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1. INTRODUCTION
Let $H$ be a real Hilbert space with inner product $\langle\cdot,$ $\cdot\rangle$ and norm $\Vert\cdot\Vert$ and let $C$ be a

nonempty closed convex subset of $H$ . Then, a mapping $T$ : $Carrow C$ is called nonexpansive if
$\Vert Tx-Ty\Vert\leq\Vert x-y\Vert$ for all $x,$ $y\in C$ . We denote by $F(T)$ the set of fixed points of $T$ . Let $x$

be an element of $C$ and for each $t$ with $0<t<1$ , let $x_{t}$ be a unique element of $C$ satisfying
$x_{t}=tx+(1-t)Tx_{t}$ . In 1967, Browder [4] proved the following strong convergence theorem.

Theorem 1.1. Let $H$ be a Hilbert space, let $C$ be a nonempty bounded closed convex subset
of $H$ and let $T$ be a nonexpansive mapping of $C$ into itself. Let $x$ be an element of $C$ and for
each $t$ with $0<t<1$ , let $x_{t}$ be a unique element of $C$ satisfying $x_{t}=tx+(1-t)Tx_{t}$ . Then,
$\{x_{t}\}$ converges strongly to the element of $F(T)$ nearest to $x$ as $t\downarrow 0.$

Reich [17] and Takahashi and Ueda [30] extended Browder’s result to those of a Banach
space. Using the idea of Shimizu and Takahashi [18, 19] and the notion of sequence of means,
Shioji and Takahashi [20] proved the strong convergence of Browder’s type sequences for
nonexpansive semigroups (see also [21, 22, 23]). On the other hand, Domingues Benavides,
Acedo and Xu [9] proved Browder’s type strong convergence theorems for uniformly asymp-
totically regular one-parameter nonexpansive semigroups. Acedo and Suzuki [13] generalized
Domingues Benavides, Acedo and Xu’s results conceming the condition of the sequences in
real numbers. Recently, the author [2] studied Browder’s type iterations for nonexpansive
semigroups and proved strong convergence theorems for uniformly asymptotically regular
nonexpansive semigroups in Hilbert spaces by using the idea of [4, 9, 13, 28, 29]. Further-
more, the author [2] proved strong convergence theorems for the nonexpansive semigroups
by the viscosity approximation method.

In this paper, we study Browder’s type iterations for nonexpansive semigroups in Banach
spaces. Then, we give strong convergence theorems for uniformly asymptotically regular
nonexpansive semigroups in Banach spaces by using the idea of [4, 9, 13, 28, 29]. Furthermore,
we also give strong convergence theorems for the nonexpansive semigroups in Banach spaces
by the viscosity approximation method.

2. PRELIMINARIES AND NOTATIONS

Throughout this paper, we denote by $\mathbb{N}$ and $\mathbb{R}$ the set of all positive integers and the set
of all real numbers, respectively. We also denote by $\mathbb{Z}^{+}$ and $\mathbb{R}^{+}$ the set of all nonnegative
integers and the set of all nonnegative real numbers, respectively.
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Let $E$ be a real Banach space with norm $\Vert\cdot\Vert$ . We denote by $B_{r}$ the set $\{x\in E : \Vert x\Vert\leq r\}.$

Let $E^{*}$ be the dual space of a Banach space $E$ . The value of $x^{*}\in E^{*}$ at $x\in E$ will be
denoted by $\langle x,$ $x^{*}\rangle$ . Let $C$ be a closed subset of a Banach space and let $T$ be a mapping of $C$

int$0$ itself. We denote by $F(T)$ the set $\{x\in C:x=Tx\}.$

We denote by $I$ the identity operator on $E$ . The duality mapping $J$ from $E$ into $2^{E^{*}}$ is
defined by

$J(x)=\{y^{*}\in E^{*} : \langle x, y^{*}\rangle=\Vert x\Vert^{2}=\Vert y^{*}\Vert^{2}\}, x\in E.$

