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Abstract. Let H be a real Hilbert space norm || - |. Let C be a nonempty subset of H and
let T be a mapping of C into H. We denote by F(T') the set of fixed points of T and by A(T)
the set of attractive points of T, i.e.,

(i) F(T)={2€C:Tz==z}
() AT)={z€eH:|Tz-z2|| < |lz—2|, VzeC}.

In this article, we extend the concept of attractive points in a Hilbert space to that in a Banach
space and then prove attractive point theorems and mean convergence theorems without
convexity for nonlinear mappings in a Banach space.

1 Introduction

Let H be a real Hilbert space with inner product (-, ) and norm || - ||. Let C' be a nonempty
subset of H. A mapping T : C — H is said to be nonezpansive if | Tz —Ty|| < ||z —y||
for all z,y € C. We know that if C is a bounded, closed and convex subset of H and
T : C — C is nonexpansive, then F(T) is nonempty. Furthermore, from Baillon [4] we know
the first nonlinear mean convergence theorem for nonexpansive mappings in a Hilbert space.
An important example of nonexpansive mappings in a Hilbert space is a firmly nonexpansive
mapping. A mapping F is said to be firmly nonezpansive if

|Fz — Fy|* < (z —y, Fx — Fy)

for all z,y € C. Kohsaka and Takahashi [16], and Takahashi [24] introduced the following
nonlinear mappings which are deduced from a firmly nonexpansive mapping in a Hilbert space.
A mapping T : C — H is called nonspreading [16] if

2Tz - Tylf* < Tz~ y|* + | Ty - ||
for all z,y € C. A mapping T : C — H is called hybrid [24] if
3Tz — Ty|* < |z — yll* + | Tz - y|I* + | Ty — =||?

for all z,y € C. The class of nonspreading mappings was first defined in a smooth, strictly
convex and reflexive Banach space. The resolvents of a maximal monotone operator are



nonspreading mappings; see [16] for more details. These three classes of nonlinear mappings
are important in the study of the geometry of infinite dimensional spaces. Indeed, by using
the fact that the resolvents of a maximal monotone operator are nonspreading mappings,
Takahashi, Yao and Kohsaka [27] solved an open problem which is related to Ray’s theorem
[19] in the geometry of Banach spaces. Kocourek, Takahashi and Yao [12] defined a broad
class of nonlinear mappings containing nonexpansive mappings, nonspreading mappings and
hybrid mappings in a Hilbert space. A mapping T : C — H is called generalized hybrid [12] if
there exist a, 8 € R such that

o Tz - Ty|® + (1 - a)llz - Ty||> < BTz — y|* + (1 - B)l|z — |

for all z,y € C, where R is the set of real numbers. We call such T an (o, B)-generalized
hybrid mapping; see also [2]. Kocourek, Takahashi and Yao [12] proved a fixed point theorem
for such mappings in a Hilbert space.

Theorem 1.1 ([12]). Let C be a nonempty, closed and conver subset of a Hilbert space H
and let T : C — C be a generalized hybrid mapping. Then T has a fized point in C if and only
if {T™z} is bounded for some z € C.

They also proved a mean convergence theorem which generalizes Baillon’s nonlinear ergodic
theorem [4] in a Hilbert space.

Theorem 1.2 ([12]). Let H be a real Hilbert space, let C be a nonempty, closed and convez
subset of H, let T be a generalized hybrid mapping from C into itself with F(T) # 0 and let
P be the metric projection of H onto F(T). Then for any x € C,

1 n—1
SpT = — k
'n - ZT T
k=0
converges weakly to p € F(T'), where p = lim,_,o, PT"z.

Recently, Takahashi and Takeuchi [25] introduced the concept of attractive points of nonlin-
ear mappings in a Hilbert space and then they proved attractive point and mean convergence
theorems without convexity for generalized hybrid mappings.

In this talk, we extend the concept of attractive points in a Hilbert space to that in a Banach
space and then prove attractive point theorems and mean convergence theorems without
convexity for nonlinear mappings in a Banach space.

