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VARIATIONAL CONVERGENCE OVER p-UNIFORMLY
CONVEX SPACES

KAZUHIRO KUWAE

ABSTRACT. We establish a variational convergence over p-uniformly
convex spaces for p > 2. Variational convergence for Cheeger type
energy functionals over LP-maps into p-uniformly convex space
having NPC property of Busemann type and the existence of p-
harmonic map for Cheeger type energy functionals with Dirichlet
boundary condition are also presented.

1. INTRODUCTION AND MAIN RESULT

This article is a summary of a part of the paper [17] under prepa-
ration. We study a variational convergences over p-uniformly convex
spaces having NPC property in the sense of Busemann, where a p-
uniformly convex space is a natural generalization of p-uniformly con-
vex Banach space. Typical examples of p-uniformly convex spaces are
LP-spaces with p > 2, CAT(0)-spaces, more concretely, Hadamard
manifolds and trees, and so on. If the target space is a p-uniformly
convex space having NPC property in the sense of Busemann, then the
LP-mapping space is also a p-uniformly convex geodesic spaces hav-
ing NPC property in the sense of Busemann, and an energy functional
defined in a suitable way becomes convex and lower semi-continuous.
Thus, it is reasonable to consider that (H;,dy,) and (H,dy) are all p-
uniformly convex geodesic spaces having the weak L-convexity of Buse-
mann type instead of such LP-mapping spaces (see Definition 3.1 below
for the weak L-convexity), and E; : H; — [0,00] and E : H — [0, oq]
are convex lower semi-continuous functions with E;, £ # +o00. For any
A > 0 and u € H, there exists a unique minimizer, say J¥(u) € H,
of v+ N~1E(v) 4+ d&(u,v). This defines a map Jf : H — H, called
the resolvent of E (see Theorem 5.2 below and [9, 22, 20| for the case
p = 2). The minimum E*(u) := min,eg (A1 E(v) + df (u,v)) is called
the Moreau- Yosida approzimation or the Hopf-Laz formula. Note that
if X is a Hilbert space and if F is a closed densely defined symmetric
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quadratic form on X, then we have JF = (I + M\A)™!, where A is the
infinitesimal generator associated with E. The one-parameter family
[0,+00[2 A — JE(u) gives a deformation of a given map u € H to a
minimizer of F (or a harmonic map), limy_, ;o J (u) (if any). Jost [13]
studied convergence of resolvents and Moreau-Yosida approximations.
Although his study is only on a fixed CAT(0)-space, we extend it for
a sequence of p-uniformly convex geodesic spaces having the weak L-
convexity of Busemann type with an asymptotic relation (Theorem 5.11
below). This is new even on a fixed p-uniformly convex geodesic spaces
having the weak L-convexity of Busemann type.

We can apply our result in the following way. Let (X;,¢;) — (X, q)
and (Y;,0;) — (Y,0) (i=1,2,3,...) be two pointed Gromov-Hausdorff
convergent sequences of proper metric spaces, where ‘proper’ means
that any bounded subset is relatively compact, and let us give a pos-
itive Radon measure m; on X; with full support which converge to a
positive Radon measure m on X (see the definition for the convergence
of measures in [20]). We are interested in the convergence and asymp-
totic behavior of maps u; : X; — Y; and also energy functionals E; de-
fined on a family of maps from X; — Y;. We set L} := L2 (X;,Y;, m;)
and L? := LP(X,Y,m). For u;,v; € LY (resp. u,v € LP), we set
de(uiavi) = ”de (uiavi)”Lf (I‘eSp. de(u,v) = ”dY(u7’U)”LP)7 where
| - llze (resp. || - ||ze) is the LP-norm with respect to the measure m;
(resp. m). Consider

= |rrure

and endowed the LP-topology defined in [20] with £?. The LP-topology
on LP has some nice properties involving the LP-metric structure of L?
and L?, such as, if L? 5 u;,v; — u,v € LP respectively in LP, then
dre(us, vi) — dre(u,v). By their properties we present a set of axioms
for a topology on £? for (L7, d rr) and (LP,dr»). We call such a topology
satisfying the axioms the asymptotic relation between {LY} and LP (see
Definition 4.3). Since Lf and L? are typically improper, the asymptotic
relation can be thought as a non-uniform variant of Gromov-Hausdorff
convergence.

We now assume that Y; and Y are p-uniformly convex spaces with
common parameter k €]0,2] having NPC in the sense of Busemann
and satisfying (B) and (C). Then L? and L* are so. Let E; (resp. F)
be Cheeger type p-energy functional on H (X, Y;;m;)(C L) (resp.
HY(X,Y;m)(C LP)). Here HY*(X,,Y;;m;) (resp. H"P(X,Y;m)) is

the Cheeger-type p-Sobolev space for LP-maps with respect to m; (resp. m)

from X; to Y; (resp. X to Y) (see Section 6 below). Then F; (resp. F)
is a lower semi-continuous convex functional on L? (resp. LP). As a
corollary of Theorem 5.11 below, we have the following:
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Theorem 1.1. If E; converges to E in the Mosco sense, then for any
A > 0 we have the following (1) and (2).

