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ABSTRACT. We establish a variational convergence over $p$-uniformly
convex spaces for $p\geq 2$ . Variational convergence for Cheeger type
energy functionals over $L^{p}$-maps into p–uniformly convex space
having NPC property of Busemann type and the existence of $r$

harmonic map for Cheeger type energy functionals with Dirichlet
boundary condition are also presented.

1. INTRODUCTION AND MAIN RESULT

This article is a summary of a part of the paper [17] under prepa-
ration. We study a variational convergences over p–uniformly convex
spaces having NPC property in the sense of Busemann, where a p-
uniformly convex space is a natural generalization of p–uniformly con-
vex Banach space. Typical examples of $p$-uniformly convex spaces are
$U$-spaces with $p\geq 2$ , CAT($O$)-spaces, more concretely, Hadamard
manifolds and trees, and so on. If the target space is a $p$-uniformly
convex space having NPC property in the sense of Busemann, then the
$U$-mapping space is also a $p$-uniformly convex geodesic spaces hav-
ing NPC property in the sense of Busemann, and an energy functional
defined in a suitable way becomes convex and lower semi-continuous.
Thus, it is reasonable to consider that $(H_{i}, d_{H_{i}})$ and $(H, d_{H})$ are all p-
uniformly convex geodesic spaces having the weak $L$-convexity of Buse-
mann type instead of such $I\mathscr{J}$-mapping spaces (see Definition 3.1 below
for the weak $L$-convexity), and $E_{i}$ : $H_{i}arrow[0, \infty]$ and $E$ : $Harrow[O, \infty]$

are convex lower semi-continuous functions with $E_{i},$ $E\not\equiv+\infty$ . For any
$\lambda\geq 0$ and $u\in H$ , there exists a unique minimizer, say $J_{\lambda}^{E}(u)\in H,$

of $v\mapsto\lambda^{p-1}E(v)+d_{H}^{p}(u, v)$ . This defines a map $J_{\lambda}^{E}$ : $Harrow H$ , called
the resolvent of $E$ (see Theorem 5.2 below and [9, 22, 20] for the case
$p=2)$ . The minimum $E^{\lambda}(u)$ $:= \min_{v\in H}(\lambda^{p-1}E(v)+d_{H}^{p}(u, v))$ is called
the Moreau-Yosida approximation or the Hopf-Lax formula. Note that
if $X$ is a Hilbert space and if $E$ is a closed densely defined symmetric
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quadratic form on $X$ , then we have $J_{\lambda}^{E}=(I+\lambda A)^{-1}$ , where $A$ is the
infinitesimal generator associated with $E$ . The one-parameter family
[ $0,$ $+\infty[\ni\lambda\mapsto J_{\lambda}^{E}(u)$ gives a deformation of a given map $u\in H$ to a
minimizer of $E$ (or a harmonic map), $\lim_{\lambdaarrow+\infty}J_{\lambda}^{E}(u)$ (if any). Jost [13]
studied convergence of resolvents and Moreau-Yosida approximations.
Although his study is only on a fixed CAT(0)-space, we extend it for
a sequence of $p$-uniformly convex geodesic spaces having the weak L-
convexity of Busemann type with an asymptotic relation (Theorem 5.11
below). This is new even on a fixed p–uniformly convex geodesic spaces
having the weak $L$-convexity of Busemann type.

We can apply our result in the following way. Let $(X_{i}, q_{i})arrow(X, q)$

and $(Y_{i}, 0_{i})arrow(Y, 0)(i=1,2,3, \ldots)$ be two pointed Gromov-Hausdorff
convergent sequences of proper metric spaces, where ‘proper’ means
that any bounded subset is relatively compact, and let us give a pos-
itive Radon measure $m_{i}$ on $X_{i}$ with full support which converge to a
positive Radon measure $m$ on $X$ (see the definition for the convergence
of measures in [20] $)$ . We are interested in the convergence and asymp-
totic behavior of maps $u_{i}$ : $X_{i}arrow Y_{i}$ and also energy functionals $E_{i}$ de-
fined on a family of maps from $X_{i}arrow Y_{i}$ . We set $L_{i}^{p}$ $:=L_{o_{i}}^{p}(X_{i}, Y_{i}, m_{i})$