2  Preliminaries

Let E be a real Banach space with norm || - || and let E* be the topological dual space of
E. We denote the value of y* € F* at z € E by (z,y*). The modulus § of convexity of E is
defined by

. x+
st = {1 L2 o <1yl < 1ol 2 ]

for all € with 0 <'e < 2. A Banach space F is said to be uniformly convex if §(¢) > 0 for all
€ > 0. A uniformly convex Banach space is strictly convex and reflexive. Let F be a Banach
space. The duality mapping J from E into 2&° is defined by

Jz = {z" € E* : (w,2") = ||z[* = [|="||*}
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forallz € E. Let U = {z € E : ||z|| = 1}. The norm of E is said to be Gdteauz differentiable
if for each z,y € U, the limit
t—0 t

exists. In the case, E is called smooth. We know that E is smooth if and only if J is a single-
valued mapping of F into E*. We also know that F is reflexive if and only if J is surjective,
and F is strictly convex if and only if J is one-to-one. Therefore, if E is a smooth, strictly
convex and reflexive Banach space, then J is a single-valued bijection. The norm of E is said
to be uniformly Gateaur differentiable if for each y € U, the limit (2.1) is attained uniformly
for x € U. It is also said to be Fréchet differentiable if for each z € U, the limit (2.1) is
attained uniformly for y € U. A Banach space E is called uniformly smooth if the limit (2.1)
is attained uniformly for z,y € U. It is known that if the norm of E is uniformly Gateaux
differentiable, then J is uniformly norm-to-weak* continuous on each bounded subset of E,
and if the norm of E is Fréchet differentiable, then J is norm-to-norm continuous. If F is
uniformly smooth, J is uniformly norm-to-norm continuous on each bounded subset of E. For
more details, see [22, 23]. The following result is well known; see [22].

Lemma 2.1 ([22]). Let E be a smooth Banach space and let J be the duality mapping on
E. Then, (z —y,Jx — Jy) > 0 for all x,y € E. Furthermore, if E is strictly conver and
(zx—y,Jz —Jy) =0, thenz =y.

Let E be a smooth Banach space. The function ¢: E x E — R is defined by
¢(z,y) = llzl* - 2(z, Ty) + llyll®
for all z,y € E; see [1] and [11]. We have from the definition of ¢ that
¢(z,y) = ¢(z,2) + ¢(2,9) + 2(z — 2, Jz = Jy) (2.2)

for all z,y,z € E. From (||| — ||yl)? < é(z,y) for all z,y € E, we can see that ¢(z,y) > 0.
Furthermore, we can obtain the following equality:

2(‘77 -y Jz — Jw> = ¢(1"7w) + ¢(y$ Z) - ¢(.’I7, z) - ¢(ya 'l.U) (23)
for all z,y,2,w € E. Let ¢,: E* x E* — R be the function defined by
dul(a*,y*) = ll*|” = 2(J " y*, 2%) + [ly* ||
for all z*,y* € E*, where J is the duality mapping of E. It is easy to see that
for all z,y € E. If E is additionally assumed to be strictly convex, then
dz,y) =0z =1y. (2.5)
The following results are in Xu [28] and Kamimura and Takahashi [11].

Lemma 2.2 ([28]). Let E be a uniformly convex Banach space and let > 0. Then there exists
a strictly increasing, continuous and convez function g : [0,00) — [0,00) such that g(0) = 0
and

Xz + (1 = Nyl® < Mel® + (1 = Mlyl? = A1 =~ Ng(llz ~ )

for all z,y € B, and X\ with0 < A\ <1, where B, = {z € E : ||z|| < r}.



Lemma 2.3 ([11]). Let E be smooth and uniformly convex Banach space and let r > 0. Then

there ezists a strictly increasing, continuous and convez function g : [0,2r] — R such that
9(0) =0 and g(||z — y||) < ¢(z,y) for all z,y € B,, where B, = {z € E : ||z|| < r}.

