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Abstract. Let $H$ be a real Hilbert space norm $\Vert\cdot\Vert$ . Let $C$ be a nonempty subset of $H$ and
let $T$ be a mapping of $C$ into $H$ . We denote by $F(T)$ the set of fixed points of $T$ and by $A(T)$

the set of attractive points of $T$ , i.e.,

(i) $F(T)=\{z\in C:Tz=z\}$ ;
(ii) $A(T)=\{z\in H:\Vert Tx-z\Vert\leq\Vert x-z\Vert, \forall x\in C\}.$

In this article, we extend the concept of attractive points in a Hilbert space to that in a Banach
space and then prove attractive point theorems and mean convergence theorems without
convexity for nonlinear mappings in a Banach space.

1 Introduction

Let $H$ be a real Hilbert space with inner product $\langle\cdot,$ $\cdot\rangle$ and norm $\Vert\cdot\Vert$ . Let $C$ be a nonempty
subset of $H.$ $A$ mapping $T$ : $Carrow H$ is said to be nonexpansive if $\Vert Tx-Ty\Vert\leq\Vert x-y\Vert$

for all $x,$ $y\in C$ . We know that if $C$ is a bounded, closed and convex subset of $H$ and
$T:Carrow C$ is nonexpansive, then $F(T)$ is nonempty. Furthermore, from Baillon [4] we know
the first nonlinear mean convergence theorem for nonexpansive mappings in a Hilbert space.
An important example of nonexpansive mappings in a Hilbert space is a firmly nonexpansive
mapping. $A$ mapping $F$ is said to be firmly nonexpansive if

$\Vert Fx-Fy\Vert^{2}\leq\langle x-y, Fx-Fy\rangle$

for all $x,$ $y\in C$ . Kohsaka and Takahashi [16], and Takahashi [24] introduced the following
nonlinear mappings which are deduced from a firmly nonexpansive mapping in a Hilbert space.
A mapping $T:Carrow H$ is called nonspreading [16] if

$2\Vert Tx-Ty\Vert^{2}\leq\Vert Tx-y\Vert^{2}+\Vert Ty-x\Vert^{2}$

for all $x,$ $y\in C.$ $A$ mapping $T:Carrow H$ is called hybrid [24] if

$3\Vert Tx-Ty\Vert^{2}\leq\Vert x-y\Vert^{2}+\Vert Tx-y\Vert^{2}+\Vert Ty-x\Vert^{2}$

for all $x,$ $y\in C$ . The class of nonspreading mappings was first defined in a smooth, strictly
convex and reflexive Banach space. The resolvents of a maximal monotone operator are
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nonspreading mappings; see [16] for more details. These three classes of nonlinear mappings
are important in the study of the geometry of infinite dimensional spaces. Indeed, by using
the fact that the resolvents of a maximal monotone operator are nonspreading mappings,
Takahashi, Yao and Kohsaka [27] solved an open problem which is related to Ray’s theorem
[19] in the geometry of Banach spaces. Kocourek, Takahashi and Yao [12] defined a broad
class of nonlinear mappings containing nonexpansive mappings, nonspreading mappings and
hybrid mappings in a Hilbert space. $A$ mapping $T:Carrow H$ is called generalized hybrid [12] if
there exist $\alpha,$ $\beta\in \mathbb{R}$ such that

$\alpha\Vert Tx-Ty\Vert^{2}+(1-\alpha)\Vert x-Ty\Vert^{2}\leq\beta\Vert Tx-y\Vert^{2}+(1-\beta)\Vert x-y\Vert^{2}$

for all $x,$ $y\in C$ , where $\mathbb{R}$ is the set of real numbers. We call such $T$ an $(\alpha, \beta)$ -genemlized
hybrid mapping; see also [2]. Kocourek, Takahashi and Yao [12] proved a fixed point theorem
for such mappings in a Hilbert space.

Theorem 1.1 ([12]). Let $C$ be a nonempty, closed and convex subset of a Hilbert space $H$

and let $T$ : $Carrow C$ be a genemlized hybrid mapping. Then $T$ has a fixed point in $C$ if and only
if $\{T^{n}z\}$ is bounded for some $z\in C.$

They also proved a mean convergence theorem which generalizes Baillon’s nonlinear ergodic
theorem [4] in a Hilbert space.