(1) E} strongly converges to E*.

(2) JZ strongly converges to J¥.

Under a suitable condition like uniform Ricci lower bound condition
for X;, X, we can expect that the Mosco convergence of {E;} to E
holds. At present, we are still in progress to deduce it.

As an addendum, we also show the existence of p-harmonic map for
Cheeger type energy functionals over LP-maps into p-uniformly convex
space having NPC in the sense of Busemann with Dirichlet boundary
condition (see Theorem 6.20 below).

2. p-UNIFORMLY CONVEX SPACES

Definition 2.1 (Geodesics). Let (Y,d) be a metric space. A map
v:I —Y is said to be a curve if it is continuous, where I = [a,b] C R
is a closed interval. The length L(y) of a curve v : I — Y is defined to
be

L(v) := sup {Z d(y(ti-1),Y(t)) [a =t <t1 <+ <tpy <tp = b} :
=1

A curve v : I — Y is said to be a minimal geodesic if L(v|jsy) =
d(vs, ;) holds for any s,t € I, s < t, equivalently d(v,,v:) = d(Vr,Vs) +
d(7Ys,7v) for any r < s < t. A curvey:I — Y issaid to be a geodesic if
for any s,t € I, s < t with sufficiently small |t — s|, L(7¥|s,q) = d(7s, )
holds. A metric space (Y, d) is called a R-geodesic space for R €]0, oo] if
any two points in Y whose distance is strictly less than R can be joined
by a minimal geodesic. We simply say that (Y, d) is a geodesic space if
it is an oo-geodesic space. Throughout this paper, for given z,y € Y,
denote by 7y : [0,1] — Y a minimal geodesics from z =: 74,(0) to
Y =: Yzy(1) provided (Y, d) is an R-geodesic space and d(z,y) < R.
For n € N, we denote by M"(k) the n-dimensional space form of

constant curvature k € R. Let R, be the diameter of M"(k), that is,
R, = if Kk <0 and R, :=7/y/k if kK > 0.
Definition 2.2 (CAT(k)-Inequality, see [2]). Let (Y,d) be a metric
space and A a geodesic triangle in Y with perimeter strictly less than
2R,. Let A be a comparison triangle of A in M?(k). We say that A
satisfies CAT(k)-inequality if all p,q € A and its corresponding points
p,G € A satisfy

d(p, q) < d(p, 9)-
Definition 2.3 (CAT(k)-Space, see [2]). A metric space (Y, d) is said
to be a CAT(k)-space if (Y,d) is a R.-geodesic space and all geodesic
triangles in Y with perimeter strictly less than 2R, satisfy CAT(k)-
inequality.

24



Definition 2.4 (p-Uniformly Convex Geodesic Space; cf. Naor-Silber-
man [25]). A metric space (Y, d) is called p-uniformly conver with pa-
rameter k > 0 if (Y,d) is a geodesic space and for any three points
z,y,z € Y, any minimal geodesic vy := (%)te[m in Y with 79 = z,
"=y, and all t € [0, 1],

(2.1) dP(z,v:) < (1 —t)dP(z,z) + tdP(z,y) — g—t(l — t)dP(z,y).

By definition, putting z = -, we see k €]0,2] and p € [2,00[. The
inequality (2.1) yields the (strict) convexity of Y 3 z — dP(z,z) for a
fixed z € Y. Any closed convex subset of a p-uniformly convex space
is again a p-uniformly convex space with the same parameter. Any L?
space over a measurable space is p-uniformly convex with parameter
k= 4pp (7”ff)p“1 provided p > 2. Every CAT(0)-space is a p-uniformly
convex space with parameter k = W(E—;—l)”“l for p > 2 (we can take
k =2 if p = 2), because R? is isometrically embedded into L?([0, 1])
for p > 1 (see [5],[25]) and any LP-space is p-uniformly convex for
p > 2. Ohta [28] proved that for k > 0 any CAT(k)-space Y with
diam(Y) < R,/2 is a 2-uniformly convex space with parameter {(r —

2v/ke) tan \/ke} for any € €]0, R, /2 — diam(Y)].

Remark 2.5. A Banach space (Y, || - ||) is said to be uniformly convez if

Oy (¢) := inf {1 - z,y €Yzl = llyll = L llz —y]| 2 6} :

=l

the modulus of convexity of Y, satisfies dy (¢) > 0 for £ €]0,2]. For
p > 2, (Y,||-]]) is said to be p-uniformly convez if there exists ¢ >
0 such that dy(e) > ce? for € €]0,2]. It is known that for p > 2,
opp(e) =1-[1- (%)p]% > 5e? for € €]0,2]. By Lemma 2.1 in [29],
if a Banach space (Y, || - ||) is p-uniformly convex for p > 2, then there
exists d = d(c,p) > 0 such that

1T =t)z+tyl? < (L—t)llz|” + tllyll” — d{t(1 = £)” + " (1 =) Hlz -y

-1
for all z,y € Y and t €]0,1[. Actually, we can take d = z (p;—l)p as

an optimal value. Since 55 < (1 —¢)P71 + 71 < 1forallt € [0,1], p-
uniform convexity of the Banach space implies the p-uniform convexity
of geodesic space.