and $L^{p}$ $:=L_{o}^{p}(X, Y, m)$ . For $u_{i},$ $v_{i}\in L_{i}^{p}$ $(resp. u, v\in L^{p})$ , we set
$d_{L_{i}^{p}}(u_{i}, v_{i})$ $:=\Vert d_{Y_{i}}(u_{i}, v_{i})\Vert_{L_{i}^{p}}$ $(resp. d_{L^{p}}(u, v)$ $:=\Vert d_{Y}(u, v)\Vert_{L^{p}})$ , where

$\Vert$
$\Vert_{L_{i}^{p}}$ (resp. $\Vert$ $\Vert_{L^{p}}$ ) is the $L^{p}$-norm with respect to the measure $m_{i}$

(resp. $m$). Consider

$\mathcal{L}^{p}:=u_{i}L_{i}^{p}\sqcup L^{p}$

and endowed the $L^{p}$ -topology defined in [20] with $\mathcal{L}^{p}$ . The $L^{p}$-topology
on $\mathcal{L}^{p}$ has some nice properties involving the $L^{p}$-metric structure of $L_{i}^{p}$

and $L^{p}$ , such as, if $L_{i}^{p}\ni u_{i},$ $v_{i}arrow u,$ $v\in L^{p}$ respectively in $L^{p}$ , then
$d_{L_{i}^{p}}(u_{i}, v_{i})arrow d_{Lp}(u, v)$ . By their properties we present a set of axioms
for a topology on $\mathcal{L}^{p}$ for $(L_{i}^{p}, d_{L_{i}^{p}})$ and $(L^{p}, d_{L^{p}})$ . We call such a topology
satisfying the axioms the asymptotic relation between $\{L_{i}^{p}\}$ and $L^{p}$ (see
Definition 4.3). Since $L_{i}^{p}$ and $L^{p}$ are typically improper, the asymptotic
relation can be thought as a non-uniform variant of Gromov-Hausdorff
convergence.

We now assume that $Y_{i}$ and $Y$ are $p$-uniformly convex spaces with
common parameter $k\in$ ] $0,2]$ having NPC in the sense of Busemann
and satisfying (B) and (C). Then $L_{i}^{p}$ and $L^{p}$ are so. Let $E_{i}$ (resp. $E$ )
be Cheeger type $p$-energy functional on $H^{1,p}(X_{i}, Y_{i};m_{i})(\subset L_{i}^{p})$ (resp.
$H^{1,p}(X, Y;m)(\subset U))$ . Here $H^{1,p}(X_{i}, Y_{i};m_{i})$ $(resp. H^{1,p}(X, Y;m))$ is
the Cheeger-type $p$-Sobolev space for $L^{p}$-maps with respect to $m_{i}$ (resp. $m$)
from $X_{i}$ to $Y_{i}$ (resp. $X$ to $Y$ ) (see Section 6 below). Then $E_{i}$ (resp. $E$)
is a lower semi-continuous convex functional on $L_{i}^{p}$ (resp. $L^{p}$). As a
corollary of Theorem 5.11 below, we have the following:
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Theorem 1.1. If $E_{i}$ converges to $E$ in the Mosco sense, then for any
$\lambda>0$ we have the following (1) and (2).

(1) $E_{i}^{\lambda}$ strongly converges to $E^{\lambda}$

(2) $J_{\lambda}^{E_{i}}$ strongly converges to $J_{\lambda}^{E}.$

Under a suitable condition like uniform Ricci lower bound condition
for $X_{i},$ $X$ , we can expect that the Mosco convergence of $\{E_{i}\}$ to $E$

holds. At present, we are still in progress to deduce it.
As an addendum, we also show the existence of $p$-harmonic map for

Cheeger type energy functionals over $L^{p}$-maps into $p$-uniformly convex
space having NPC in the sense of Busemann with Dirichlet boundary
condition (see Theorem 6.20 below).