Theorem 1.2 ([12]). Let $H$ be a real Hilbert space, let $C$ be a nonempty, closed and convex
subset of $H$ , let $T$ be a generalized hybrid mapping from $C$ into itself with $F(T)\neq\emptyset$ and let
$P$ be the metric projection of $H$ onto $F(T)$ . Then for any $x\in C,$

$\ x=\frac{1}{n}\sum_{k=0}^{n-1}T^{k_{X}}$

converges weakly to $p\in F(T)$ , where $p= \lim_{narrow\infty}PT^{n}x.$

Recently, Takahashi and Takeuchi [25] introduced the concept of attractive points of nonlin-
ear mappings in a Hilbert space and then they proved attractive point and mean convergence
theorems without convexity for generalized hybrid mappings.

In this talk, we extend the concept of attractive points in a Hilbert space to that in a Banach
space and then prove attractive point theorems and mean convergence theorems without
convexity for nonlinear mappings in a Banach space.

2 Preliminaries

Let $E$ be a real Banach space with norm $\Vert\cdot\Vert$ and let $E^{*}$ be the topological dual space of
$E$ . We denote the value of $y^{*}\in E^{*}$ at $x\in E$ by $\langle x,$ $y^{*}\rangle$ . The modulus $\delta$ of convexity of $E$ is
defined by

$\delta(\epsilon)=\inf\{1-\frac{\Vert x+y\Vert}{2}:\Vert x\Vert\leq 1, \Vert y\Vert\leq 1, \Vert x-y\Vert\geq\epsilon\}$

for all $\epsilon$ with $0\leq\epsilon\leq 2$ . A Banach space $E$ is said to be uniformly convex if $\delta(\epsilon)>0$ for all
$\epsilon>0.$ $A$ uniformly convex Banach space is strictly convex and reflexive. Let $E$ be a Banach
space. The duality mapping $J$ from $E$ into $2^{E^{*}}$ is defined by

$Jx=\{x^{*}\in E^{*} : \langle x, x^{*}\rangle=||x\Vert^{2}=\Vert x^{*}\Vert^{2}\}$
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for all $x\in E$ . Let $U=\{x\in E: \Vert x\Vert=1\}$ . The norm of $E$ is said to be G\^ateaux differentiable
if for each $x,$ $y\in U$ , the limit

$\lim_{tarrow 0}\frac{\Vert x+ty\Vert-\backslash \Vert x\Vert}{t}$ (2.1)

exists. In the case, $E$ is called smooth. We know that $E$ is smooth if and only if $J$ is a single-
valued mapping of $E$ into $E^{*}$ . We also know that $E$ is reflexive if and only if $J$ is surjective,
and $E$ is strictly convex if and only if $J$ is one-to-one. Therefore, if $E$ is a smooth, strictly
convex and reflexive Banach space, then $J$ is a single-valued bijection. The norm of $E$ is said
to be uniformly G\^ateaux differentiable if for each $y\in U$ , the limit (2.1) is attained uniformly
for $x\in U$ . It is also said to be Fr\’echet differentiable if for each $x\in U$ , the limit (2.1) is
attained uniformly for $y\in U$ . A Banach space $E$ is called uniformly smooth if the limit (2.1)
is attained uniformly for $x,$ $y\in U$ . It is known that if the norm of $E$ is uniformly G\^ateaux

differentiable, then $J$ is uniformly norm-to-weak* continuous on each bounded subset of $E,$

and if the norm of $E$ is Fr\’echet differentiable, then $J$ is norm-to-norm continuous. If $E$ is
uniformly smooth, $J$ is uniformly norm-to-norm continuous on each bounded subset of $E$ . For
more details, see [22, 23]. The following result is well known; see [22].

