.2 and part (i), we obtain that h,()) is a continuous, strictly decreasing
function of A > 0, and limy_,o+ 2,(A) = co. On the other hand, since limy .o F~!(1) = 0 and
0 <7 < F1(3) for large A, we have limy_,o h,(\) = 0. So part (ii) follows.

The proof of Lemma 3.3 is complete. M

For any p > 1, let

0N = B(E(3 T A>0. (3.11)
Forany 0 <p<1,let
_[BER)  #r>1-p,
9 () = { lim,;- Ta(r) f0O<A<1-p. (312)

Let o = F~(}) and u = as, then by (3.1),

/‘U AF (u) 2Ry,

\/1— [AF(u)?
AF(as)
- / \/1 - [)\F(as)

T(F(3)

dt
/ VI8 f(F- 1( )
by change of variable t = AF(as). So for p > 1, (3.11) implies
1 t
— =102\ =
9(A) = Th(F (/\)) \/1 —5 - 1( ))dt A>0. (3.13)

For 0 < p < 1, by (3.3) and (3.4),

i Ty(r) = / \/11+/\F(u) AR L

14+ AF(u) — AF(1))?
(1-p) = A1 —u)'P

/ \/2,\ (1-p)(1—u)l—P—A(1- u)2‘21’du.

So for 0 < p < 1, (3.12) implies

9(\) = fo Vi- t!T('iﬁ)(ﬂZdt)lp fA>1-p, 610
P - 1-p 1-u . _ .
fo V2M(1-p)(1-u) =P = N3 (1-u)2=2P du fO0<AL1-p

We first determine some basic properties of g,()) in the following lemma.
Lemma 3.4. Consider g,(\). Then
(i) For fixed p > 0, g,()) is a continuous function of A > 0.
(ii) For fixed p > 1, limy_g+ gp(A) = limy_eo gp(A) = 0.
(iii) For fixed p € (0,1), limy_,o+ go(\) = 00 and limy—e g,(\) = 0.
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R o F
Proof of Lemma 3.4. (i) Since the map A — TF‘-ﬁL(TS is a composition of y — T(% and

y = F~1 (). For fixed p > 1, go(}) is a continuous function of X > 0 by (3.13). For fixed
p € (0,1), g5()) is a continuous function of A € (0,1 — p) by (3.13) and (3.14). In addition,
gp(}) is a continuous function of A <1 — p by (3.14). Moreover, since

1—ul?

2ul-P — 2%

1
m ()= lm g0) =60 ~5) = lim Tuy() = | du, (3.15)

A=(1-p)- A—(1—p

g()) is a continuous at A = 1 — p. So part (i) follows.
(ii) For fixed p > 1, by (3.2), we first obtain that

1—(1—y)P-!
pusy - — —_ p
FQ) _ o &0 _ o A9 == g0y (3.16)

0 fy) 0 o y—ot p-1
! F(y) log(1 — y)
i y i _ Og — y = =
yl_'0+ o) yl_l)I(l;l“. 11y 0 forp=1. (3.17)

We change variables in (3.13) by writing y = F‘l(i) then

unE—(—)dt 0

li dt =
g, %0 / =7 L ) / Vi— v 7))
by (3.16) and (3.17). On the other hand,

1—(1—y)?~ _ _ o
P _ lim —-—@—1 0P — lim (1=y) ==y =0 forp>1, (3.18)

lim
y—1- f(y) y—1- (—_IZF y—1- p— 1
and
Fly) . —log(l1—y) :
oY) e Jlim (1-y)log(1 —y) =0 forp (3.19)

We change variables in (3.13) by writing y = F~'(%), then for fixed p > 1,

X m EW g o

Jim gp(A) = f m}fﬁi 7(F- 1( ) / V1= u-*l‘ )

So part (ii) follows.
(iii) For fixed p € (0,1), by (3.14),

(1-p) =M1 -
lim_g,(A
255,90 H’*/ \/2A (1-p) (1 — w)iP = X3(1 —w)2-%
/ - (1—p) — A1 — w)t
0 20" [2X (1 p) (1 — w)'-P — N(1 — w2

du

du

In addition, the proof of limy—_eo gp(A) = 0 is similar to that of part (ii), and hence we omit
it. So part (iii) follows.

The proof of Lemma 3.4 is complete. B

In the following Lemmas 3.5-3.7, for p > 1, we mainly prove that g,()\) has exactly one
critical point, a local maximum, on (0, o).
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Lemma 3.5. Consider gp(X) with fixed p > 2. Then
(i) 9,(A) <0 on [1,00).
(ii) g5(A) <0 on (0,1).
(i) gp(A) has exactly one critical point, a local maximum, at some X (€ (0,1)) on (0, c0).

