Stability and singularities of harmonic maps.

Tôru Nakajima

Department of Applied Mathematics, Faculty of Engineering, Shizuoka University, Hamamatsu 432-8561, Japan

1 Instability of smooth harmonic maps.

Let \mathbb{S}^k be a k-dimensional Euclidean sphere and N be an n-dimensional compact Riemannian manifold without boundary. We denote by $C^{\infty}(\mathbb{S}^k, N)$ the set of smooth maps from \mathbb{S}^k to N. We define the Dirichlet energy functional $\mathbf{E}: C^{\infty}(\mathbb{S}^k, N) \to \mathbb{R}$ to be

$$\mathbf{E}(f) = \frac{1}{2} \int_{\mathbb{S}^k} |df|^2 \, d\mu$$

where |df| is the Hilbert-Schmidt norm of a linear map $(df)_x \in T^*_x \mathbb{S}^k \otimes T_{f(x)} N$ and μ is the canonical measure on \mathbb{S}^k induced by the Riemannian metric. A map $f \in C^{\infty}(\mathbb{S}^k, N)$ is said to be a harmonic map if it is a critical point of \mathbf{E} .

Let $f^{-1}TN$ be the pull-back bundle of TN by f and $C^{\infty}(f^{-1}TN)$ be the vector space of smooth sections of $f^{-1}TN$. If f_t is a smooth homotopy with $f_0 = f$,

$$V(x) = \frac{d}{dt} f_t(x) \bigg|_{t=0}$$

is called a variation vector field of f_t . The second variation formula is [14]

$$\delta_f^2 \mathbf{E}(V) = \frac{d^2}{dt^2} \mathbf{E}(f_t) \bigg|_{t=0} = -\int_{\mathbf{S}^k} \langle V, \operatorname{Tr}(\tilde{\nabla}^2 V + R^N(V, df) df) \rangle \, d\mu$$

where $\tilde{\nabla}$ is the induced connection on $C^{\infty}(f^{-1}TN)$, \mathbb{R}^N is a Riemannian curvature of N and Tr is the trace. An operator $J_f: C^{\infty}(f^{-1}TN) \to C^{\infty}(f^{-1}TN)$ defined by

$$J_f V = -\operatorname{Tr}(\tilde{\nabla}^2 V + R^N(V, df)df)$$

is called the Jacobi operator along f. This is a linear elliptic differential operator and its spectrum consists of a discrete sequence of real eigenvalues. We denote by $\lambda_1(J_f)$ the least eigenvalue of J_f . If $\lambda_1(J_f)$ is negative, f is called unstable.

It is known that every non-constant harmonic map $f \in C^{\infty}(\mathbb{S}^k, N)$ is unstable when $k \geq 3$. More precisely the following theorem holds.

Theorem 1.1. [15] For a non-constant harmonic map $f \in C^{\infty}(\mathbb{S}^k, N)$, we have

$$\lambda_1(J_f) \le 2 - k$$

A simple example shows that this estimate is sharp.

Theorem 1.2. [14] For the identity map $id \in C^{\infty}(\mathbb{S}^k, \mathbb{S}^k)$, we have

$$\lambda_1(J_{\rm id}) = 2 - k$$

In some sense, the converse is aloso true.

Theorem 1.3. [6] Assume k is greater than two. If a harmonic map $f \in C^{\infty}(\mathbb{S}^k, \mathbb{S}^k)$ satisfies

 $\lambda_1(J_f) = 2 - k,$

then there exists a $(k+1) \times (k+1)$ orthogonal matrix R such that

$$f(x) = Rx \quad x \in \mathbb{S}^k.$$

Remark 1.1. Assume k is greater than two and less than eight. Let d be an integer whose absolute value is greater than one. There exists a harmonic map $f_d \in C^{\infty}(\mathbb{S}^k, \mathbb{S}^k)$, the mapping degree of which is d [13]. From Theorem 1.3, we have

$$\lambda_1(J_{f_d}) < 2 - k$$

Remark 1.2. For every harmonic map $f \in C^{\infty}(\mathbb{S}^2, \mathbb{S}^2)$, we have

$$\lambda_1(J_f) = 0$$

because it minimizes the Dirichlet energy in its homotopy class and the Dirichlet energy is conformally invariant in this case.

2 Singularities of energy minimizing maps.

Let Ω be a bounded domain with smooth boundary in *n*-dimensional Euclidean space \mathbb{R}^n . We will employ the space $H^1(\Omega, \mathbb{S}^k)$ of L^2 maps $u : \Omega \to \mathbb{R}^{k+1}$ with distribution gradient $\nabla u \in L^2$ and $u(x) \in \mathbb{S}^k$ for almost every $x \in \Omega$.

For a map $u \in H^1(\Omega, \mathbb{S}^k)$, the Dirichlet energy $\mathbf{E}(u)$ of u is defined by

$$\mathbf{E}(u) = rac{1}{2} \int_{\Omega} |
abla u|^2 dx$$

We consider the Dirichlet problem of **E**. For any $\phi \in C^{\infty}(\partial\Omega, \mathbb{S}^k)$, we define $H_{\phi}(\Omega, \mathbb{S}^k)$ by

$$H^{1}_{\phi}(\Omega, \mathbb{S}^{k}) = \{ u \in H^{1}(\Omega, \mathbb{S}^{k}) \mid u = \phi \text{ on } \partial\Omega \}.$$

A map $u \in H^1_\phi(\Omega, \mathbb{S}^k)$ is called an *energy minimizing map* if it satisfies

$$\mathbf{E}(u) = \inf \{ \mathbf{E}(v) \mid v \in H^1_{\phi}(\Omega, \mathbb{S}^k) \}.$$

This is a natural extension of harmonic functions. In contrast to harmonic functions, energy minimizing maps may have discontinuous points. In accordance with custom, we use the word *singular* when we discuss the discontinuity of energy minimizing maps. The following theorem shows the existence of energy minimizing maps with singular points.