The following propositions can be proved in the same way as in [28].
So we omit its proof.

Proposition 2.6 (cf. Lemma 2.3 in [28]). Let (Y,d) be a p-uniformly
conver space. For x,y,z € Y, any minimal geodesic v := (" )telo,1] in
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Y withyy =z, 1 =y, and all t € [0,1], we have
g 1
k tri4(1-t)pt
x (1=t dP(z,2) + 7 'dP(2,y) — (1 = t)P ' dP(,y)) .
Proposition 2.7 (cf. Lemma 2.2 and Proposition 2.4 in [28]). Any

two points in a p-uniformly convez space can be connected by a unique
minimal geodesic and contractible.

(22) Pz <

Lemma 2.8 (Projection Map to Convex Set). Let (Y, d) be a complete
p-uniformly convez space with parameter k €)0,2]. The the following
hold:

(1) Let F be a closed convex subset of (Y,d). Then for eachz €Y,
there ezists a unique element mp(z) € F such that d(z,F) =
d(mp(z),z) holds. We call mp :' Y — F the projection map to
F.

(2) Let F be as above. Then mp satisfies

(2.3) &(z2,7mp(2)) + g—d”(ﬂp(z),w) < dP(z,w), forzeY,weEF,

in particular, (g)l/p d(np(z),w) < d(z,w) forz € Y,w € F.

Definition 2.9 (Vertical Geodesics). Let (Y,d) be a geodesic space.
Take a geodesic n with a point pg on it and another geodesic v through
po. We say that v is vertical to n at pp (write v L,, n in short) if for
any * € v and y € 7,

d(xaPO) S d(IL',y)
holds.

Let (Y,d) be a complete p-uniformly convex space with parameter
k €]0,2]. We consider the following conditions:

(A) For any closed convex set F in (Y, d), the projection map 7p :
Y — Y satisfies d(nr(z),y) < d(z,y) forz €Y,y € F.

(B) Let v and 1 be minimal geodesics among two points such that
~ intersects n at pp. Then v L, n imlies n L, 7.

(C) Let o and n be minimal geodesics among two points such that
o intersects n at pg and o # {po}. Suppose that « is a minimal
geodesic among two points which contains ¢. Then o L1, 7
implies y Ly, 0.

Lemma 2.10. (B) implies (A).

Remark 2.11. Theorem 2.13 below shows that the conditions (A), (B),
(C) are satisfied for any complete CAT(«)-space with diameter strictly
less than R, /2. For any complete p-uniformly convex space (Y, d) with
parameter k €0, 2] which is also a weakly L-convex space in the sense
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of Busemann for some (L, L,) satisfying the conditions (A), (B), (C),
the space LY(X,Y;m) of LP-maps from (X,X,m) into Y with a map
h : X — Y is also a complete p-uniformly convex space with the
same parameter k£ €]0, 2] which is also a weakly L-convex space in the
sense of Busemann for the same (L1, Ly). and L} (X,Y; m) satisfies the
conditions (A), (B), (C).

Lemma 2.12. Take a geodesic triangle AABC in M"(k) and set a :=
dyr(x) (B, C), b := dun(x)(C, A), ¢ := dmn)(A4, B). Assume a,b,c <
R/2 and ZBAC > m/2. Then for any point P on AB, dun()(C, A) <
dmn(x)(C, P) < duin(x)(C, B) holds.

Theorem 2.13. Let k € R. Any CAT(x)-space (Y, d) with diam(Y") <
R, /2 is a 2-uniformly convex space with some parameter k €)0, 2] sat-
isfying the conditions (A), (B), (C).

3. L-CONVEX SPACES OF BUSEMANN TYPE

Definition 3.1 (L-Convexity of Busemann Type, cf. Ohta [28]). Let
Li,L, > 0. A metric space (Y,d) is called an L-convex space for
(L1, Ly) in the sense of Busemann if (Y,d) is a geodesic space, and
for any three points z,y,z € Y and any minimal geodesics v 1= 7y :
[0,1] = Y and n:=1y,,:[0,1] = Y, and for all ¢ € [0, 1],

(1) dlwn) < (1 4, ey + o, 2), 2D} ) td(y, 2)

holds. A metric space (Y,d) is called a weakly L-conver space for
(L1, Ly) in the sense of Busemann if (Y,d) is a geodesic space, and
for any three points z,y,2 € Y and any minimal geodesics 7 := 7,y :
[0,1] =Y and :=1,,:(0,1] = Y, and for all ¢ € [0, 1],

(3.2) d(Ye,m:) < (14 LyLo)td(y, 2)

holds. A metric space (Y, d) is said to be quasi-L-convez for (L1, Ls) in
the sense of Busemann if (Y, d) is weakly L-convex for (L, Ly) in the
sense of Busemann such that for any z € Y, any two minimal geodesics
v and 7 emanating from z and ¢, s € [0, oo[, the limit

o1
(33) ll_r_;% gd(’)'tev nss)

always exists.