Proof of Lemma 3.5. Let p > 2 be fixed.
(i) We change variables in (3 13) by writing y = F~1(£), then

t 1
gt = 1 F(y)

%) = / VIt f(F- 1( N T ) VI 1)

Since F'(u) = i(pl_;luﬁi is a differential, strictly increasing function, by the Inverse Function

Theorem, we compute that

—==dt, A > 0.

, _ 1 fAy) - Fy)Fy) 1 —t
% = / I=F  Pe  JEG) ek
t  fy)F@) - Q)
e e (320)

Since F~}(u)=1-[1-(1 —p)u]ﬁ and y = F~1(%),

(- )) t]7%
gh(N) = = [1 +(p- 1)X} dt <0 (3.21)

for all A > 1. So part (i) follows
(ii) Since F(u) = ﬁl"—“z— is a differential, strictly increasing function, by (3.20) and
the Inverse Function Theorem we compute that

g(N)
_ i/l t_ 3PP = F) " W) FA W) - 4°2 W) F W FG) +2f4W)
Vi-# fo(y)
_ -p 4 p }dt. 3.22
(p—1)2)3 /0 V1 -—t2 {[1+(p—1)t/,\]f”~:rr +(p-1)t/A 7T [14(p—1)t/N]F=T (3.22)
1+(p 1)/\ w — 1 3p—2
T -0 J : w5 (2= p)u? — 2pw + (2 - p)] du,
e
(3.23)
where w = 1+ (p — 1)£. Then:
(1) For p > 2, we define n, = = _;_2 PP and n, = Q’;%L be the two zeros of the

quadratic polynomial (2 — p)w? — 2pw + (2p® — p) such that

3 2 2 > 0 on (770,771),
(2 —p)w* — 2pw + (2p* — p) { < 0 on (—00,70) U (1, 00).

Observethatno-——ngL<0<1<fL£——nl<p<1+(p—1) forp > 2
and 0 < A < 1.
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(2) For p =2, we define n; = 3/2 such that

> 0 on (1"'71)’

N2 2 _ o) = —
(2 - p)w* — 2pw + (2p° — p) 4w+6{<00n(771,00)-

Then for p > 2 and 0 < A < 1, by (3.23), we compute that

= 1)*Agy(A)
_ /1 Wil B (2 put - 2wt (0 )] o
\/ Ll (w —-1)2
+/~1+(p-—1)x w-1 w‘-’ll’f—: [(2 _ p)w2 - 2pw + (2;02 _ P)] dw
2
R
- /1171 w —21 wégpﬁ [(2 _ p)w2 — 2pw + (2p2 — p)] dw
\/1 - (;%1) (ny — 1)
+ / - el wF (2 - p)w? — 2pw + (2p* — p)] dw
n

: \/1—(—*f) (m — 1)

= 12 /1+(P D3 (’I.U—].)UJ%-LP2 [(2—p)w2_2pw+(2p2_p)] dw
\/1" () m-12"
= ! (p-1*0-1) (x\+p—1)%;-’;1‘
A A
\/1‘ (1) -1y

< 0.

By the above analyses, we obtain that g,(A) < 0 for p > 2 and 0 < A < 1. So part (ii)
follows.

(iii) Part (iii) follows from parts (i)—(ii) and Lemma 3.4(i)—(ii).

The proof of Lemma 3.5 is complete. B

Lemma 3.6. Consider g,()\) with fixed p € (1,2). Then
(i) g,(A) <0 on [1,00).
(ii) gp(A) >0on (0, &].
(iii) g;(A) < 0 whenever g,(A) =0 for A € ( ,1).
(iv) gp()) has exactly one critical point, a local maximum, at some X (€ (&,1)) on (0, 00).