Lemma 2.1 ([22]). Let $E$ be a smooth Banach space and let $J$ be the duality mapping on
E. Then, $\langle x-y,$ $Jx-Jy\rangle\geq 0$ for all $x,$ $y\in E.$ Furthermore, if $E$ is strictly convex and
$\langle x-y,$ $Jx-Jy\rangle=0$ , then $x=y.$

Let $E$ be a smooth Banach space. The function $\phi:E\cross Earrow \mathbb{R}$ is defined by

$\phi(x, y)=\Vert x\Vert^{2}-2\langle x, Jy\rangle+\Vert y\Vert^{2}$

for all $x,$ $y\in E$ ; see [1] and [11]. We have from the definition of $\phi$ that

$\phi(x, y)=\phi(x, z)+\phi(z, y)+2\langle x-z, Jz-Jy\rangle$ (2.2)

for all $x,$ $y,$ $z\in E$ . From $(\Vert x\Vert-\Vert y\Vert)^{2}\leq\phi(x, y)$ for all $x,$ $y\in E$ , we can see that $\phi(x, y)\geq 0.$

Furthermore, we can obtain the following equality:

$2\langle x-y, Jz-Jw\rangle=\phi(x, w)+\phi(y, z)-\phi(x, z)-\phi(y, w)$ (2.3)

for all $x,$ $y,$ $z,$ $w\in E$ . Let $\phi_{*}:E^{*}\cross E^{*}arrow \mathbb{R}$ be the function defined by

$\phi_{*}(x^{*}, y^{*})=\Vert x^{*}\Vert^{2}-2\langle J^{-1}y^{*}, x^{*}\rangle+\Vert y^{*}\Vert^{2}$

for all $x^{*},$ $y^{*}\in E^{*}$ , where $J$ is the duality mapping of $E$ . It is easy to see that

$\phi(x, y)=\phi_{*}(Jy, Jx)$ (2.4)

for all $x,$ $y\in E$ . If $E$ is additionally assumed to be strictly convex, then

$\phi(x, y)=0\Leftrightarrow x=y$ . (2.5)

The following results are in Xu [28] and Kamimura and Takahashi [11].

Lemma 2.2 ([28]). Let $E$ be a uniformly convex Banach space and let $r>0$ . Then there erists
a strictly increasing, continuous and convex function $g$ : $[0, \infty)arrow[0, \infty)$ such that $g(O)=0$

and
$\Vert\lambda x+(1-\lambda)y\Vert^{2}\leq\lambda\Vert x\Vert^{2}+(1-\lambda)\Vert y\Vert^{2}-\lambda(1-\lambda)g(\Vert x-y\Vert)$

for all $x,$ $y\in B_{r}$ and $\lambda$ with $0\leq\lambda\leq 1$ , where $B_{r}=\{z\in E:1z\Vert\leq r\}.$
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Lemma 2.3 ([11]). Let $E$ be smooth and uniformly convex Banach space and let $r>0$ . Then
there exists a strictly increasing, continuous and convex function $g$ : $[0,2r]arrow \mathbb{R}$ such that
$g(O)=0$ and $g(\Vert x-y\Vert)\leq\phi(x, y)$ for all $x,$ $y\in B_{r}$ , where $B_{r}=\{z\in E:\Vert z\Vert\leq r\}.$

Let $E$ be a smooth Banach space and let $C$ be a nonempty subset of $E.$ $A$ mapping
$T$ : $Carrow E$ is called genemlized nonexpansive [8] if $F(T)\neq\emptyset$ and $\phi(Tx, y)\leq\phi(x, y)$ for
all $x\in C$ and $y\in F(T)$ . Let $D$ be a nonempty subset of a Banach space $E.$ $A$ mapping
$R:Earrow D$ is said to be sunny if $R(Rx+t(x-Rx))=Rx$ for all $x\in E$ and $t\geq 0.$ $A$ mapping
$R:Earrow D$ is said to be a retmction or a projection if $Rx=x$ for all $x\in D.$ $A$ nonempty subset
$D$ of a smooth Banach space $E$ is said to be a genemlized nonexpansive retmct (resp. sunny
genemlized nonexpansive retmct) of $E$ if there exists a generalized nonexpansive retraction
(resp. sunny generalized nonexpansive retraction) $R$ from $E$ onto $D$ ; see [8] for more details.
The following results are in Ibaraki and Takahashi [8].