Clearly, any complete separable CAT(0)-space is an L-convex space
for (Ly, Le) with L1Ly = 0 in the sense of Busemann. Let (Y,d) be a
CAT(1)-space with diam(Y) < 7 —¢, € €]0, 7| in which no triangle has
a perimeter greater than 27. Then by Proposition 4.1 in [28], (Y,d) is
an L-convex space for

(L1, Ly) = (

z{(w—s)—sinﬁ},w~g>.

(m —¢e)sine
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By Lemma 4.1 in [28], L-convexity of Busemann type implies the quasi-
L-convexity of Busemann type.

Let (Y,d) be a quasi-L-convex space for some (L;, Ls). For z € Y,
we define X} as the set of unit speed minimal geodesics emanating
from z € Y. Then v,n € L, and ¢, s € [0, 0], we can define the limit
lim,_0 d(te, Mse) /€. Define the space of directions ¥, at z € X by
¥, =%/ ~, where v ~ n holds if lim,_,o d(ve,7.)/e = 0. Put

K, =%, x [0,00[/ ~,
where (y,t) ~ (1, s) holds if lim, o d(7Vte, 7se)/€ = 0. Then

- A(Vees s
e (1,0, (n,)) = lim 0 7)
gives a distance function on K. Define the tangent cone (K,,dx,) at
z € X as the completion of (K_,dx:).

The following proposition can be similarly proved as for Proposi-

tion 4.2 in [28].

Proposition 3.2 (cf. Proposition 4.2 in [28]). For a p-uniformly convez
space (Y,d) having the quasi-L-convezity of Busemann type for some
(Ly,Ly) and xz € Y, the tangent cone (K;,dk,) is a geodesic space.
Moreover, it is weakly L-convex in the sense of Busemann with LiL, =
0, that is, a Busemann’s NPC space.

4. WEAK CONVERGENCE OVER p-UNIFORMLY CONVEX SPACES

Throughout this section, we denote by ¢ any element of a given di-
rected set {i}. We need the following:

Proposition 4.1. Let {(H;,dy,)} be a net of complete p-uniformly
convez spaces with common parameter k €]0,2] and all (H;,dg,) have
the weak L-convezity of Busemann type for some common (L1, Ls). Let
z; € H; be a net and v, n* : [0,1] — H; a net of minimal segments. Set

Qp = @dH,(fYéan(z))) ap = Il‘LEdH.(’YLT’;)

and A := (1 + L1Ls)(ap + a1). Then

- 2p 1/p %1 s
lim dp (7 (2:), s (2:)) < A+ (?) (SU_P di(z, ;) + 2A) - (2A4)>
J

or
p=1

I 2p 1/p P 1
i di () (2) < A+ (2)  (supd(ayo0) +24) 7 - (23
t J

holds.

Corollary 4.2. Let {(H;,dn,)} be a net of complete p-uniformly convex
spaces with common parameter k €]0,2] and all (H;, dy,) have the weak



L-convezity of Busemann type for some common (Ly, Ly). Let xz; € H;
be a net and v, n' : [0,1] — H; a net of minimal segments. If

lim dg, (75, 7) = lim dir, (71, m1) = 0
holds, then

im dp, (i (x;), T () = 0.

Let {(H;,dg,)} be a net of metric spaces and (H, dy) a metric space.
Define

H = (U H,) U H (disjoint union).

‘Definition 4.3 (Asymptotic Relation on H). We call a topology on
H satisfying the following (A1)-(A4) an asymptotic relation between
{(H;i,dg,)} and (H,dy).
(Al) H; and H are all closed in H and the restricted topology of H
on each of H; and H coincides with its original topology.
(A2) For any x € H there exists a net z; € H; converging to z in H.
(A3) If H; > z; =z € H and H; 3 y; — y € H in H, then we have
dHi (xi7 yz) - dH(x’ y)
(A))If H;, > z; - z € H in H and if y; € H; is a net with
dug,(z;,y;) — 0, then y; — z in H.

Definition 4.4 (Asymptotic Compactness of Asymptotic Relation).
Assume that {(H;, dg,)} and (H,dy) have an asymptotic relation. We
say that a net z; € H; is bounded if dg,(z;,0;) is bounded for some
convergent net o; € H;. The asymptotic relation is said to be asymp-
totically compact if any bounded net z; € H; has a convergent subnet
in H with respect to the asymptotic relation.

Hereafter, strong convergence on H means the convergence with re-
spect to a given asymptotic relation over H. Assume that an asymp-
totic relation between metric spaces {H;} and H given. Consider the
following condition:

(G) Ifv*: [0,1] — H; and 7 : [0,1] — H are minimal geodesics such

that 7§ — o and 7% — 71, then 7} — ; for any ¢ € [0, 1].

Proposition 4.5. (1) If (G) is satisfied and if each H; is a geo-
desic space, then H is so.

(2) If (G) is satisfied and if each H; is p-uniformly convex with
common parameter k €)0,2], then H is so.

(3) If each H; is p-uniformly convexr with common parameter k €
10,2] and H is a geodesic space, then (G) is satisfied and H is
p-uniformly convex with parameter k €]0, 2].

In the proof of Proposition 4.5, we use Proposition 2.6.