Let E be a smooth Banach space and let C' be a nonempty subset of E. A mapping
T :C — E is called generalized nonezpansive 8] if F(T) # 0 and ¢(Tz,y) < ¢(x,y) for
all z € C and y € F(T). Let D be a nonempty subset of a Banach space E. A mapping
R:E — D is said to be sunny if R(Rz+t(z — Rx)) = Rrfor all z € E and ¢ > 0. A mapping
R : E — D is said to be a retraction or a projection if Rz = x for all z € D. A nonempty subset
D of a smooth Banach space E is said to be a generalized nonezpansive retract (resp. sunny
generalized nonexpansive retract) of E if there exists a generalized nonexpansive retraction
(resp. sunny generalized nonexpansive retraction) R from E onto D; see [8] for more details.
The following results are in Ibaraki and Takahashi [8].

Lemma 2.4 ([8]). Let C be a nonempty closed sunny generalized nonezpansive retract of
a smooth and strictly conver Banach space E. Then the sunny generalized nonezpansive
retraction from E onto C is uniquely determined.

Lemma 2.5 ([8]). Let C be a nonempty closed subset of a smooth and strictly conver Banach
space E such that there exists a sunny generalized nonezpansive retraction R from E onto C
and let (z,z) € E x C. Then the following hold:

(i) z = Rz if and only if (x — 2z, Jy — J2) < 0 forally € C;
(i) ¢(Rz,z) + ¢(z, Rz) < ¢(z, 2).

In 2007, Kohsaka and Takahashi [14] proved the following results:

Lemma 2.6 ([14]). Let E be a smooth, strictly convex and reflexive Banach space and let C
be a nonempty closed subset of E. Then the following are equivalent:

(a) C is a sunny generalized nonexpansive retract of F;
(b) C is a generalized nonezpansive retract of E;
(c) JC is closed and convex.

Lemma 2.7 ([14]). Let E be a smooth, strictly convex and reflexive Banach space and let
C be a nonempty closed sunny generalized nonexpansive retract of E. Let R be the sunny
generalized nonezpansive retraction from E onto C and let (z,z) € E x C. Then the following
are equivalent:

(i) z = Rzx;

(i) ¢(zx,z) = mingecd(z,y).

Let I°° be the Banach space of bounded sequences with supremum norm. Let y be an
element of (I°°)* (the dual space of [>). Then we denote by u(f) the value of y at f =
(z1,Z2,%3,...) € 1. Sometimes we denote by un(z,) the value u(f). A linear functional p
on [ is called a mean if u(e) = ||u|| = 1, where e = (1,1,1,...). A mean y is called a Banach
limit on 1% if pp(Tn41) = pin(zn). We know that there exists a Banach limit on [°. If 4 is a
Banach limit on I*°, then for f = (z1, %2, %3,...) € I,

liminfz, < p,(z,) < limsup z,.
n=—00 n—oo

In particular, if f = (21, 22,23,...) € I* and z, — a € R, then we have u(f) = pn(z,) = a.
See [22] for the proof of existence of a Banach limit and its other elementary properties.
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3 Existence of Attractive Points in Banach Spaces

In 2011, Takahashi and Takeuchi [25] proved the following attractive point theorem in a
Hilbert space.

Theorem 3.1 ([25]). Let H be a Hilbert space, let C be a nonempty subset of H and let T
be a generalized hybrid mapping of C into itself. Suppose that there exists an element z € C
such that {T"z} is bounded. Then A(T) is nonempty. Additionally, if C is closed and convez,
then F(T) is nonempty.

In this section, we first try to extend Takahashi and Takeuchi’s attractive point theorem
[25] to Banach spaces. Let E be a smooth Banach space. Let C be a nonempty subset of E
and let T be a mapping of C into E. We denote by A(T) the set of attractive points [17] of
T,i.e.,

A(T)={z € E: ¢(2,Tz) < ¢(2,z), Vr e C}.

From Lin and Takahashi [17], A(T) is a closed and convex subset of E. A mappingT:C — E
is called generalized nonspreading [13] if there exist a, 3,7, 8 € R such that

ag(Tz, Ty) + (1-a)é(x, Ty) + v{$(Ty, Tz) — ¢(Ty, z)} (3.1)
< B(Tz,y) + (1 - B)p(z,y) + 6{(y, Tz) — #(y,z)}

for all z,y € C, where ¢(z,y) = ||z||Z2 — 2(z,Jy) + ||y||? for z,y € E. We call such T
an (a,f,7,6)-generalized nonspreading mapping. For example, a (1,1,1,0)-generalized non-
spreading mapping is a nonspreading mapping in the sense of Kohsaka and Takahashi [16],
ie.,

¢(Tz, Ty) + ¢(Ty, Tz) < ¢(Tx,y) + ¢(Ty,z), Vz,y €C;

see also [15] and [3]. Let T be an (e, 3,7, §)-generalized nonspreading mapping. Observe that
if F(T) # 0, then ¢(u,Ty) < ¢(u,y) for all u € F(T) and y € C. Using the technique devel-
oped by [20] and [21], we can prove an attractive point theorem for generalized nonspreading
mappings in a Banach space.