From the Hahn-Banach theorem, we see that $J(x)\neq\emptyset$ for all $x\in E.$

Let $E$ be a smooth Banach space. Then, $J$ is said to be weakly sequentially continuous
at zero if for every sequence $\{x_{n}\}$ in $E$ which converges weakly to $0\in E,$ $\{J(x_{n})\}$ converges
$weakly^{*}$ to $0\in E^{*}.$

We say that a Banach space $E$ satisfies Opial’s condition [15] if for each sequence $\{x_{n}\}$ in
$E$ which converges weakly to $x,$

$n \frac{hm}{arrow\infty}\Vert x_{n}-x\Vert<\varliminf_{narrow\infty}\Vert x_{n}-y\Vert$ (1)

for each $y\in E$ with $y\neq x$ . If $E$ is reflexive Banach space with weakly sequentially continuous
duality mapping, then $E$ satisfies Opial’s condition. Each Hilbert space and the sequence
spaces $P^{p}$ with $1<p<\infty$ satisfy Opial’s condition (see [15]). Though an $L^{p}$-space with $p\neq 2$

does not usually satisfy Opial’s condition, each separable Banach space can be equivalently
renormed so that it satisfies Opial’s condition (see [10, 15]). In a reflexive Banach space,
this condition is equivalent to the analogous condition for a bounded net which has been
introduced in [12]. It is well known that this condition is equivalent to the analogous condition
of $\varlimsup$ (see [1]).

Proposition 2.1. Let $H$ be a Hilbert space. Let $\{x_{n}\}$ be a sequence in $H$ converging weakly
to $x\in H$ . Then,

$\varliminf_{narrow\infty}\Vert x_{n}-x\Vert<\varliminf_{narrow\infty}\Vert x_{n}-y\Vert$ (2)

for each $y\in E$ with $y\neq x.$

Banach space $E$ is said to be smooth if

$\lim_{tarrow 0}\frac{\Vert x+ty\Vert-\Vert x\Vert}{t}$

exists for each $x$ and $y$ in $S_{1}$ , where $S_{1}=\{u\in E : \Vert u\Vert=1\}$ . The norm of $E$ is said to
be uniformly G\^ateaux differentiable if for each $y$ in $S_{1}$ , the limit is attained uniformly for
$x$ in $S_{1}$ . We know that if $E$ is smooth, then the duality mapping is single-valued and norm
to weak star continuous and that if the norm of $E$ is uniformly G\^ateaux differentiable, then
the duality mapping is single-valued and norm to weak star, uniformly continuous on each
bounded subset of $E.$

A closed convex subset $C$ of a Banach space $E$ is said to have normal structure if for
each bounded closed convex subset $K$ of $C$ which contains at least two points, there exists an
element of $K$ which is not a diametral point of $K$ . It is well-known that a closed convex subset
of a uniformly convex Banach space has normal structure and a compact convex subset of a
Banach space has normal structure (see [29]). We also know that uniformly smooth Banach
space has normal structure (see [29]). Every weakly compact convex subset of a Banach space
satisfying Opial’s condition has normal structure (see [11]). We note that closed convex subset
$C$ of a Banach space $E$ is said to have the fixed point property for nonexpansive mappings
if for every bounded closed convex subset $K$ of $C$ , every nonexpansive mapping on $K$ , has
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a fixed point. We also know that every weakly compact convex subset with Opial property
has fixed point property.

Let $C$ be a nonempty closed convex subset of $E$ and let $K$ be a nonempty subset of $C.$

A mapping $P$ of $C$ onto $K$ is said to be sunny if $P(Px+t(x-Px))=Px$ for each $x\in C$

and $t\geq 0$ with $Px+t(x-Px)\in C.$ $P$ is a retraction if $Px=x$ for each $x\in K$ . We know
from [6, Theorem 3] and [16, Lemma 2.7] the following lemma (see also [29]).