We now define the weak convergence over H, which generalize the
notions introduced in [8, 6, 20].
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Definition 4.6 (Weak Convergence on H). Let {(H;,dg,)} be a net
of complete p-uniformly convex spaces with common parameter k €
10,2] and (H,dy) a complete p-uniformly convex space with the same
parameter k. We say that a net x; € H; weakly converges to a point
x € H if for any net of geodesic segments ~* in H; strongly converging
to a geodesic segment v in H with vy = z, m,:(z;) strongly converges
to 2. Here the strong convergence of {7'} to v means that for any
t €10,1], %" strongly converges to ;. It is easy to prove that a strong
convergence implies a weak convergence and that a weakly convergent
net always has a unique weak limit.

The following proposition is omitted in [20]. We shall give it for
completeness.

Proposition 4.7 (Weak Topology on H). The weak convergence over
H of complete p-uniformly convex spaces with parameter k €]0,2] in-
duces a Hausdorff topology on it. We call it weak topology of (H,dg).

Remark 4.8. The notion of weak convergence over a fixed CAT(0)-space
is proposed by Jost [8]. In [20], we extend it over H of CAT(0)-spaces.
In Kirk-Panyanak [14], they give a different approach on the weak con-
vergence, so-called A-convergence, and Espinola and Fernandez-Leén
[6] proved the equivalence between the weak convergence and the A-
convergence over a fixed CAT(0)-space or CAT(1)-space whose diame-
ter strictly less than /2 (see Proposition 5.2 in [6]). Such an equiva-
lence is also valid for a fixed p-uniformly convex space in the same way
as in the proof of Proposition 5.2 in [6].

Lemma 4.9. Let {(H;,dy,)} be a net of complete p-uniformly con-
ver space with common parameter k €)0,2] and (H,dg) a complete
p-uniformly conver space with the same parameter k. Suppose that a
net x; € H; is weakly convergent to x € H and a net y; C H; is strongly
convergent to y € H. Then we have the following:
(1) Under (A) for all (H;,dy,), du(z,y) < lim, dg, (i, y:).
(2) Under (B) for all (H;,dy,), lim; dyg,(z;,y:) = dg(z,y) if and
only if x; € H; strongly converges to x € H.

The main result of this section is the following theorem:

Theorem 4.10 (Banach-Alaoglu Type Theorem). Let {(H;,dg,)} be
a net of complete p-uniformly conver spaces with common parame-
ter k €]0,2] and (H,dg) a complete p-uniformly convexr space with
the same parameter k and all (H;,dg,) and (H,dy) have the weak L-
convexity of Busemann type for some common (Ly, Ls). Suppose one
of the following:
(1) (B) and (C) hold for (H,dy) and (H;,dg,) = (H,dy) holds
for all i.
(2) (H,dy) is separable.
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Then every bounded net {z;} C H has a weakly convergent subsequence.

Combining Theorems 2.13 and 4.10, we obtain the following:

Corollary 4.11 (Banach-Alaoglu Type Theorem over CAT(k)-Spaces).

Let {(H;i,dg,)} be a net of complete CAT(k)-spaces with diam(H;) <
R./2—¢ with e €]0, R, /2(, and (H,dy) a complete CAT(k)-space with
diam(H) < R./2 — € with € €]0,R./2[. Assume that (H;,dn,) =
(H,dy) for all i or (H,dy) 1s separable. Then every bounded net
{z;} CH has a weakly convergent subsequence.

Remark 4.12. The assertion of Theorem 4.10 was proved by Theo-
rem 2.1 in Jost [8] over a fixed complete CAT(0)-space without assum-
ing the separability. In the framework of convergence over CAT(0)-
spaces, Lemma 5.5 in [20] extends Theorem 2.1 in [8]. For a fixed
CAT(k)-space (H,dy) with diam(H) < R./2 — ¢ with € €]0, R,./2],
the assertion of Corollary 4.11 is essentially shown by combining Corol-
lary 4.4 and Remark 5.3 of [6]. Corollary 4.11 also extends the result
in [6].

5. VARIATIONAL CONVERGENCE OVER p-UNIFORMLY CONVEX
SPACES

In this section we fix p > 2.

5.1. Resolvents. Throughout this subsection, we fix a complete p-
uniformly convex space (H,dy) with parameter k €]0,2]. Consider a
function E : H — [0, 00] and set D(E) := {z € H | E(z) < o0}.

Definition 5.1 (Moreau-Yosida Approximation, [9]). For £ : H —
[0, +00] we define E* : H — [0, +00] by

EXNz) = igffI(Ap“lE(y) + d% (y, ), z€ H, A>0,

Y

and call it the Moreau-Yosida approrimation or the Hopf-Lax formula
for E.

Theorem 5.2 (Existence of Resolvent). If E is lower semi-continuous,
conver and E # 400, then for any © € H there exists a unique point,
say Jx(z) € H, such that

EXNz) = W E(Jx(2)) + & (z, Jx(2)).
This defines a map Jy : H — H, called the resolvent of E.

