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1 Instability of smooth harmonic maps.
Let $\mathbb{S}^{k}$ be a $k$-dimensionla Euclidean sphere and $N$ be an $n$-dimensional compact Riemannian
manifold without boundary. We denote by $C^{\infty}(\mathbb{S}^{k}, N)$ the set of smooth maps from $S^{k}$ to $N$ . We
define the Dirichlet energy functional $E:C^{\infty}(\mathbb{S}^{k}, N)arrow \mathbb{R}$ to be

$E(f)=\frac{1}{2}\int_{S^{k}}|df|^{2}d\mu$

wherel $df|$ is the Hilbert-Schmidt norm of a linear map $(df)_{x}\in T_{x}^{*}\mathbb{S}^{k}\otimes T_{f(x)}N$ and $\mu$ is the canonical
measure on $\mathbb{S}^{k}$ induced by the Riemannian metric. $A$ map $f\in C^{\infty}(\mathbb{S}^{k}, N)$ is said to be a harmonic
map if it is a critical point of E.
Let $f^{-1}TN$ be the pull-back bundle of $TN$ by $f$ and $C^{\infty}(f^{-1}TN)$ be the vector space of smooth
sections of $f^{-1}TN$ . If $f_{t}$ is a smooth homotopy with $f_{0}=f,$

$V(x)= \frac{d}{dt}f_{t}(x)|_{t=0}$

is called a vanation vector field of $f_{t}$ . The second variation formula is [14]

$\delta_{f}^{2}E(V)=\frac{d^{2}}{dt^{2}}E(f_{t})|_{t=0}=-\int_{S^{k}}\langle V,R(\tilde{\nabla}^{2}V+R^{N}(V, df)df)\rangle d\mu$

where $\tilde{\nabla}$ is the induced connection on $C^{\infty}(f^{-1}TN),$ $R^{N}$ is a Riemannian curvature of $N$ and $TY$

is the trace. An operator $J_{f}$ : $C^{\infty}(f^{-1}TN)arrow C^{\infty}(f^{-1}TN)$ defined by

$J_{f}V=-$ Tr$(\tilde{\nabla}^{2}V+R^{N}(V, df)df)$

is called the Jacobi operator along $f$ . This is a linear elliptic differential operator and its spectrum
consists of a discrete sequence of real eigenvalues. We denote by $\lambda_{1}(J_{f})$ the least eigenvalue of $J_{f}.$

If $\lambda_{1}(J_{f})$ is negative, $f$ is called unstable.
It is known that every non-constant harmonic map $f\in C^{\infty}(\mathbb{S}^{k}, N)$ is unstable when $k\geq 3$ . More
precisely the following theorem holds.

Theorem 1.1. [15] For a non-constant harmonic map $f\in C^{\infty}(\mathbb{S}^{k}, N)$ , we have

$\lambda_{1}(J_{f})\leq 2-k.$

A simple example shows that this estimate is sharp.

Theorem 1.2. [14] For the identity map id $\in C^{\infty}(\mathbb{S}^{k}, \mathbb{S}^{k})$ , we have

$\lambda_{1}(J_{id})=2-k.$
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In some sense, the converse is aloso true.

Theorem 1.3. [6] Assume $k$ is greater tham two. If a harmonic map $f\in C^{\infty}(\mathbb{S}^{k}, \mathbb{S}^{k})$ satisfies
$\lambda_{1}(J_{f})=2-k,$

then there exists $a(k+1)\cross(k+1)$ orthogonal matrix $R$ such that

$f(x)=Rx x\in \mathbb{S}^{k}.$

Remark 1.1. Assume $k$ is greater than two and less than eight. Let $d$ be an integer whose absolute
value is greater than one. There exists a harmonic map $f_{d}\in C^{\infty}(\mathbb{S}^{k}, \mathbb{S}^{k})$ , the mapping degree of
which is $d[13]$ . From Theorem 1.3, we have

$\lambda_{1}(J_{f_{d}})<2-k.$

Remark 1.2. For every harmonic map $f\in C^{\infty}(\mathbb{S}^{2}, \mathbb{S}^{2})$ , we have

$\lambda_{1}(J_{f})=0$

because it minimizes the Dirichlet energy in its homotopy class and the Dirichlet energy is confor-
mally invariant in this case.