Lemma 2.2 ([6, 16]). Let $E$ be a smooth Banach space, $g$ let $C$ be a convex subset of $E$ and
let $K’$ be a subset of C. Then, a retraction $P$ of $C$ onto $K$ is sunny and nonexpansive if and
only if

$\langle x-Px,$ $J(y-Px)\rangle\leq 0$ for all $x\in C$ and $y\in K.$

Hence, there is at most one sunny nonexpansive retraction of $C$ onto $K.$

If there is a sunny nonexpansive retraction of $C$ onto $K,$ $K$ is said to be a sunny nonexpan-
sive retract of $C$ . The following theorem related to the existence of nonexpansive retractions
was proved in [7, 8].

Theorem 2.3 ([7, 8]). Let $E$ be a reflexive Banach space, let $C$ be a nonempty closed convex
subset of $E$ and let $T$ be a nonexpansive mapping of $C$ into itself with $F(T)\neq\emptyset$ . If $T$ has a
fixed point in every nonempty bounded closed convex subset of $E$ such that $T$ leaves invariant,
then $F(T)$ is a nonexpansive retmct of $C.$

Let $\mu$ be a mean on positive integers $\mathbb{N}$ , i.e., a continuous linear functional on $\iota\infty$ satisfying
$\Vert\mu\Vert=1=\mu(1)$ . We know that $\mu$ is a mean on $\mathbb{N}$ if and only if $\inf\{a_{n} : n\in \mathbb{N}\}\leq\mu(f)\leq$

$\sup\{a_{n} : n\in \mathbb{N}\}$ for each $f=(a_{1}, a_{2}, \ldots)\in l^{\infty}$ . Occasionally, we use $\mu_{n}(a_{n})$ instead of $\mu(f)$ .
So, a Banach limit $\mu$ is a mean on $\mathbb{N}$ satisfying $\mu_{n}(a_{n})=\mu_{n}(a_{n+1})$ . Let $f=(a_{1}, a_{2}, \ldots)\in l^{\infty}$

and let $\mu$ be a Banach limit on $\mathbb{N}$ . Then,

$\varliminf_{narrow\infty}a_{n}\leq\mu(f)=\mu_{n}(a_{n})\leq\varlimsup_{narrow\infty}a_{n}.$

In particular, if $a_{n}arrow a$ , then $\mu(f)=\mu_{n}(a_{n})=a$ (see [27, 29]). The following lemma was
proved in [30] $(see also [17, 27])$ .
Lemma 2.4 ([30]). Let $C$ be a nonempty closed convex subset of a Banach space with a
uniformly G\^ateaux differentiable norm. Let $\{x_{n}\}$ be a bounded sequence in $E$ and let $\mu$ be
a Banach limit. Let $z\in$ C. Then, $\mu_{n}\Vert x_{n}-z\Vert^{2}=\min_{y\in C}\mu_{n}\Vert x_{n}-y\Vert^{2}$ if and only if
$\mu_{n}\langle y-z,$ $J(x_{n}-z)\rangle\leq 0$ for each $y\in C$ , where $J$ is the duality mapping of $E.$

We write $x_{n}arrow x$ $(or narrow\infty hmx_{n}=x)$ to indicate that the sequence $\{x_{n}\}$ of vectors in $H$

converges strongly to $x$ . We also write $x_{n}arrow x$ $(or w-hmx_{n}narrow\infty=x)$ to indicate that the
sequence $\{x_{n}\}$ of vectors in $H$ converges weakly to $x$ . In a Hilbert space, it is well known
that $x_{n}arrow x$ and $\Vert x_{n}\Vertarrow\Vert x\Vert$ imply $x_{n}arrow x.$

Let $S$ be a semitopological semigroup. $A$ semitopological semigroup $S$ is called right (resp.
left) reversible if any two closed left (resp. right) ideals of $S$ have nonvoid intersection. If $S$ is
right reversible, $(S, \leq)$ is a directed system when the binary relation $\leq$

” on $S$ is defined by
$s\leq t$ if and only if $\{s\}\cup\overline{Ss}\supset\{t\}\cup\overline{St},$

$s,$ $t\in S$ , where $\overline{A}$ is the closure of $A.$ $A$ commutative
semigroup $S$ is a directed system when the binary relation is defined by $s\leq t$ if and only if
$\{s\}\cup(S+s)\supset\{t\}\cup(S+t)$ .