Theorem 3.2 (Lin and Takahashi [17]). Let E be a smooth and reflexive Banach space. Let
C be a nonempty subset of E and let T be a generalized nonspreading mapping of C into itselt.
Then, the following are equivalent:

(a) A(T) # 0;
(b) {T"z} is bounded for some z € C.

Additionally, if E is strictly conver and C is closed and convez, then the following are equiv-
alent:

(a) F(T) # 0;
(b) {T™x} is bounded for some z € C.



4 Skew-Attractive Point Theorems

Let E be a smooth Banach space and let C' be a nonempty subset of E. Let T: C — E be a
generalized nonspreading mapping; see (3.1). This mapping has the property that if u € F(T)
and z € C, then ¢(u;Tx) < ¢(u, ). This property can be revealed by putting z = u € F(T)
in (3.1). Similarly, putting y = u € F(T) in (3.1), we obtain that for any z € C,

a(T'z,u)+(1 - )é(z, u) + v{$(u, Tz) — ¢(u, z)} (4.1)
§ﬂ¢(Tx,u) + (1 - ﬂ)qb(x,u) + 6{¢(U7T$) - ¢(u’ w)}

and hence

(@ = B{¢(Tz,u) — ¢(z,u)} + (v = §){¢(u, Tz) — $(u,2)} < 0. (4.2)

Therefore, we have that oo > 8 together with v < § implies ¢(Tz,u) < ¢(z,u). Motivated by
this property of T and F(T'), we give the following defintition. Let E be a smooth Banach
space. Let C be a nonempty subset of E' and let T be a mapping of C into E. We denote by
B(T) the set of skew-attractive points of T, i.e.,

B(T)={2€ E: ¢(Tz,z) < ¢(z,z), Vz € C}.
The following result was proved by Lin and Takahashi [17].

Lemma 4.1 ([17]). Let E be a smooth Banach space and let C be a nonempty subset of E.
Let T' be a mapping from C into E. Then B(T) is closed.

Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty
subset of E. Let T' be a mapping of C into E. Define a mapping T* as follows:

T*z* = JTJ 'z*, Vz* € JC,

where J is the duality mapping on E and J~! is the duality mapping on E*. A mapping
T™ is called the adjoint mapping of T'; see also [26] and [6]. It is easy to show that if T is a
mapping of C into itselt, then T* is a mapping of JC into itself. In fact, for z* € JC, we
have J~1z* € C and hence TJ 'z* € C. So, we have T*z* = JTJ lz* € JC. Then, T* is
a mapping of JC into itself. We can prove the following result in a Banach space which was
proved by Lin and Takahashi [17].

Lemma 4.2 ([17]). Let E be a smooth, strictly conver and reflerive Banach space and let C
be a nonempty subset of E. Let T be a mapping of C into E and let T* be the duality mapping
of T. Then, the following hold:

(1) JB(T) = A(T*);
(2) JA(T) = B(T*).
In particular, JB(T) is closed and convexz.

Using these results, we can discuss skew-attractive point theorems in Banach spaces. Let E
be a smooth Banach space and let C be a nonempty subset of E. A mapping T:C — E is
called skew-generalized nonspreading [7] if there exist «, 3,7, € R such that

a¢(Ty, Tz)+(1 - )4(Ty, ) + 1{¢(Tz,Ty) — ¢(z, T'y)} (4.3)
< Be(y, Tz) + (1= B)¢(y, z) + 6{¢(Tz,y) — $(z,y)}
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for all z,y € C. We call such T an (a, 3,7, §)-skew-generalized nonspreading mapping. For
example, a (1,1,1,0)-skew-generalized nonspreading mapping is a skew-nonspreading mapping
in the sense of Ibaraki and Takahashi [9], i.e.,

#(Tz,Ty) + ¢(Ty, Tz) < $(z, Ty) + ¢(y,Tx), Vz,y€C.