Lemma 2.4 ([8]). Let $C$ be a nonempty closed sunny genemlized nonexpansive retmct of
a smooth and strictly convex Banach space E. Then the sunny genemlized nonexpansive
retmction from $E$ onto $C$ is uniquely determined.
Lemma 2.5 ([8]). Let $C$ be a nonempty closed subset of a smooth and strictly convex Banach
space $E$ such that there exists a sunny genemlized nonexpansive retmction $R$ from $E$ onto $C$

and let $(x, z)\in E\cross C$. Then the following hold;

(i) $z=Rx$ if and only if $\langle x-z,$ $Jy-Jz\rangle\leq 0$ for all $y\in C$ ;
(ii) $\phi(Rx, z)+\phi(x, Rx)\leq\phi(x, z)$ .
In 2007, Kohsaka and Takahashi [14] proved the following results:

Lemma 2.6 ([14]). Let $E$ be a smooth, strictly convex and reflexive Banach space and let $C$

be a nonempty closed subset of E. Then the following are equivalent:

$(a)C$ is a sunny generalized nonexpansive retmct of $E$;
$(b)C$ is a generalized nonexpansive retmct of $E$ ;
$(c)JC$ is closed and convex.

Lemma 2.7 ([14]). Let $E$ be a smooth, strictly convex and reflexive Banach space and let
$C$ be a nonempty closed sunny generalized nonexpansive retmct of E. Let $R$ be the sunny
genemlized nonexpansive retraction from $E$ onto $C$ and let $(x, z)\in E\cross C$. Then the following
are equivalent:

(i) $z=Rx$;
(ii) $\phi(x, z)=\min_{v\in C}\phi(x, y)$ .
Let $l^{\infty}$ be the Banach space of bounded sequences with supremum norm. Let $\mu$ be an

element of $(l^{\infty})^{*}$ (the dual space of $l^{\infty}$ ). Then we denote by $\mu(f)$ the value of $\mu$ at $f=$
$(x_{1}, x_{2}, x_{3}, \ldots)\in l^{\infty}$ . Sometimes we denote by $\mu_{n}(x_{n})$ the value $\mu(f)$ . $A$ linear functional $\mu$

on $l^{\infty}$ is called a mean if $\mu(e)=\Vert\mu\Vert=1$ , where $e=(1,1,1, \ldots)$ . $A$ mean $\mu$ is called a Banach
limit on $\iota\infty$ if $\mu_{n}(x_{n+1})=\mu_{n}(x_{n})$ . We know that there exists a Banach limit on $\iota\infty$ . If $\mu$ is a
Banach limit on $l^{\infty}$ , then for $f=(x_{1}, x_{2}, x_{3}, \ldots)\in l^{\infty},$

$\lim_{narrow}\inf_{\infty}x_{n}\leq\mu_{n}(x_{n})\leq\lim_{narrow}\sup_{\infty}x_{n}.$

In particular, if $f=(x_{1}, x_{2}, x_{3}, \ldots)\in l^{\infty}$ and $x_{n}arrow a\in \mathbb{R}$ , then we have $\mu(f)=\mu_{n}(x_{n})=a.$

See [22] for the proof of existence of a Banach limit and its other elementary properties.
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3 Existence of Attractive Points in Banach Spaces

In 2011, Takahashi and Takeuchi [25] proved the following attractive point theorem in a
Hilbert space.

Theorem 3.1 ([25]). Let $H$ be a Hilbert space, let $C$ be a nonempty subset of $H$ and let $T$

be a genemlized hybrid mapping of $C$ into itself. Suppose that there exists an element $z\in C$

such that $\{T^{n}z\}$ is bounded. Then $A(T)$ is nonempty. Additionally, if $C$ is closed and convex,
then $F(T)$ is nonempty.