Let $C$ be a nonempty closed convex subset of a Hilbert space $H.$ $A$ family $\mathcal{S}=\{T(t)$ : $t\in$

$S\}$ of mappings of $C$ into itself is said to be a nonexpansive semigroup on $C$ if it satisfies the
following conditions:
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(i) For each $t\in S,$ $T(t)$ is nonexpansive;
(ii) $T(ts)=T(t)T(s)$ for each $t,$ $s\in S.$

We denote by $F(S)$ the set of common fixed points of $S$ , i.e., $F(S)= \bigcap_{t\in S}F(T(t))$ .

3. STRONG CONVERGENCE THEOREMS

In this section, we prove strong convergence theorems for uniformly asymptotically regular
nonexpansive semigroups in Banach spaces. Let $C$ be a nonempty closed convex subset of
a Banach space $E$ , let $S$ be a commutative semigroup and let $S=\{T(t) : t\in S\}$ be a
nonexpansive semigroup on $C$ . We say that a nonexpansive semigroup $S=\{T(t) : t\in S\}$ is
asymptotically regular if

$hms\in S\Vert T(h)T(s)x-T(s)x\Vert=0$

for $a\coprod h\in S$ and $x\in C$ (see also [28, 29]). The following lemma plays an important role in
the proof of the main theorem (see [13, 2]):

Lemma 3.1 ([3]). Let $C$ be a nonempty closed convex subset of a Banach space $E$ , and let
$S$ be a commutative semigroup. Let $S=\{T(t) : t\in S\}$ be a nonexpansive semigroup on $C$

such that $F(S)\neq\emptyset$ . Assume that $S=\{T(t) : t\in S\}$ is asymptotically regular, that is,

$\lim_{t\in S}\Vert T(h)T(t)x-T(t)x\Vert=0$

for all $h\in S$ and $x\in C$ . Then,
$F(T(h))=F(S)$

for each $h\in S.$

We say that a nonexpansive semigroup $S=\{T(t) : t\in S\}$ is uniformly asymptotically
regular if for every $h\in S$ and for every bounded subset $K$ of $C,$

$\lim_{s\in S_{x}}\sup_{\in K}\Vert T(h)T(s)x-T(s)x\Vert=0.$

holds. Several authors prove Browder’s convergence theorems for uniformly asymptotically
regular one-parameter nonexpansive semigroups (see [9, 13, 26]).

The following lemma is essential in the proof of the main theorem (see [13, 2]).

Lemma 3.2 ([3]). Let $E$ be a Banach space, let $C$ be a locally weakly compact convex subset
of $E$ , and let $S$ be a commutative semigroup. Let $S=\{T(t) : t\in S\}$ be a nonexpansive
semigroup on $C$ such that $F(S)\neq\emptyset$ . Let $\{m_{n}\}$ be a sequence in $\mathbb{Z}^{+}$ such that $m_{n}arrow\infty$ or
$m_{n}arrow N$ for some $N\in \mathbb{Z}^{+}$ . Let $\{\alpha_{n}\}$ be a sequence in $\mathbb{R}$ such that $0<\alpha_{n}<1$ , and $\alpha_{n}arrow 0.$

Let $u\in C$ , let $t\in S$ , and let $\{x_{n}\}$ be the sequence defined by
$x_{n}=\alpha_{n}u+(1-\alpha_{n})(T(t))^{m_{n}}x_{n}$

for each $n\in \mathbb{N}$ . Assume that $E$ is smooth, the normalized duality mapping $J$ of $E$ is weakly
sequentially continuous at zero and $C$ has the Opial property. Assume also that $\{x_{n}\}$ con-
verges weakly to some $x\in F(S)$ . Then, $\{x_{n}\}$ converges strongly.

We prove strong convergence theorems for uniformly asymptotically regular nonexpansive
semigroups in Banach spaces by using the idea of [2, 4, 9, 26, 28, 29].