2. $p$-UNIFORMLY CONVEX SPACES

Definition 2.1 (Geodesics). Let $(Y, d)$ be a metric space. $A$ map
$\gamma$ : $Iarrow Y$ is said to be a curve if it is continuous, where $I=[a, b]\subset \mathbb{R}$

is a closed interval. The length $L(\gamma)$ of a curve $\gamma$ : $Iarrow Y$ is defined to
be

$L(\gamma)$ $:= \sup\{\sum_{i=1}^{n}d(\gamma(t_{i-1}), \gamma(t_{i}))|a=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=b\}.$

A curve $\gamma$ : $Iarrow Y$ is said to be a minimal geodesic if $L(\gamma|_{[s,t]})=$

$d(\gamma_{s}, \gamma_{t})$ holds for any $s,$ $t\in I,$ $s<t$ , equivalently $d(\gamma_{r}, \gamma_{t})=d(\gamma_{r}, \gamma_{s})+$

$d(\gamma_{s}, \gamma_{t})$ for any $r<s<t.$ $A$ curve $\gamma$ : $Iarrow Y$ is said to be a geodesic if
for any $s,$ $t\in I,$ $s<t$ with sufficiently small $|t-s|,$ $L(\gamma|_{[s,t]})=d(\gamma_{s}, \gamma_{t})$

holds. $A$ metric space $(Y, d)$ is called a $R$ -geodesic space for $R\in$ ] $0,$ $\infty]$ if
any two points in $Y$ whose distance is strictly less than $R$ can bejoined
by a minimal geodesic. We simply say that $(Y, d)$ is a geodesic space if
it is an $\infty$-geodesic space. Throughout this paper, for given $x,$ $y\in Y,$

denote by $\gamma_{xy}$ : $[0,1]arrow Y$ a minimal geodesics from $x=:\gamma_{xy}(0)$ to
$y=:\gamma_{xy}(1)$ provided $(Y, d)$ is an $R$-geodesic space and $d(x, y)<R.$

For $n\in \mathbb{N}$ , we denote by $\mathbb{M}^{n}(\kappa)$ the $n$-dimensional space form of
constant curvature $\kappa\in \mathbb{R}$ . Let $R_{\kappa}$ be the diameter of $\mathbb{M}^{n}(\kappa)$ , that is,
$R_{\kappa}$ $:=\infty$ if $\kappa\leq 0$ and $R_{\kappa}$ $:=\pi/\sqrt{\kappa}$ if $\kappa>0.$

Definition 2.2 (CAT $(\kappa)$-Inequality, see [2]). Let $(Y, d)$ be a metric
space and $\triangle$ a geodesic triangle in $Y$ with perimeter strictly less than
$2R_{\kappa}$ . Let $1S$ be a comparison triangle of $\triangle$ in $\mathbb{M}^{2}(\kappa)$ . We say that $\triangle$

satisfies $CAT(\kappa)$ -inequality if all $p,$ $q\in\triangle$ and its corresponding points
$\tilde{p},\tilde{q}\in\triangle\sim$ satisfy

$d(p, q)\leq d(\tilde{p},\tilde{q})$ .
Definition 2.3 (CAT $(\kappa)$-Space, see [2]). $A$ metric space $(Y, d)$ is said
to be a $CAT(\kappa)$ -space if $(Y, d)$ is a $R_{\kappa}$-geodesic space and all geodesic
triangles in $Y$ with perimeter strictly less than 2 $R_{\kappa}$ satisfy CAT $(\kappa)-$

inequality.
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Definition 2.4 $(p$-Uniformly Convex Geodesic Space; cf. Naor-Silber-
man [25] $)$ . $A$ metric space $(Y, d)$ is called $p$ -uniformly convex with pa-
mmeter $k>0$ if $(Y, d)$ is a geodesic space and for any three points
$x,$ $y,$ $z\in Y$ , any minimal geodesic $\gamma$ $:=(\gamma_{t})_{t\in[0,1]}$ in $Y$ with $\gamma_{0}=x,$

$\gamma_{1}=y$ , and all $t\in[0,1],$

(2.1) $d^{p}(z, \gamma_{t})\leq(1-t)d^{p}(z, x)+td^{p}(z, y)-\frac{k}{2}t(1-t)d^{p}(x, y)$ .