Note that if H is a Hilbert space and p = 2, and if E is a closed
densely defined non-negative quadratic form on H, then we have J) =
(I+XA)! = %G L. Here, I is the identity operator, A the infinitesimal
generator associated with F, i.e., the non-negative self-adjoint operator
on H such that D(E) = v/A and E(z) = (V/Az,V/Az)y for any z €
D(E), where (-,-)y is the Hilbert inner product on H, and G, =
(a+ A)~!, a > 0 is the resolvent operator associated with A.
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To the end of this subsection, we always assume the convexity of E.
We have the following lemmas and theorems which are known for the

case that (H,dy) is a CAT(0)-space. The proofs are omitted.
Lemma 5.3. For A\, u > 0, we have

1 1 B “_ 1 phe
T\ ) T O

Lemma 5.4. Let E : H — [0, 00| be a lower semi-continuous function
with E # oo. For x € H and s € [0, 1], we have

Ia(z) = Ja-sa (1 = 8)z + sJr(2)) ,

where (1 — s)z + sJx(x) is the point on the geodesic joining x to Jx(x)
such that dg(z, (1 — s)z + sJx(z)) = sdu(z, Jr(z)).

Lemma 5.5. Let J, : H — H, A > 0 be the resolvent associated with
a lower semi-continuous convex function E : H — [0, 00| with E # oo.

For x € D(E), then
/l\ir% dg(Jr(z),z) = 0.

Theorem 5.6. Let E : H — [0, 00] be a lower semi-continuous convex
function with E # co. Take x € H and assume that (J,())nen @S
bounded for some sequence A\, — 00. Then (J\(z))r>o0 converges to a
mainimizer of E.

5.2. Variational Convergence. Throughout this subsection, we fix
a net {(H;,dg,)} of complete p-uniformly convex spaces with common
parameter k €]0,2] and a complete p-uniformly convex space (H, d)
with the same parameter k €]0,2]. Consider a net {F;} of functions
E;: H; — [0,00] and a function E : H — [0, 00].

Definition 5.7 (Asymptotic Compactness, [24],[20]). The net {E;} of
functions is said to be asymptotically compact if for any bounded net
z; € H with lim; FE;(z;) < +00 there exists a convergent subnet of {x;}.

Definition 5.8 (I-convergence). We say that E; I'-converges to E if
the following (I'1) and (I'2) are satisfied:
(T'1) For any xz € H there exists a net z; € H; such that z; — z and
(I'2) If H; 3 z; — = € H then E(z) < lim, E;(z;).
Definition 5.9 (Mosco convergence). We say that E; converges to E
in the Mosco sense if both (I'1) in Definition 5.8 and the following (I'2’)
hold.
(I'2’) If H; > z; — = € H weakly, then E(z) < lim, E;(x;).

Note that (I'2’) is a stronger condition than (I'2), so that a Mosco
convergence implies a I'-convergence.
It is easy to prove the following proposition. The proof is omitted.
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Proposition 5.10. Assume that {E;} is asymptotically compact. Then
the following (1)—(3) are all equivalent to each other.

(1) E; converges to E in the Mosco sense.
(2) E; T'-converges to E.
(3) E; compactly converges to E.

In what follows, we assume that all H; and H are p-uniformly convex
spaces with a common parameter k €0, 2] having the weak L-convexity
of Busemann type, and all functions E; : H; — [0,+o0] and £ : H —
[0, +00] are all lower semi-continuous, convez, and are not identically
equal to +00. Let Ji and Jy be the resolvents of E; and E respectively.

Theorem 5.11. Suppose that all (H;,dg,) satisfy the condition (B).
Assume that (H;,dy,) = (H,dg) for all i and (H,dy) satisfies (C), or
(H,dy) is separable. If E; converges to E in the Mosco sense, then for
any A > 0 we have the following (1) and (2).

(1) E? strongly converges to E.

(2) J% strongly converges to J.

Proposition 5.12. If E} strongly converges to E* for any A > 0, then
E; T'-converges to E.

Propositions 5.10, 5.12 and Theorem 5.11 together imply the follow-
ing
Corollary 5.13. Assume that {E;} is asymptotically compact and all
(H;,dg,) satisfies the condition (A). Then, the following (1) and (2)
are equivalent.

(1) E; compactly converges to E.
(2) E} strongly converges to EX for any A > 0.

6. CHEEGER TYPE SOBOLEV SPACE OVER LP-MAPS

In this section, we prepare several notions for our main Theorem 1.1.

6.1. The space of LP-maps. Let (X,X,m) be a o-finite measure
space. Denote by X™ the completion of X with respect to m. In
what follows, we simply say measurable (resp. X™-measurable) for X-
measurable (resp. X™-measurable). A numerical function f on X is a
map f: X — [—o0,o0]. For a measurable numerical function f on X,
we set [|fll, == ([ [F(@)Pm(d2))"”, [ flle = inf{A > 0] |f(@)] <
A m-a.e. x € X}. For p €]0,00|, denote by LP(X;m) the family of
m-equivalence classes of X™-measurable functions finite with respect
to || - |l,- Denote by L°(X;m) the family of m-equivalence classes of
X™-measurable numerical functions f : X — [—o0,00] with |f| < oo
m-a.e.
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Let (Y,d) be a metric space. For p €]0,00] and measurable maps
f,9: X — Y, define a pseudo distance d,,(f, g) by d,(f, g) :== ||[d(f, 9)|l-
If p < 00, then

459 = ([ dp(f(xxg(x))m(d:c))l/p.