Theorem 3.3 ([3]). Let $E$ be a Banach space, let $C$ be a locally weakly compact convex
subset of $E$ , and let $S$ be a commutative semigroup. Let $S=\{T(t) : t\in S\}$ be a uniformly
asymptotically regular nonexpansive semigroup on $C$ such that $F(S)\neq\emptyset$ . Let $\{m_{n}\}$ be a
sequence in $\mathbb{Z}^{+}$ such that $m_{n}arrow\infty$ or $m_{n}arrow N$ for some $N\in \mathbb{Z}^{+}$ . Let $\{\alpha_{n}\}$ be a sequence
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in $\mathbb{R}$ such that $0<\alpha_{n}<1$ , and $\alpha_{n}arrow 0$ . Let $u\in C$ , let $t\in S$ , and let $\{x_{n}\}$ be the sequence
defined by

$x_{n}=\alpha_{n}u+(1-\alpha_{n})(T(t))^{m_{n}}x_{n}$

for each $n\in \mathbb{N}$ . Assume that $E$ is smooth, the normalized duality mapping $J$ of $E$ is weakly
sequentially continuous at zero and $C$ has the Opial property. Then, $\{x_{n}\}$ converges strongly
to Pu, where $P$ is the unique sunny nonexpansive retmction from $C$ onto $F(S)$ .

4. DEDUCED RESULTS

In this section, using Theorem 3.3, we obtain some strong convergence theorems for families
of nonexpansive mappings. In the case of Hilbert space setting, we have the following strong
convergence theorem for a nonexpansive semigroup in a Hilbert space by Theorem 3.3 (see
[2] $)$ :

Theorem 4.1 ([2]). Let $H$ be a Hilbert space, let $C$ be a closed convex subset of $H$ , and let
$S$ be a commutative semigroup. Let $\mathcal{S}=\{T(t):t\in S\}$ be a uniformly asymptotically regular
nonexpansive semigroup on $C$ such that $F(S)\neq\emptyset$ . Let $\{m_{n}\}$ be a sequence in $\mathbb{Z}^{+}$ such that
$m_{n}arrow\infty$ or $m_{n}arrow N$ for some $N\in \mathbb{Z}^{+}$ . Let $\{\alpha_{n}\}$ be a sequence in $\mathbb{R}$ such that $0<\alpha_{n}<1,$

and $\alpha_{n}arrow 0$ . Let $u\in C$ , let $t\in S$ , and let $\{x_{n}\}$ be the sequence defined by
$x_{n}=\alpha_{n}u+(1-\alpha_{n})(T(t))^{m_{n}}x_{n}$

for each $n\in \mathbb{N}$ . Then, $\{x_{n}\}$ converges strongly to Pu, where $P$ is the metric projection from
$C$ onto $F(S)$ .

Let $C$ be a nonempty closed convex subset of $E.$ $A$ family $\mathcal{S}=\{T(t) : t\in \mathbb{R}^{+}\}$ of mappings
of $C$ into itself satisfying the following conditions is said to be a one-parameter nonexpansive
semigroup on $C$ :

(i) For each $t\in \mathbb{R}^{+},$ $T(t)$ is nonexpansive;
(ii) $T(t+s)=T(t)T(s)$ for every $t,$ $s\in \mathbb{R}^{+}$ ;
(iii) for each $x\in C,$ $t\mapsto T(t)x$ is continuous.

In the case when $S=\mathbb{R}^{+}$ , that is, $S$ is a uniformly asymptotically regular one-parameter
nonexpansive semigroup, we have the following strong convergence theorem for a one-parameter
nonexpansive semigroup by Theorem 3.3 (see [9, 13]):

Theorem 4.2 ([3]). Let $E,$ $C$ and $\{m_{n}\}$ be as in Theorem 3.3. Let $S=\{T(t):t\in \mathbb{R}^{+}\}$

be a uniformly asymptotically regular one-parameter nonexpansive semigroup on $C$ such that
$F(S)\neq\emptyset$ . Let $\{\alpha_{n}\}$ be a sequence in $\mathbb{R}$ such that $0<\alpha_{n}<1$ , and $\alpha_{n}arrow 0$ . Let $u\in C$ and
let $t\in(0, \infty)$ . Let $\{x_{n}\}$ be the sequence defined by