By definition, putting $z=\gamma_{t}$ , we see $k\in$ ] $0,2]$ and $p\in[2,$ $\infty[$ . The
inequality (2.1) yields the (strict) convexity of $Y\ni x\mapsto d^{p}(z, x)$ for a
fixed $z\in Y$ . Any closed convex subset of a $p$-uniformly convex space
is again a $p$-uniformly convex space with the same parameter. Any $L^{p}$

space over a measurable space is $p$-uniformly convex with parameter
$k= \frac{8}{4p}(\frac{p-1}{p})^{p-1}$ provided $p\geq 2$ . Every CAT(0)-space is a $p$-uniformly
convex space with parameter $k= \frac{8}{4^{p}p^{2}}(\frac{p-1}{p})^{p-1}$ for $p>2$ (we can take
$k=2$ if $p=2)$ , because $\mathbb{R}^{2}$ is isometrically embedded into $L^{p}([0,1])$

for $p>1$ (see [5],[25]) and any $L^{p}$-space is $p$-uniformly convex for
$p\geq 2$ . Ohta [28] proved that for $\kappa>0$ any CAT $(\kappa)$ -space $Y$ with
diam$(Y)<R_{\kappa}/2$ is a 2-uniformly convex space with parameter $\{(\pi-$

$2\sqrt{\kappa}\epsilon)\tan\sqrt{\kappa}\epsilon\}$ for any $\epsilon\in$ ] $0,$ $R_{\kappa}/2-$ diam$(Y)].$

Remark 2.5. A Banach space $(Y, \Vert\cdot\Vert)$ is said to be uniformly convex if

$\delta_{Y}(\epsilon)$ $:= \inf\{1-\Vert\frac{x+y}{2}\Vert$ $x,$ $y\in Y,$ $\Vert x\Vert=\Vert y\Vert=1,$ $\Vert x-y\Vert\geq\epsilon\},$

the modulus of convexity of $Y$ , satisfies $\delta_{Y}(\epsilon)>0$ for $\epsilon\in$ ] $0,2]$ . For
$p\geq 2,$ $(Y, \Vert \Vert)$ is said to be $p$ -uniformly convex if there exists $c>$
$0$ such that $\delta_{Y}(\epsilon)\geq c\epsilon^{p}$ for $\epsilon\in$ ] $0,2]$ . It is known that for $p\geq 2,$

$\delta_{Lp}(\epsilon)=1-[1-(\frac{\epsilon}{2})^{p}]^{\frac{1}{p}}\geq\frac{1}{2^{p}p}\epsilon^{p}$ for $\epsilon\in$ ] $0,2]$ . By Lemma 2.1 in [29],
if a Banach space $(Y, \Vert\cdot\Vert)$ is $p$-uniformly convex for $p\geq 2$ , then there
exists $d=d(c,p)>0$ such that

$\Vert(1-t)x+ty\Vert^{p}\leq(1-t)\Vert x\Vert^{p}+t\Vert y\Vert^{p}-d\{t(1-t)^{p}+t^{p}(1-t)\}\Vert x-y\Vert^{p}$

for all $x,$ $y\in Y$ and $t\in$ ] $O,$ $1$ [. Actually, we can take $d= \frac{c}{p}(\frac{p-1}{p})^{p-1}$ as

$uniformconvexityoftheBanachspaceimp1iesthepuniformconvexityanoptimalvalue.$
Since $\frac{4}{2p}\leq(1-t)^{p-l}+t^{p-1}\leq lforallt\in[0, l],p-$

of geodesic space.

The following propositions can be proved in the same way as in [28].
So we omit its proof.