If p = 00, then d (£, g) is the m-essentially supremum of z — d(f(z), g(z)).
We say that f and g are m-equivalent if

flz) =g(z) mae zeX
and write f ~ g. For a fixed measurable map h: X — Y, we set
Ly(X,Y;m) = {f € X/B(Y) | d(f,h) € L (X;m)}/ ~.

Themap h : X — Y is called a base map. If m(X) < ocandh: X - Y
is bounded, then LY(X,Y;m) is independent of the choice of such h.

Lemma 6.1. Let (Y,d) be a metric space. For a fizred measurable map
h: X —Y andp € [1,00], we have the following:

(1) If (Y,d) is complete (resp. separable), then (L} (X,Y;m),d,) is
so.

(2) Suppose that (Y, d) is a geodesic space and any two points can be
connected by a unique minimal geodesic. For given vyy,71 € Y
and each t € [0,1], let v, be the t-point in a unique minimal
geodesic v : [0,1] — Y joining vy to v1. Assume that for each
t € [0,1], 7 is continuous with respect to (yo,v1). Then for
gwen fo, fL € LE(X,Y;m), the map f; : X — Y defined by
fi(z) == (fo(z) f1(x)); belongs to L} (X,Y; m) and forms a min-
imal geodesic joining fo to fi in LY (X,Y;m). In particular,
(LY (X,Y;m),d,) is a geodesic space.

Theorem 6.2. Let (Y, d) be a complete p-uniformly convezx space hav-
ing the weak L-convezity of Busemann type. Fizr a measurable map
h:X — Y. Then we have the following:
(1) (LX(X,Y;m),dp) is a complete p-uniformly convez space having
the weak L-convezity of Busemann type.
(2) Let v : [0,00[— LY (X,Y;m) be a minimal geodesic. Then for
each x € X and L € [0,00][, there exists a minimal segment
¥ B (z): [0,L] = Y such that dp(fytﬁyt(L)) =0 for allt € [0, L],
where ¥ 1 [0, L] — LE(X,Y;m) is a minimal segment defined
by 78 ().
(3) Assume that (Y, d) satisfies the quasi-L-convexity of Busemann
type for some (L1, Ly). Then (LY(X,Y;m),d,) is so.
Lemma 6.3. Let (Y,d) be a complete p-uniformly convex space having

the weak L-convezity of Busemann type such that (Y,d) satisfies (A).
Let F be a closed convez subset of (LY(X,Y;m),d,). For each z € X,

set F(z) :={f(z)| f € F}.



(1) For each z € X, F(z) is convez in (Y, d).
(2) Take an f € Lp(X,Y;m). Then np(f) = (m555(f(2)))eex in
LE(X,Y;m).

Theorem 6.4. Let (Y, d) be a complete p-uniformly convex space hav-
ing the weak L-convezity of Busemann type. The following hold:

(1) If (Y,d) satisfies (A), then (LY (X,Y;m),d,) does so.
(2) If (Y,d) satisfies (B), then (L} (X,Y;m),dp) does so.
(3) If (Y,d) satisfies (C), then (LE(X,Y;m),d,) does so.

Corollary 6.5. Forp > 2, L?(X;m) satisfies (A), (B), (C).

Corollary 6.6. Let (Y, d) be a complete CAT(k)-space with a diameter
strictly less than R,/2. Then we have the following:

(1) (LA(X,Y;m),dy) is a 2-uniformly convex space with the same
parameter k €|0,2] having the weak L-convezity of Busemann

type.
(2) (LA(X,Y;m),dy) satisfies (A), (B) and (C).

Hereafter, we focus only on the case that X is a locally compact
separable metric space and h = o, where 0 € Y is a fixed base point.
We write L} (X,Y;m) instead of L} (X,Y;m) in such a case.

Definition 6.7 (Lipschitz Maps with Compact Support). The support
‘supp|u] for a measurable map u : X — Y is defined to be the subset
of X satisfying the condition that z € X \ supp[u] if and only if there
exists an open neighborhood U of z such that v = o on U. Denote
by CHP(X,Y) the set of Lipschitz continuous maps v : X — Y with
compact support supp[u].

Theorem 6.8. Suppose that (Y,d) is a separable geodesic space. Let
r > 1. Then CYP(X,Y) is a dense subset of (LL(X,Y;m),d,).

6.2. Upper gradient and Cheeger’s Sobolev spaces. In what fol-
lows, let (X, dx) be a metric space, and U C X be an open set, and m
be a Borel regular measure on X such that any ball with finite positive
radius is of finite positive measure. Let (Y, d) be a complete geodesic
space.