The following theorem was proved by Lin and Takahashi [17)].

Theorem 4.3 ([17]). Let E be a smooth, strictly convez and reflexive Banach space and let
C be a nonempty subset of E. Let T be a skew-generalized nonspreading mapping of C' into
itselt. Then, the following are equivalent:

(a) B(T) # 0;
(b) {T"x} is bounded for some z € C.

Additionally, if C is closed and JC is closed and convez, then the following are equivalent:

(a) F(T) #0;
(b) {T™z} is bounded for some x € C.

5 Mean Convergence Theorems in Banach Spaces
In this section, we can prove a mean convergence theorem without convexity for generalized
nonspreading mappings in a Banach space. Before proving it, we state the following lemmas.

Lemma 5.1 ([20, 5]). Let E be a reflezive Banach space, let {z,} be a bounded sequence in
E and let u be a mean on 1°. Then there exists a unique point zo € ¢0{x, : n € N} such that

llfn(mmy*> = (any*>7 Vy* € E*. (5'1)

A unique point zy € ¢o{z, : n € N} satisfying (5.1) is called the mean vector of {z} for p.

Lemma 5.2 ([18]). Let E be a smooth, strictly convex and reflexive Banach space with the
duality mapping J and let D be a nonempty, closed and convex subset of E. Let {z,} be a
bounded sequence in D and let u be a mean on I®. If g: D — R is defined by

9(2) = pnd(n,2), VzeD,
then the mean vector zy of {x,} for u is a unique minimizer in D such that
9(z0) = min{g(z) : z € D}.

Lemma 5.3 ([18]). Let E be a smooth and reflexive Banach space and let C be a nonempty
subset of E. Let T be a generalized nonspreading mapping of C into itself. Suppose that {T™z}
is bounded for some x € C. Define

n—1

_1 k
Snz—nZT z, VneN.

k=0

If a subsequence {Sn,x} of {Snx} converges weakly to a point u, then u € A(T). Additionally,
if E is strictly convez and C is closed and convez, then u € F(T).



Lemma 5.4 ([18]). Let E be a uniformly convexr and smooth Banach space. Let C be a
nonempty subset of E and let T : C — C be a mapping such that B(T) # 0. Then, there
exists a unique sunny generalized nonexpansive retraction R of E onto B(T). Furthermore,
for any x € C, lim, .o RT"z exists in B(T).

Using these lemmas, we prove the following mean convergence theorem for generalized non-
spreading mappings in a Banach space.

Theorem 5.5 (Lin and Takahashi [17]). Let E be a uniformly convex Banach space with
a Fréchet differentiable norm and let C be a nonempty subset of E. Let T : C — C be a
generalized nonspreading mapping such that A(T) = B(T) # 0. Let R be the sunny generalized
nonezpansive retraction of E onto B(T'). Then, for any z € C, the sequence {Snz} of Cesaro

means
1 n—1
S, = — Z Tkz
n
k=0

converges weakly to an element g of A(T), where q = lim,,_.o, RT"x.
Using Theorem 5.5, we obtain the following theorems.

Theorem 5.6 (Kocourek, Takahashi and Yao [13]). Let E be a uniformly convex Banach space
with a Fréchet differentiable norm. Let T : E — E be an (o, 3,7, 6 )-generalized nonspreading
mapping such that o > 8 and~y < 0. Assume that F(T) # 0 and let R be the sunny generalized
nonezpansive retraction of E onto F(T). Then, for any x € E, the sequence {Snx} of Cesdro

means
1 n—1
Spxr =~ Z Tk
n
k=0

converges weakly to an element q of F(T), where ¢ = lim,_,o, RT"x.

Proof. We also know that a > 3 together with v < § implies that ¢(T'x,u) < ¢(z,u) for all
x € E and u € F(T). We also note that A(T) = F(T) and B(T) = F(T). So, we have the
desired result from Theorem 5.5. (i
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