Proposition 2.6 (cf. Lemma 2.3 in [28]). Let $(Y, d)$ be a $p$ -uniformly
convex space. For $x,$ $y,$ $z\in Y$ , any minimal geodesic $\gamma$ $:=(\gamma_{t})_{t\in[0,1]}$ in
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$Y$ with $\gamma_{0}=x,$ $\gamma_{1}=y$ , and all $t\in[O, 1]$ , we have

(2.2) $d^{p}(z, \gamma_{t})\leq\frac{2}{k}\cdot\frac{1}{t^{p-1}+(1-t)^{p-1}}$

$\cross((1-t)^{p-1}d^{p}(z, x)+t^{p-1}d^{p}(z, y)-(1-t)^{p-1}t^{p-1}d^{p}(x, y))$ .

Proposition 2.7 (cf. Lemma 2.2 and Proposition 2.4 in [28]). Any
two points in a $p$-uniformly convex space can be connected by a unique
minimal geodesic and contmctible.

Lemma 2.8 (Projection Map to Convex Set). Let $(Y, d)$ be a complete
$p$ -uniformly convex space with pammeter $k\in$ ] $0,2]$ . The the following
hold:

(1) Let $F$ be a closed convex subset of $(Y, d)$ . Then for each $x\in Y,$

there exists a unique element $\pi_{F}(x)\in F$ such that $d(x, F)=$
$d(\pi_{F}(x), x)$ holds. We call $\pi_{F}$ : $Yarrow F$ the projection map to
$F.$

(2) Let $F$ be as above. Then $\pi_{F}$ satisfies
(2.3) $ff(z, \pi_{F}(z))+\frac{k}{2}\parallel(\pi_{F}(z), w)\leq ff(z, w)$ , $forz\in Y,$ $w\in F,$

in particular, $( \frac{k}{2})^{1/p}d(\pi_{F}(z), w)\leq d(z, w)$ for $z\in Y,$ $w\in F.$

Definition 2.9 (Vertical Geodesics). Let $(Y, d)$ be a geodesic space.
Take a geodesic $\eta$ with a point $p_{0}$ on it and another geodesic $\gamma$ through
$p_{0}$ . We say that $\gamma$ is vertical to $\eta$ at $Po$ (write $\gamma 1_{p0}\eta$ in short) if for
any $x\in\gamma$ and $y\in\eta,$

$d(x,p_{0})\leq d(x, y)$

holds.

Let $(Y, d)$ be a complete $p$-uniformly convex space with parameter
$k\in]0,2]$ . We consider the following conditions:

(A) For any closed convex set $F$ in $(Y, d)$ , the projection map $\pi_{F}$ :
$Yarrow Y$ satisfies $d(\pi_{F}(x), y)\leq d(x, y)$ for $x\in Y,$ $y\in F.$

(B) Let $\gamma$ and $\eta$ be minimal geodesics among two points such that
$\gamma$ intersects $\eta$ at $Po$ . Then $\gamma\perp_{p0}\eta$ imlies $\eta\perp_{p0}\gamma.$

(C) Let $\sigma$ and $\eta$ be minimal geodesics among two points such that
$\sigma$ intersects $\eta$ at $p_{0}$ and $\sigma\neq\{p_{0}\}$ . Suppose that $\gamma$ is a minimal
geodesic among two points which contains $\sigma$ . Then $\sigma\perp_{p0}\eta$

implies $\gamma\perp_{p0}\eta.$

Lemma 2.10. (B) implies (A).

Remark 2.11. Theorem 2.13 below shows that the conditions (A), (B),
(C) are satisfied for any complete CAT$(\kappa)$ -space with diameter strictly
less than $R_{\kappa}/2$ . For any complete $prightarrow$-uniformly convex space $(Y, d)$ with
parameter $k\in$ ] $0,2]$ which is also a weakly $L$-convex space in the sense
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of Busemann for some $(L_{1}, L_{2})$ satisfying the conditions (A), (B), (C),
the space $L_{h}^{p}(X, Y;m)$ of $L^{p}$-maps from $(X, \mathcal{X}, m)$ into $Y$ with a map
$h$ : $Xarrow Y$ is also a complete $p$-uniformly convex space with the
same parameter $k\in$ ] $0,2]$ which is als$0$ a weakly $L$-convex space in the
sense of Busemann for the same $(L_{1}, L_{2})$ . and $L_{h}^{p}(X, Y;m)$ satisfies the
conditions (A), (B), (C).