Proof of Lemma 3.6. Let p € (1,2) be fixed.
(i) The proof of part (i) is the same as that of Lemma 3.5(i), and hence we omit it.
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(ii) For any given X € (0,1), (3.21) implies that

) 1 Pt(t=N) 1 1t -N 1
N _ar L =y dt
%N = 3/, VIS4 -1y +A3 VISPt -4
Y- ) L i) —
TN VTN 1oy " P V=X 14 (p-1i]
_ tE=N 4
m/ (- 1)1
_ p()\) (3.24)

(A+g—1);§7 2—p)A2V/1- 2
where ¥p,()\) = AR A+p-— 1)1=-1 — A(A+p) — 1. We compute that

A+p-—1

‘I/;(/\) =(p+2)\—-2) (‘—')\_)ﬁ—(})‘l'z/\)
and :
A+ = D) ~ (0422 =2 () = — (1= 1) (2 —p) <0

since 1 <p <2 and 0 < A < 1. This implies that ¥,()\) has at most one zero in (0,1) for all
p € (1,2). Moreover, since limy—g+ ¥,(A) = co and

3r 3r

we find ¥p(A) > 0 for all p € (1,2) and A € (0,5]. By (3.24), g,(A) > 0 on (0, 2] for
p € (1,2). So part (ii) follows.
(iii) By (3.21) and (3.22), we find

p=2 _P_
4 4 \»-1 [ 4 p-l 4 4
—) = = - -1>
\Il,,(3ﬂ_) ( ) < +p 1) 37r(3 +p)—12>0 forall pe(1,2),

/ pt(t —2))
VI=E X[ (- pt/ N
(HIfre (3, 1), Agi(A) +2)%g »(A) < 0 by (3.25). Hence, we find that g//(A) < 0 whenever

go(A) =0 for X € [3, )

2) I X e (£, ,},)

Ngp(A) +2X%g,(2)

At pt(t—2)) . 1ot pt(t—2))

Agl(A) +2X%gh(N) = dt. (3.25)

= —dt + —dt
0 VISEXRL-(1-p/AFE S VISER - (- /A
2ot pt(t —2)) 1ot pt(t —2X)

< . dt+/ —dt
o VI-TIX[1-2(1-p)FF n V1= )21 - 201 —p)| 7

= 4 / £lE-2)
N2p-1)F S VI8
p(4 —37A)
6X2(2p — 1) 5%
0. (3.26)

IA
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Hence, we find that g}(A) < 0 whenever gj,()) = 0 by (3.26) for X € (55, 3)-

By the above ana.lysw, we obtain that g;(A) < 0 whenever g,(A) = 0 for p € (1,2) and
X € (3£,1). So part (iii) follows.

(iv) Part (iv) follows from parts (i)—(iii) and Lemma 3.4(i)—(ii).

The proof of Lemma 3.6 is complete. B

Lemma 3.7. Consider g,(\) withp = 1. Then
(i) g5(X) <0 on [1,00).
(i) g5(%) >0 on (0,3}
(i) gp(A) < O whenever gj(A) =0 for A € ($1).
(iv) gp()) has exactly one critical point, a local maximum, at some X (€ (3,1)) on (0, c0).

Proof of Lemma 3.7. (i) Consider f(u) = (1 — u)™'. Then f'(u) = (1 — v)72, F(u) =
—log(1l — u), and F~!(u) = 1 — e™*. Hence, by (3.11), we find that

1 /! t
A= — —
wN =3 [ =t
and hence

gp(/\) '—5/ -t/t%ﬁdt<0 for A > 1.

So part (i) follows.
(ii) For A € (0, 3], we have

b A e‘/'\\/l_——?f \ et/Am
A 1
tt—A) tt—A)
> —_ gt + —_—dt
/(: et/r /1 — N2 X et/Ay/1— 22
t(t - /\)

\/_T/ &

I S [Aﬂex—(1+,\+,\2)].

ei\/l—/\2

Since 1
NeX — (1+A+22) >0 for xe (0,5]

We obtain that g/(\) > 0 for p =1 and X € (0, 3]. So part (ii) follows.
(iii) By parts (1) (ii), gp()\) has critical points in (3,1). If X € (3,1),

" 2, __1_/ t2 (t —2))
gp(A)+Agp(/\)_A5 0 et/'\\/l_——ti

Hence, g7(\) < 0 whenever g () =0 for p=1and A € (3,1). So part (iii) follows.

(iv) Part (iv) follows from parts (i)—(iii) and Lemma 3.4(i)—(ii).

The proof of Lemma 3.7 is complete. B '

In the final lemma of this section, for 0 < p < 1, we mainly prove that g,()\) has exactly
one local minimum and exactly one local maximum on (0, 00).

dt < 0.



Lemma 3.8. Consider g,(\) with fixed p € (0,1). Then
(i) 95(A) <0 on [1,00).
(i) g,(A\) <0on (0,1 —p) and g,((1-p)”) <O0.
(iii) ¢,((1 —p)*) > 0. In particular, for 1/2 < p < 1, gp(X) >0 o0n (1—p,3).
(iv) g5(A) <0 whenever g/,(\) =0 for A € (1 —p, 1).