In this section, we first try to extend Takahashi and Takeuchi’s attractive point theorem
[25] to Banach spaces. Let $E$ be a smooth Banach space. Let $C$ be a nonempty subset of $E$

and let $T$ be a mapping of $C$ into $E$ . We denote by $A(T)$ the set of attmctive points [17] of
$T$ , i.e.,

$A(T)=\{z\in E : \phi(z, Tx)\leq\phi(z, x), \forall x\in C\}.$

From Lin and Takahashi [17], $A(T)$ is a closed and convex subset of $E.$ $A$ mapping $T:Carrow E$

is called genemlized nonspreading [13] if there exist $\alpha,$ $\beta,$
$\gamma,$

$\delta\in \mathbb{R}$ such that

$\alpha\phi(Tx, Ty)+(1-\alpha)\phi(x, Ty)+\gamma\{\phi(Ty, Tx)-\phi(Ty, x)\}$ (3.1)
$\leq\beta\phi(Tx, y)+(1-\beta)\phi(x, y)+\delta\{\phi(y, Tx)-\phi(y, x)\}$

for all $x,$ $y\in C$ , where $\phi(x, y)=\Vert x\Vert^{2}-2\langle x,$ $Jy\rangle+\Vert y\Vert^{2}$ for $x,$ $y\in E$ . We call such $T$

an $(\alpha, \beta, \gamma, \delta)$ -genemlized nonspreading mapping. For example, $a(1,1,1,0)-$generalized non-
spreading mapping is a nonspreading mapping in the sense of Kohsaka and Takahashi [16],
i.e.,

$\phi(Tx, Ty)+\phi(Ty, Tx)\leq\phi(Tx, y)+\phi(Ty, x) , \forall x, y\in C$ ;

see also [15] and [3]. Let $T$ be an $(\alpha, \beta, \gamma, \delta)$-generalized nonspreading mapping. Observe that
if $F(T)\neq\emptyset$ , then $\phi(u, Ty)\leq\phi(u, y)$ for all $u\in F(T)$ and $y\in C$ . Using the technique devel-
oped by [20] and [21], we can prove an attractive point theorem for generalized nonspreading
mappings in a Banach space.

Theorem 3.2 (Lin and Takahashi [17]). Let $E$ be a smooth and reflexive Banach space. Let
$C$ be a nonempty subset of $E$ and let $T$ be a generalized nonspreading mapping of $C$ into itselt.
Then, the following are equivalent:

$(a)A(T)\neq\emptyset$ ;
$(b)\{T^{n}x\}$ is bounded for some $x\in C.$

Additionally, if $E$ is strictly convex and $C$ is closed and convex, then the following are equiv-
alent:

$(a)F(T)\neq\emptyset$ ;
$(b)\{T^{n}x\}$ is bounded for some $x\in C.$
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4 Skew-Attractive Point Theorems
Let $E$ be a smooth Banach space and let $C$ be a nonempty subset of $E$ . Let $T:Carrow E$ be a

generalized nonspreading mapping; see (3.1). This mapping has the property that if $u\in F(T)$

and $x\in C$ , then $\phi(u, Tx)\leq\phi(u, x)$ . This property can be revealed by putting $x=u\in F(T)$
in (3.1). Similarly, putting $y=u\in F(T)$ in (3.1), we obtain that for any $x\in C,$

$\alpha\phi(Tx, u)+(1-\alpha)\phi(x, u)+\gamma\{\phi(u, Tx)-\phi(u, x)\}$ (4.1)
$\leq\beta\phi(Tx, u)+(1-\beta)\phi(x, u)+\delta\{\phi(u, Tx)-\phi(u, x)\}$

and hence
$(\alpha-\beta)\{\phi(Tx, u)-\phi(x, u)\}+(\gamma-\delta)\{\phi(u, Tx)-\phi(u, x)\}\leq 0$ . (4.2)

Therefore, we have that $\alpha>\beta$ together with $\gamma\leq\delta$ implies $\phi(Tx, u)\leq\phi(x, u)$ . Motivated by
this property of $T$ and $F(T)$ , we give the following defintition. Let $E$ be a smooth Banach
space. Let $C$ be a nonempty subset of $E$ and let $T$ be a mapping of $C$ into $E$ . We denote by
$B(T)$ the set of skew-attmctive points of $T$ , i.e.,

$B(T)=\{z\in E:\phi(Tx, z)\leq\phi(x, z), \forall x\in C\}.$

The following result was proved by Lin and Takahashi [17].

Lemma 4.1 ([17]). Let $E$ be a smooth Banach space and let $C$ be a nonempty subset of $E.$

Let $T$ be a mapping from $C$ into E. Then $B(T)$ is closed.