Lemma 2.12. Take a geodesic triangle $\triangle ABC$ in $\mathbb{M}^{n}(\kappa)$ and set $a:=$
$d_{\mathbb{M}^{n}(\kappa)}(B, C),$ $b$ $:=d_{\mathbb{M}^{n}(\kappa)}(C, A),$ $c$ $:=d_{\mathbb{M}^{n}(\kappa)}(A, B)$ . Assume $a,$ $b,$ $c<$
$R_{\kappa}/2$ and $\angle BAC\geq\pi/2$ . Then for any point $P$ on $AB,$ $d_{\mathbb{M}^{n}(\kappa)}(C, A)\leq$

$d_{\mathbb{M}^{n}(\kappa)}(C, P)\leq d_{\mathbb{M}^{n}(\kappa)}(C, B)$ holds.

Theorem 2.13. Let $\kappa\in \mathbb{R}$ . Any CAT $(\kappa)$ -space $(Y, d)$ with diam$(Y)<$
$R_{\kappa}/2$ is a 2-uniformly convex space with some parameter $k\in$ ] $0,2]$ sat-
isfying the conditions (A), (B), (C).

3. $L$-CONVEX SPACES OF BUSEMANN TYPE

Definition 3.1 $(L-$Convexity $of$ Busemann $Type, cf. Ohta [28])$ . Let
$L_{1},$ $L_{2}\geq 0.$ $A$ metric space $(Y, d)$ is called an $L$ -convex space for
$(L_{1}, L_{2})$ in the sense of Busemann if $(Y, d)$ is a geodesic space, and
for any three points $x,$ $y,$ $z\in Y$ and any minimal geodesics $\gamma$ $:=\gamma_{xy}$ :
$[0,1]arrow Y$ and $\eta$ $:=\gamma_{xz}$ : $[0,1]arrow Y$ , and for all $t\in[0,1],$

(3.1) $d( \gamma_{t}, \eta_{t})\leq(1+L_{1}\frac{\min\{d(x,y)+d(x,z),2L_{2}\}}{2})td(y, z)$

holds. $A$ metric space $(Y, d)$ is called a weakly $L$ -convex space for
$(L_{1}, L_{2})$ in the sense of Busemann if $(Y, d)$ is a geodesic space, and
for any three points $x,$ $y,$ $z\in Y$ and any minimal geodesics $\gamma$ $:=\gamma_{xy}$ :
$[0,1]arrow Y$ and $\eta$ $:=\gamma_{xz}$ : $[0,1]arrow Y$ , and for all $t\in[0,1],$

(3.2) $d(\gamma_{t}, \eta_{t})\leq(1+L_{1}L_{2})td(y, z)$

holds. $A$ metric space $(Y, d)$ is said to be quasi-$L$ -convex for $(L_{1}, L_{2})$ in
the sense of Busemann if $(Y, d)$ is weakly $L$-convex for $(L_{1}, L_{2})$ in the
sense of Busemann such that for any $x\in Y$ , any two minimal geodesics
$\gamma$ and $\eta$ emanating from $x$ and $t,$ $s\in[0,$ $\infty[$ , the limit

(3.3) $\lim_{\epsilonarrow 0}\frac{1}{\epsilon}d(\gamma_{t\epsilon}, \eta_{s\epsilon})$

always exists.

Clearly, any complete separable CAT(0)-space is an $L$-convex space
for $(L_{1}, L_{2})$ with $L_{1}L_{2}=0$ in the sense of Busemann. Let $(Y, d)$ be a
CAT(l)-space with diam$(Y)\leq\pi-\epsilon,$ $\epsilon\in]0,$ $\pi[$ in which no triangle has
a perimeter greater than $2\pi$ . Then by Proposition 4.1 in [28], $(Y, d)$ is
an $L$-convex space for

$(L_{1}, L_{2})=( \frac{2\{(\pi-\epsilon)-\sin\epsilon\}}{(\pi-\epsilon)\sin\epsilon}, \pi-\epsilon)$
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By Lemma 4.1 in [28], $L$-convexity of Busemann type implies the quasi-
$L$-convexity of Busemann type.