(v) gp(\) has exactly two critical points, one local minimum at A = 1 — p and one local
maximum at A € (), 1), on (0, 00).

Proof of Lemma 3.8. Let p € (0,1) be fixed.
(i) For A > 1 — p and similar argument as (3.21), we find that

1 [rtt-N) 1
') = = —dt <0 forall A >1. 3.27

So part (i) follows.
(ii) Recall that

2/1 (1-p)—(1-s)'"PA
0 \/2(1-p) (1 —8)PA— (1 — 5)2-2X2

p(N) ds if A< 1—p.

Then we compute that
R RS T T EL i T (LD N
0 [2(1—p) (1 — s)1PA — (1 — 5)2-2207]

— 0__2(].—p)2:y/)\—f—2(]__p)yfi/)\2_yg/A (y/)\)TEE ) .
= /)\ [2(1_P)y—y2]3/2 —(1—p)/\dy (sety=(1-13) A)
(1-p)2(1-p) - %

9p(N)

A

= [le-r-m-0np-1y dy
< 0 for A€ (0,1-p),

since y = (1 — s)}"PA < X and

2-2-20)*-22(p—-1)% < @-r-2p) X —2x(p—1)°
{-P-a-pP-@-1%}A
< 0 for Ae (0,1 - p).

So part (ii) follows.

35



36

(iii) By (3.27), we compute that
(1-p)g(1-p)")
_ / tE=148) ) %3 g
0

VI— 2
Pt(t-1+p) 2p=1 Ltit—1+p) 2p-1
=/ 2149 _ t)udt+/ PE-14P) ¥
Vi-8 \/1 2
P tt—1+p / 1+p
>/ 1vdt+ —Pdt
V1-(1- p)? ‘P\/I—(l p)?

————-—/ tt—1+p)(1—t)T> dt
yi-a-p?*7

-p)° - 1)I(& 1
2p((12 —I;)) + (p F(%Eg)l—p) (F(CC) = /(; #-1e=tdt is the gamma function)

> 0 forO<p<1.

On the other hand, for A € (0,1), (3.27) implies that

, 1 [tt=N 1 1 (DY 1
A = = o dt ldt
(M) X ) Siop . )i] +53 — PET——L =
At —)) 1 Vit —-N) 1 @t

—dt +

Xl VI-N[1--pi)F F » VI-N[1-(1-p)t]
_ 1 1 t(t—N)
B ,\3\/1—,\2/0 [1-(1-p)t ]'L;xldt
NI A +p-1)FT A +p) -1
(=) 2-p) MV1- 2
(M)

()P Vi

where ¥,()) = AP A+p- 1)1'—l — A(A+p) — 1. For A > 1 — p, we compute that

¥(\) = (p+2) - 2) (%);_—1 ~(p+2))

and

AA+p =1 TN —(@+22-2)¥,()) = —(1-X1)(2-p)
< 0 forallpe (0,1) and X € (0,1).

So ¥,(\) has at most one zero in (0, 1) for all p € (0,1). Moreover, since lim)_,;_p ¥,(A) = 00
and

1 1 2 p 5 . 1
_=_ —_ -] — —_—— - —_ —-—
\Ilp( ) (2p—1)7 5”1 >0 ifl-p< X

we find that \I',,()\) >0 for all p € (3,1) and XA € (1 —p,}). Hence, g,(A) > 0 for p € (3,1)
and A € (1 - p, ). So part (iii) follows.



(iv) By parts (ii)—(iii), we have that:

(a) if p € (0, 3], then g,()\) has critical points in (1-p,1),

(b) if p € (3,1), then gy()) has critical points in (,1) C (1 - p, 1).
Moreover, we compute that

/1 t pt (t —2X) i@t
0 VI=ZX(1 - (1-p)t/NFT

<0 forall A€ (1-p,1)C(3,1)ifpe (0,1
<0 forall A e (3,1)ifp € (3,1).

N\ +2)2%g,(\) =

P

By above analyses, g;()) < 0 whenever g/(\) =0 for A € (1 —p,1). So part (iv) follows.
(v) Part (v) follows from parts (i)~(iv) and Lemma 3.4(i) and (iii).
The proof of Lemma 3.8 is complete. W

4. Proofs of main results
By (3.5), the positive solutions u) € C*(~L, L) N C[~L, L] for (1.1) correspond to
lualloo =7 and Ty(r) = L.

Thus, we study the shape of the time map Tj(r) on its domain to find the exact number of
positive solutions of (1.1) for any fixed A > 0.