Let $E$ be a smooth, strictly convex and reflexive Banach space and let $C$ be a nonempty
subset of $E$ . Let $T$ be a mapping of $C$ into $E$ . Define a mapping $\tau*$ as follows:

$T^{*}x^{*}=JTJ^{-1_{X^{*}}}, \forall x^{*}\in JC,$

where $J$ is the duality mapping on $E$ and $J^{-1}$ is the duality mapping on $E^{*}.$ $A$ mapping
$\tau*$ is called the adjoint mapping of $T$ ; see also [26] and [6]. It is easy to show that if $T$ is a
mapping of $C$ into itselt, then $\tau*$ is a mapping of $JC$ into itself. In fact, for $x^{*}\in JC$ , we
have $J^{-1}x^{*}\in C$ and hence $TJ^{-1}x^{*}\in C$ . So, we have $T^{*}x^{*}=JTJ^{-1}x^{*}\in JC$ . Then, $\tau*$ is
a mapping of $JC$ into itself. We can prove the following result in a Banach space which was
proved by Lin and Takahashi [17].

Lemma 4.2 ([17]). Let $E$ be a smooth, strictly convex and reflexive Banach space and let $C$

be a nonempty subset of E. Let $T$ be a mapping of $C$ into $E$ and let $\tau*$ be the duality mapping
of T. Then, the following hold:

(1) $JB(T)=A(T^{*})$ ;
(2) $JA(T)=B(T^{*})$ .

In particular, $JB(T)$ is closed and convex.
Using these results, we can discuss skew-attractive point theorems in Banach spaces. Let $E$

be a smooth Banach space and let $C$ be a nonempty subset of $E.$ $A$ mapping $T:Carrow E$ is
called skew-genemlized nonspreading [7] if there exist $\alpha,$

$\beta,$
$\gamma,$

$\delta\in \mathbb{R}$ such that

$\alpha\phi(Ty, Tx)+(1-\alpha)\phi(Ty, x)+\gamma\{\phi(Tx, Ty)-\phi(x, Ty)\}$ (4.3)
$\leq\beta\phi(y, Tx)+(1-\beta)\phi(y, x)+\delta\{\phi(Tx, y)-\phi(x, y)\}$

119



for all $x,$ $y\in C$ . We call such $T$ an $(\alpha, \beta,\gamma, \delta)$-skew-genemlized nonspreading mapping. For
example, $a$ $(1,1,1,0)$-skew-generalized nonspreading mapping is a skew-nonspreading mapping
in the sense of Ibaraki and Takahashi [9], i.e.,

$\phi(Tx, Ty)+\phi(Ty, Tx)\leq\phi(x, Ty)+\phi(y, Tx) , \forall x, y\in C.$

The following theorem was proved by Lin and Takahashi [17].

Theorem 4.3 ([17]). Let $E$ be a smooth, strictly convex and reflexive Banach space and let
$C$ be a nonempty subset of E. Let $T$ be a skew-genemlized nonspreading mapping of $C$ into
itselt. Then, the following are equivalent:

$(a)B(T)\neq\emptyset$;
$(b)\{T^{n}x\}$ is bounded for some $x\in C.$

Additionally, if $C$ is closed and $JC$ is closed and convex, then the following are equivalent:

$(a)F(T)\neq\emptyset$;
$(b)\{T^{n}x\}$ is bounded for some $x\in C.$

5 Mean Convergence Theorems in Banach Spaces

In this section, we can prove a mean convergence theorem without convexity for generalized
nonspreading mappings in a Banach space. Before proving it, we state the following lemmas.