Let $(Y, d)$ be a quasi- $L$-convex space for some $(L_{1}, L_{2})$ . For $x\in Y,$

we define $\Sigma_{x}’$ as the set of unit speed minimal geodesics emanating
from $x\in Y$ . Then $\gamma,$ $\eta\in\Sigma_{x}’$ and $t,$ $s\in[0,$ $\infty[$ , we can define the limit
$\lim_{\epsilonarrow 0}d(\gamma_{t\epsilon}, \eta_{s\epsilon})/\epsilon$ . Define the space of directions $\Sigma_{x}$ at $x\in X$ by
$\Sigma_{x}$ $:=\Sigma_{x}’/\sim$ , where $\gamma\sim\eta$ holds if $\lim_{\epsilonarrow 0}d(\gamma_{\epsilon}, \eta_{\epsilon})/\epsilon=0$ . Put

$K_{x}’:=\Sigma_{x}\cross[0, \infty[/\sim,$

where $(\gamma, t)\sim(\eta, s)$ holds if $\lim_{\epsilonarrow 0}d(\gamma_{t\epsilon}, \eta_{s\epsilon})/\epsilon=0$ . Then

$d_{K_{x}’}(( \gamma, t), (\eta, s)):=\lim_{\epsilonarrow 0}\frac{d(\gamma_{t\epsilon},\eta_{s\epsilon})}{\epsilon}$

gives a distance function on $K_{x}’$ . Define the tangent cone $(K_{x}, d_{K_{x}})$ at
$x\in X$ as the completion of $(K_{x}’, d_{K_{x}’})$ .

The following proposition can be similarly proved as for Proposi-
tion 4.2 in [28],

Proposition 3.2 (cf. Proposition 4.2 in [28]). For a $p$-uniformly convex
space $(Y, d)$ having the quasi-$L$ -convexity of Busemann type for some
$(L_{1}, L_{2})$ and $x\in Y$ , the tangent cone $(K_{x}, d_{K_{x}})$ is a geodesic space.
Moreover, it is weakly $L$ -convex in the sense of Busemann with $L_{1}L_{2}=$

$0$ , that is, a Busemann’s $NPC$ space.

4. WEAK CONVERGENCE OVER $p-$-UNIFORMLY CONVEX SPACES

Throughout this section, we denote by $i$ any element of a given di-
rected set $\{i\}$ . We need the following:

Proposition 4.1. Let $\{(H_{i}, d_{H_{t}})\}$ be a net of complete $p$ -uniformly
convex spaces with common pammeter $k\in$ ] $0,2]$ and all $(H_{i}, d_{H}.)$ have
the weak $L$ -convexity of Busemann type for some common $(L_{1}, L_{2})$ . Let
$x_{i}\in H_{i}$ be a net and $\gamma^{i},$ $\eta^{i}$ : $[0,1]arrow H_{i}$ a net of minimal segments. Set

$\alpha_{0}:=\varlimsup_{i}d_{H_{i}}(\gamma_{0}^{i}, \eta_{0}^{i}) , \alpha_{1}:=\varlimsup_{i}d_{H_{i}}(\gamma_{1}^{i}, \eta_{1}^{i})$

and $A:=(1+L_{1}L_{2})(\alpha_{0}+\alpha_{1})$ . Then

$\varlimsup_{i}d_{H_{i}}(\pi_{\gamma^{t}}(x_{i}), \pi_{\eta^{t}}(x_{i}))\leq A+(\frac{2p}{k})^{1/p}(\sup_{j}d_{j}(x_{j}, y_{j})+2A)^{\frac{p-1}{p}}\cdot(2A)^{\frac{1}{p}}$

$or$

$\varlimsup_{i}d_{H_{i}}(\pi_{\gamma^{i}}(x_{i}), \pi_{\eta}\cdot(x_{i}))\leq A+(\frac{2p}{k})^{1/p}(\sup_{j}d_{j}(x_{j}, y_{j})+2A)^{L^{-\underline{1}}}p.$ $(2A)^{\frac{1}{p}}$

holds.