Proof of Theorem 2.1. Let p > 1 be fixed. By Lemmas 3.1-3.7, we have the following
properties:

(1) lim,_o+ Ta(r) = 0 for all A > 0.

(2) lim, o+ T.(r) = oo for all A > 0.

(8) T3(F~1(1/X)) <0 for all A > 0.

(4) Tx(r) has exactly one critical point, a local maximum, on (0, F=11/)).

(5) For fixed r € (0,1), Tx(r) is a continuous, strictly decreasing function of A > 0, and
limy o+ Ta(r) = oo.

(6) hp() is a continuous, strictly decreasing function of \, limy_q+ hp(A) = 0o and limy—,e hp(A) =

(7) gp()) has exactly one critical point, a local maximum, at X (€ (0, 1)) on (0,00) and
lim,\_+0+ gp()\) = hm)\_,oo gp(/\) =0.
See, e.g., Fig. 3 for numerical computations of Ty(r) with p = 1 with varying A > 0.
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Fig. 3. Numerical computations of T)(r) with p = 1.
A=0.1,0.3,0.5,0.75,1.1,1.5,2.2, 3.5, 6.

Let L* = T;(F~1(1/X)) for A = X. We obtain that:

(i) For L > L*, there exists \* > 0 such that h,(\*) = L. Thus part (i) follows immediately
by properties (1)-(7) and (3.5).

(ii) For L = L*, there exist positive numbers X < A* such that g,(A) = L* and h,(\") = L*.
Thus part (ii) follows immediately by properties (1)-(7) and (3.5).

(iii) For 0 < L < L*, there exist positive numbers X < X < X* such that g,()) = g(\) = L
and h,(\*) = L. Thus part (iii) follows immediately by properties (1)—(7) and (3.5).

The proof of Theorem 2.1 is now complete. B
Proof of Theorem 2.2. Let p € (0,1) be fixed. By Lemmas 3.1-3.4 and 3.8, we have the
following properties:

(1) lim,_o+ Ta(r) =0 for all A > 0.

(2) lim,_o+ Ty(r) = oo for all A > 0.

(8) T3(F1(1/X)) <0 for A >1—p.

(4) lim, ;- T3(r) = —cofor 0 < A< 1—p.

(5) Tx(r) has exactly one critical point in (0, F~(3)) for A > 1 —p.
(6) Ta(r) has exactly one critical point in (0,1) for 0 <A< 1-p.

(7) For fixed r € (0,1), Ta(r) is a continuous, strictly decreasing function of A > 0, and
liIII)‘_..0+ T)‘(r) = OQ.

(8) hy()) is a continuous, strictly decreasing function of A, limy_g+ hp(X) = 00 and limy_,e hp(A) =
0.

(9) gp()) has exactly two critical points, one local minimum at A = 1 —p and one local
maximum at A € (), 1), on (0,00), limy_o+ gp(A) = 00 and limx_.e0 gp(A) = 0.

See, e.g., Fig. 4 for numerical computations of Tj(r) with p = 1/2 with varying A > 0.
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Fig. 4. Numerical computations of T)(r) with p = 1/2.
A =0.1,0.18,0.3,0.5,0.75,1.05, 1.5, 2.5, 4.2.

Let L* = Tx(F~1(1/))) and L, = lim,_,;- Ty(r) = T1_p(1). We obtain that:

(i) For L > L*, there exist positive numbers A\, < X* such that g,(\.) = L and hp(A*) = L.
Thus part (i) follows immediately by properties (1)—~(9) and (3.5).

(i) For L = L*, there exist positive numbers A, < XA < A\* such that g,(\.) = g,(A) = L*
and hy(\*) = L*. Thus part (ii) follows immediately by properties (1)~(9) and (3.5).

(iii) For L. < L < L*, there exist positive numbers A\, < A < A < A* such that g,(\,) =
() = g5(A) = L and h,(X\*) = L. Thus part (iii) follows immediately by properties
(1)—(9) and (3.5).

(iv) For L = L., thereexist 0 < A =1—-p < XA < \* such that g,(d) = g,,()}) = L, and
hp(A*) = L.. For 0 < L < L,, there exist 0 < A < A* such that g,()\) = L and
hp(X*) = L. Thus part (iv) follows immediately by properties (1)—(9) and (3.5).

The proof of Theorem 2.2 is now complete. B
Acknowledgments. Most of the computation in this paper has been checked using the
symbolic manipulator Mathematica 7.0.
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