Lemma 5.1 ([20, 5]). Let $E$ be a reflestve Banach space, let $\{x_{n}\}$ be a bounded sequence in
$E$ and let $\mu$ be a mean on $l^{\infty}$ . Then there exists a unique point $z_{0}\in\overline{co}\{x_{n} : n\in \mathbb{N}\}$ such that

$\mu_{n}\langle x_{n}, y^{*}\rangle=\langle z_{0}, y^{*}\rangle, \forall y^{*}\in E^{*}$ . (5.1)

A unique point $z_{0}\in\overline{co}\{x_{n}:n\in \mathbb{N}\}$ satisfying (5.1) is called the mean vector of $\{x_{n}\}$ for $\mu.$

Lemma 5.2 ([18]). Let $E$ be a smooth, strictly convex and reflexive Banach space with the
duality mapping $J$ and let $D$ be a nonempty, closed and convex subset of E. Let $\{x_{n}\}$ be a
bounded sequence in $D$ and let $\mu$ be a mean on $\iota\infty$ . If $g:Darrow \mathbb{R}$ is defined by

$g(z)=\mu_{n}\phi(x_{n}, z) , \forall z\in D,$

then the mean vector $z_{0}$ of $\{x_{n}\}$ for $\mu$ is a unique minimizer in $D$ such that

$g(z_{0})= \min\{g(z):z\in D\}.$

Lemma 5.3 ([18]). Let $E$ be a smooth and reflexive Banach space and let $C$ be a nonempty
subset of E. Let $T$ be a generalized nonspreading mapping of $C$ into itself. Suppose that $\{T^{n}x\}$

is bounded for some $x\in C$ . Define

$S_{n}x= \frac{1}{n}\sum_{k=0}^{n-1}T^{k_{X}}, \forall n\in \mathbb{N}.$

If a subsequence $\{S_{n_{i}}x\}$ of $\{S_{n}x\}$ converges weakly to a point $u$ , then $u\in A(T)$ . Additionally,
if $E$ is strictly convex and $C$ is closed and convex, then $u\in F(T)$ .
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Lemma 5.4 ([18]). Let $E$ be a uniformly convex and smooth Banach space. Let $C$ be a
nonempty subset of $E$ and let $T$ : $Carrow C$ be a mapping such that $B(T)\neq\emptyset$ . Then, there
exists a unique sunny genemlized nonexpansive retraction $R$ of $E$ onto $B(T)$ . Furthermore,
for any $x\in C,$ $\lim_{narrow\infty}RT^{n}x$ exists in $B(T)$ .

Using these lemmas, we prove the following mean convergence theorem for generalized non-
spreading mappings in a Banach space.

Theorem 5.5 (Lin and Takahashi [17]). Let $E$ be a uniformly convex Banach space with
a Fr\’echet differentiable norm and let $C$ be a nonempty subset of E. Let $T$ : $Carrow C$ be a
genemlized nonspreading mapping such that $A(T)=B(T)\neq\emptyset$ . Let $R$ be the sunny genemlized
nonexpansive retmction of $E$ onto $B(T)$ . Then, for any $x\in C$ , the sequence $\{S_{n}x\}$ of Ces\‘aro
means

$S_{n}x= \frac{1}{n}\sum_{k=0}^{n-1}T^{k}x$

converges weakly to an element $q$ of $A(T)$ , where $q= \lim_{narrow\infty}RT^{n}x.$

Using Theorem 5.5, we obtain the following theorems.

Theorem 5.6 (Kocourek, Takahashi and Yao [13]). Let $E$ be a uniformly convex Banach space
with a Fr\’echet differentiable norm. Let $T:Earrow E$ be an $(\alpha, \beta, \gamma, \delta)$ -generalized nonspreading
mapping such that $\alpha>\beta$ and $\gamma\leq\delta$ . Assume that $F(T)\neq\emptyset$ and let $R$ be the sunny genemlized
nonexpansive retraction of $E$ onto $F(T)$ . Then, for any $x\in E$ , the sequence $\{S_{n}x\}$ of Ces\‘aro
means

$S_{n}x= \frac{1}{n}\sum_{k=0}^{n-1}T^{k_{X}}$

converges weakly to an element $q$ of $F(T)$ , where $q= \lim_{narrow\infty}RT^{n}x.$

Pmof. We also know that $\alpha>\beta$ together with $\gamma\leq\delta$ implies that $\phi(Tx, u)\leq\phi(x, u)$ for all
$x\in E$ and $u\in F(T)$ . We also note that $A(T)=F(T)$ and $B(T)=F(T)$ . So, we have the
desired result from Theorem 5.5. $\square$
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