2 Singularities of energy minimizing maps.
Let $\Omega$ be a bounded domain with smooth boundary in $n$-dimensional Euclidean space $\mathbb{R}^{n}$ . We will
employ the space $H^{1}(\Omega, \mathbb{S}^{k})$ of $L^{2}$ maps $u$ : $\Omegaarrow \mathbb{R}^{k+1}$ with distribution gradient $\nabla u\in L^{2}$ and
$u(x)\in S^{k}$ for almost every $x\in\Omega.$

For a map $u\in H^{1}(\Omega, \mathbb{S}^{k})$ , the Dirichlet energy $E(u)$ of $u$ is defined by

$E(u)=\frac{1}{2}\int_{\Omega}|\nabla u|^{2}dx$

We consider the Dirichlet problem of E. For any $\phi\in C^{\infty}(\partial\Omega, \mathbb{S}^{k})$ , we define $H_{\phi}(\Omega, \mathbb{S}^{k})$ by

$H_{\phi}^{1}(\Omega, \mathbb{S}^{k})=\{u\in H^{1}(\Omega, \mathbb{S}^{k})|u=\phi on \partial\Omega\}.$

A map $u\in H_{\phi}^{1}(\Omega, \mathbb{S}^{k})$ is called an energy minimizing map if it satisfies

$E(u)=\inf\{E(v)|v\in H_{\phi}^{1}(\Omega, \mathbb{S}^{k})\}.$

This is a natural extension of harmonic functions. In contrast to harmonic functions, energy
minimiing maps may have discontinuous points. In accordance with custom, we use the word
singular when we discuss the discontinuity of energy minimizing maps. The following theorem
shows the existence of energy minimizing maps with singular points.

Theorem 2.1. [3] Let $n$ be an integer greater than two and $\phi$ be the identity map of $S^{n-1}$ . The
map

$x/|x|\in H_{\phi}^{1}(\mathbb{B}^{n}, \mathbb{S}^{n-1})$

is an energy minimizing map, where $\mathbb{B}^{n}$ is the unit open ball centered at the origin.
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In 1987, Brezis-Coron-Lieb [2] investigated the behavior of energy minimizing maps from do-
mains in $\mathbb{R}^{3}$ to $\mathbb{S}^{2}.$

Theorem 2.2. [2, 9, 10, 12] Let $\Omega$ be a bounded domain with a smoooth boundary in $\mathbb{R}^{3}$ and
$\phi\in C^{\infty}(\partial\Omega, \mathbb{S}^{2})$ . If $u\in H_{\phi}^{1}(\Omega, \mathbb{S}^{2})$ is an energy minimizing map, $u$ has at most finitely many
interior singular points. If $p\in\Omega$ is a singular point of $u$ , it is an isolated singular point and there
exists a $3\cross 3$ orthogonal $mat\dot{m}R$ such that for any small positive number $\epsilon,$

$\sup_{\epsilon<|x|<1}|u(p+rx)-R\frac{x-p}{|x-p|}|$

converges to zero as $r$ tends to zero.

In the case of energy minimizing maps from four-dimensional domains to $S^{3}$ , the following
theorem holds.

Theorem 2.3. [4, 5, 7, 10, 11] Let $\Omega$ be a bounded domain with a smoooth boundary in $\mathbb{R}^{4}$ and
$\phi\in C^{\infty}(\partial\Omega, \mathbb{S}^{3})$ . If $u\in H^{1}(\Omega, \mathbb{S}^{3})$ is an energy minimizing map, $u$ has at most finitely many
interior singular points. If $p\in\Omega$ is a singular point of $u$ , it is an isolated singular point and there
exists a $4\cross 4$ orthogonal matrix $R$ such that for any small positive number $\epsilon,$

$\sup_{\epsilon<|x|<1}|u(p+rx)-R\frac{x-p}{|x-p|}|$

converges to zero as $r$ tends to zero.

Though these two theorems look similar, they imply quite different results. For any energy
minimizing map $u\in H^{1}(\Omega, \mathbb{S}^{k})$ , we denote by $N(u)$ the number of singular points of $u.$

Theorem 2.4. [1] For any bounded domain $\Omega\subset \mathbb{R}^{3}$ , there exists a constant $C>0$ satisfying the
following.

For any $\phi\in C^{\infty}(\partial\Omega, S^{2})$ and any energy minimizing map $u\in H_{\phi}^{1}(\Omega, \mathbb{S}^{2})$ , we have

$N(u) \leq C\int_{\partial\Omega}|\nabla\phi|^{2}d\mathcal{H}^{2}$

where $\mathcal{H}^{2}$ is the two-dimensional Hausdorff measure.

On the other hand, combining Theorem 2.3 and Lemma 2 in [8], we have the following.

Theorem 2.5. For any small positive number $\epsilon$ and a natuml number $D$ , there enits a map
$\phi\in C^{\infty}(\partial \mathbb{B}^{4}, \mathbb{S}^{3})$ with

$\int_{\partial B^{4}}|\nabla\phi|^{2}d\mathcal{H}^{3}<\epsilon$

such that every energy minimizing map $u\in H_{\phi}^{1}(\mathbb{B}^{4}, \mathbb{S}^{3})$ satisfies $N(u)\geq D.$
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