Definition 6.9 (Upper Gradient). A Borel function g : U — [0, 00] is
called an upper gradient for a map u : U — Y if, for any unit speed
curve ¢ : [0,¢] — U, we have

D (u(c(0)), ul(c(£)) < / o(c(s))ds.
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Definition 6.10 (Upper Pointwise Lipschitz Constant Function). For
amap u:U — Y and a point z € U, we define
d
Lipu(z) ;= lim sup M,
r—0 dX(Z,’LU)=’r r
d
Lipu(z) = lim  sup 2ci2)u(w))
r—0 0<dx (z,w)<r dx (z, 'w)

and we put Lipu(z) = Lipu(z) = 0 if z is an isolated point. Clearly
Lipu < Lipu on X. We call Lipu the upper pointwise Lipschitz con-
stant function for u.

Cheeger [4] proved that for a locally Lipschitz function u : U — R,
then Lipu, hence Lipu, is an upper gradient for u. We next define
the Cheeger type Sobolev spaces. Fix a point 0 € Y as a base point
and p € [1,00[. Let LE(U,Y;m) be the space of LP-maps as defined in
the previous section. We write LP(U,Y; m) instead of LE(U,Y;m) for
simplicity.

Definition 6.11 (Cheeger Type Sobolev Space). For u € LP(U,Y; m),
we define the Cheeger type p-energy of u as

Ep(u):= inf  Lm [|g:||75p.m):

{(u4,9:)}821 i—00

where the infimum is taken over all sequences {(u;,g:)}$2; such that
u; — u in LP(U,Y;m) as i — oo and ¢; is an upper gradient for u; for
each i. The Cheeger type (1,p)-Sobolev space is defined by

HY(U,Y;m) = {ue LP(UY;m) | E,(u) < co}.
By definition, if u = v m-a.e. on U, then E,(u) = E,(v).
The following is proved in [26].

Theorem 6.12 (Lower Semi Continuity of Energy, see Theorem 2.8 in
[26]). If a sequence {u;}2; converges tow in LP(U,Y;m), then E,(u) <
lim, Ep(ui).

—1—00

Definition 6.13 (Generalized Upper Gradient). A function g € LP(U;m)
is called a generalized upper gradient for u € H"P(U,Y;m) if there ex-
ists a sequence {(u;, g;)}32, such that g; is an upper gradient for u; and
u; — u, g; — g in LP(U,Y;m), LP(U;m) respectively as i — oo.

From the definition of the p-energy, E,(u) < || gHip(U;m) for any gen-
eralized upper gradient g € LP(U;m) for u € HYP(U,Y; m).

Definition 6.14 (Minimal Generalized Upper Gradient). A general-
ized upper gradient g € LP(U;m) for a map v € H"(U,Y;m) is said
to be minimal if it satisfies Ep(u) = [|9l|75(17,m)-



Hereafter, we assume that (Y, d) is weakly L-convex with L;L, = 0,
that is, (Y, d) is a Busemann’s NPC space. Then the distance function
d:Y xY — [0,00[ is convex. We know the following results:

Lemma 6.15 (See, Lemma 3.1 in [28]). Suppose that (Y, d) is weakly
L-conver with L1L, = 0. Let uy, up : U — Y be maps. For any upper
gradient gi,ga for ui,us respectively and 0 < X\ < 1. The function
g := (1=X)g1+Ags is an upper gradient for the map v := (1—X\)u;+Au,.
In particular, for any ui,us € HYP(U,Y;m) with 1 < p < oo and for
any 0 < A <1, we have

Ep((1 = Nug + dug) P < (1 = N Ep(u1)YP + AE, (up) /7.

Theorem 6.16 (See, Theorem 3.2 in [26]). Let p €]1,00[. Suppose
that (Y,d) is weakly L-convexr with LiL, = 0. Then for any u €
HY(U,Y;m), there exists a unique minimal generalized upper gradient

gy for u.

For p €]1, oo[, we define a distance dg1, on HYP(U,Y;m): for u,v €
HYY(U,Y;m),
(6.1) Ao (u,v) = dp(,v) + ||gu — Gollzowim),
where g¢,, g, is the minimal generalized upper gradient for u,v €
HYP(U,Y;m), respectively. Let (ﬁl’p(U,Y; m), dz1.») be the comple-
tion of (HYP(U,Y;m),dg»).

The following assertion is not declared clearly in [26]. We provide
its proof for completeness.

Theorem 6.17. Letp €|1,00[. We have H *(U,Y;m) = HY(U,Y;m).

Remark 6.18. Theorem 6.17 does not necessarily imply the dz1.,-comple-
teness of H'P(U,Y;m), that is, dgi» = dgie on HYP(U,Y;m).

6.3. p-harmonic maps. In this subsection, we still assume that (Y, d)
is weakly L-convex with L,L, = 0.

Definition 6.19 (p-Harmonic Map). For v € H2(U,Y;m), let
H}*(U,Y;m) be the dy.»-closure of

{u € H"(U,Y;m) | supp d(u,v) € U}.
v is said to be p-harmonic if and only if E,(v) = inf, Uy m) Eo(W)-
Theorem 6.20. Suppose p > 2. If there exists C > 0 such that for
any f € Hy"(U),
/ |fIPdm < C / lgf|Pdm, (Poincaré Inequality)
U U

then there exists a p-harmonic map in HYP(U,Y;m) for given v €
HY»(U,Y;m).
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