$x_{n}=\alpha_{n}u+(1-\alpha_{n})T(t^{m_{n}})x_{n}$

for each $n\in \mathbb{N}$ . Then, $\{x_{n}\}$ converges strongly to Pu, where $P$ is the unique sunny nonex-
pansive retraction from $C$ onto $F(S)$ .
Theorem 4.3. Let $E,$ $C$ and $\{m_{n}\}$ be as in Theorem 3.3. Let $T$ be a nonexpansive mapping
from $C$ into itself such that $F(T)\neq\emptyset$ . Assume that $T$ is uniformly asymptotically regular.
Let $\{\alpha_{n}\}$ be a sequence in $\mathbb{R}$ such that $0<\alpha_{n}<1$ , and $\alpha_{n}arrow 0$ . Let $u\in C$ . Let $\{x_{n}\}$ be the
sequence defined by

$x_{n}=\alpha_{n}u+(1-\alpha_{n})T^{m_{n}}x_{n}$

for each $n\in \mathbb{N}$ . Then, $\{x_{n}\}$ converges strongly to Pu, where $P$ is the unique sunny nonex-
pansive retmction from $C$ onto $F(T)$ .
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We know that $f$ : $Carrow C$ is said to be a contraction on $C$ if there exists $r\in(0,1)$ such
that

$\Vert f(x)-f(y)\Vert\leq r\Vert x-y\Vert$

for each $x,$ $y\in C$ . Using [25] and Theorem 3.3, we obtain the following strong convergence
theorem by the viscosity approximation method (see also [14, 2]).

Theorem 4.4 ([3]). Let $E,$ $C,$ $S,$ $S=\{T(t):t\in S\}$ and $\{m_{n}\}$ be as in Theorem 3.3. Let $f$

be a contmction on C. Let $\{\alpha_{n}\}$ be a sequence in $\mathbb{R}$ such that $0<\alpha_{n}<1$ , and $\alpha_{n}arrow 0$ . Let
$u\in C$ , let $t\in S$ , and let $\{x_{n}\}$ be the sequence defined by

$x_{n}=\alpha_{n}f(x_{n})+(1-\alpha_{n})(T(t))^{m_{n}}x_{n}$

for each $n\in \mathbb{N}$ . Then, $\{x_{n}\}$ converges strongly to Pu, where $P$ is the unique sunny nonex-
pansive retmction from $C$ onto $F(S)$ .

In the case when $S=\mathbb{R}^{+}$ , that is, $S$ is a uniformly asymptotically regular one-parameter
nonexpansive semigroup, we have the following strong convergence theorem for a one-parameter
nonexpansive semigroup by Theorems 3.3 and 4.4 (see [2, 9, 13, 14, 25]):

Theorem 4.5 ([3]). Let $E,$ $C$ and $\{m_{n}\}$ be as in Theorem 3.3. Let $S=\{T(t) : t\in \mathbb{R}^{+}\}$

be a uniformly asymptotically regular one-pammeter nonexpansive semigroup on $C$ such that
$F(S)\neq\emptyset$ . Let $f$ be a contmction on C. Let $\{\alpha_{n}\}$ be a sequence in $\mathbb{R}$ such that $0<\alpha_{n}<1,$

and $\alpha_{n}arrow 0$ . Let $u\in C$ and let $t\in(O, \infty)$ , and let $\{x_{n}\}$ be the sequence defined by
$x_{n}=\alpha_{n}f(x_{n})+(1-\alpha_{n})T(t^{m_{n}})x_{n}g$

for each $n\in \mathbb{N}$ . Then, $\{x_{n}\}$ converges strongly to Pu, where $P$ is the unique sunny nonex-
pansive retmction from $C$ onto $F(S)$ .
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