Theorem 2.1. [3] Let n be an integer greater than two and ϕ be the identity map of \mathbb{S}^{n-1} . The map

$$x/|x| \in H^1_{\phi}(\mathbb{B}^n, \mathbb{S}^{n-1})$$

is an energy minimizing map, where \mathbb{B}^n is the unit open ball centered at the origin.

Theorem 2.2. [2, 9, 10, 12] Let Ω be a bounded domain with a smooth boundary in \mathbb{R}^3 and $\phi \in C^{\infty}(\partial\Omega, \mathbb{S}^2)$. If $u \in H^1_{\phi}(\Omega, \mathbb{S}^2)$ is an energy minimizing map, u has at most finitely many interior singular points. If $p \in \Omega$ is a singular point of u, it is an isolated singular point and there exists a 3×3 orthogonal matrix R such that for any small positive number ϵ ,

$$\sup_{\epsilon < |x| < 1} \left| u(p + rx) - R \frac{x - p}{|x - p|} \right|$$

converges to zero as r tends to zero.

In the case of energy minimizing maps from four-dimensional domains to S^3 , the following theorem holds.

Theorem 2.3. [4, 5, 7, 10, 11] Let Ω be a bounded domain with a smooth boundary in \mathbb{R}^4 and $\phi \in C^{\infty}(\partial\Omega, \mathbb{S}^3)$. If $u \in H^1(\Omega, \mathbb{S}^3)$ is an energy minimizing map, u has at most finitely many interior singular points. If $p \in \Omega$ is a singular point of u, it is an isolated singular point and there exists a 4×4 orthogonal matrix R such that for any small positive number ϵ ,

$$\sup_{\epsilon < |x| < 1} \left| u(p + rx) - R \frac{x - p}{|x - p|} \right|$$

converges to zero as r tends to zero.

Though these two theorems look similar, they imply quite different results. For any energy minimizing map $u \in H^1(\Omega, \mathbb{S}^k)$, we denote by N(u) the number of singular points of u.

Theorem 2.4. [1] For any bounded domain $\Omega \subset \mathbb{R}^3$, there exists a constant C > 0 satisfying the following.

For any $\phi \in C^{\infty}(\partial\Omega, \mathbb{S}^2)$ and any energy minimizing map $u \in H^1_{\phi}(\Omega, \mathbb{S}^2)$, we have

$$N(u) \leq C \int_{\partial\Omega} |
abla \phi|^2 \, d\mathcal{H}^2$$

where \mathcal{H}^2 is the two-dimensional Hausdorff measure.

On the other hand, combining Theorem 2.3 and Lemma 2 in [8], we have the following.

Theorem 2.5. For any small positive number ϵ and a natural number D, there exits a map $\phi \in C^{\infty}(\partial \mathbb{B}^4, \mathbb{S}^3)$ with

$$\int_{\partial \mathbf{B}^4} |\nabla \phi|^2 \, d\mathcal{H}^3 < \epsilon$$

such that every energy minimizing map $u \in H^1_{\phi}(\mathbb{B}^4, \mathbb{S}^3)$ satisfies $N(u) \geq D$.

References

- F. Almgren Jr. and E. Lieb, Singularities of energy minimizing maps from balls to the sphere, Ann. of Math. (2) 128 (1988), 483-530.
- [2] H. Brezis, J. M. Coron, E. Lieb, Harmonic maps with defects. Comm. Math. Phys. 107, (1986), 649-705.

- [3] F. H. Lin, Une remarque sur l'application x/|x|, C. R. Acad. Sci. Paris. Sér. I Math. 305 (1987), 529-531.
- [4] F.H.Lin, C.Y.Wang, Stable stationary harmonic maps to spheres. Acta Math. Sin. (Engl. Ser.) 22, (2006), no.2, 319–330.
- [5] T. Nakajima, Singular points of harmonic maps from 4-dimensional domains into 3-spheres. Duke. Math. J. 132, (2006), 531-543
- [6] T. Nakajima, A remark on instability of harmonic maps between spheres. Pacific J. Math. 240, (2009), 363-369
- [7] T. Okayasu, Regularity of minimizing harmonic maps into S⁴, S⁵ and symmetric spaces. Math. Ann. 298, (1994), 193-205.
- [8] J. Ramanathan, A remark on the energy of harmonic maps between spheres. Rocky. Mount. J. Math. 16, (1986), 783-790.
- [9] R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Differential Geom. 17 (1982), 307-335.
- [10] R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom. 18 (1983), 253-268
- [11] R. Schoen & K. Uhlenbeck, Regularity of minimizing harmonic maps into the sphere, Invent. Math. 78 (1984), 89-100.
- [12] L. Simon, Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems.
 Ann. of Math. (2) 118, (1983), 525-571
- [13] R. T. Smith, Harmonic mappings of spheres. Amer. J. Math. 97, (1975), 364-385.
- [14] R. T. Smith, The second variation formula for harmonic mappings. Proc. Amer. Math. 47, (1975), 229-236
- [15] X. L. Xin, Some results on stable harmonic maps. Duke Math. J. 47, (1980), 609-613.