Corollary 4.2. Let $\{(H_{i}, d_{H}.)\}$ be a net of complete $p$-uniformly convex
spaces with common pammeter $k\in$ ] $0,2]$ and all $(H_{i}, d_{H_{i}})$ have the weak
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$L$ -convexity of Busemann type for some common $(L_{1}, L_{2})$ . Let $x_{i}\in H_{i}$

be a net and $\gamma^{i},$ $\eta^{i}$ : $[0,1]arrow H_{i}$ a net of minimal segments. If
li$imd_{H_{i}}(\gamma_{0}^{i}, \eta_{0}^{i})=$ li$imd_{H_{i}}(\gamma_{1}^{i}, \eta_{1}^{i})=0$

holds, then

li$imd_{H_{i}}(\pi_{\gamma^{i}}(x_{i}), \pi_{\eta^{i}}(x_{i}))=0.$

Let $\{(H_{i}, d_{H_{i}})\}$ be a net of metric spaces and $(H, d_{H})$ a metric space.
Define

$\mathcal{H}$ $:=(\sqcup_{i}H_{i})\sqcup H$ (disjoint union).

Definition 4.3 (Asymptotic Relation on $\mathcal{H}$ ). We call a topology on
$\mathcal{H}$ satisfying the following $(A1)-(A4)$ an asymptotic relation between
$\{(H_{i}, d_{H_{i}})\}$ and $(H, d_{H})$ .

(Al) $H_{i}$ and $H$ are all closed in $\mathcal{H}$ and the restricted topology of $\mathcal{H}$

on each of $H_{i}$ and $H$ coincides with its original topology.
(A2) For any $x\in H$ there exists a net $x_{i}\in H_{i}$ converging to $x$ in $\mathcal{H}.$

(A3) If $H_{i}\ni x_{i}arrow x\in H$ and $H_{i}\ni y_{i}arrow y\in H$ in $\mathcal{H}$ , then we have
$d_{H_{i}}(x_{i}, y_{i})arrow d_{H}(x, y)$ .

(A4) If $H_{i}\ni x_{i}arrow x\in H$ in $\mathcal{H}$ and if $y_{i}\in H_{i}$ is a net with
$d_{H_{i}}(x_{i}, y_{i})arrow 0$ , then $y_{i}arrow x$ in $\mathcal{H}.$

Definition 4.4 (Asymptotic Compactness of Asymptotic Relation).
Assume that $\{(H_{i}, d_{H_{i}})\}$ and $(H, d_{H})$ have an asymptotic relation. We
say that a net $x_{i}\in H_{i}$ is bounded if $d_{H_{i}}(x_{i}, 0_{i})$ is bounded for some
convergent net $0_{1}\in H_{i}$ . The asymptotic relation is said to be asymp-
totically compact if any bounded net $x_{i}\in H_{i}$ has a convergent subnet
in $\mathcal{H}$ with respect to the asymptotic relation.

Hereafter, strong convergence on $\mathcal{H}$ means the convergence with re-
spect to a given asymptotic relation over $\mathcal{H}$ . Assume that an asymp-
totic relation between metric spaces $\{H_{i}\}$ and $H$ given. Consider the
following condition:

(G) If $\gamma^{i}$ : $[0,1]arrow H_{i}$ and $\gamma$ : $[0,1]arrow H$ are minimal geodesics such
that $\gamma_{0}^{i}arrow\gamma_{0}$ and $\gamma_{1}^{i}arrow\gamma_{1}$ , then $\gamma_{t}^{i}arrow\gamma_{t}$ for any $t\in[O, 1].$

Proposition 4.5. (1) If (G) is satisfied and if each $H_{i}$ is a geo-
desic space, then $H$ is so.

(2) If (G) is satisfied and if each $H_{i}$ is $p$ -uniformly convex with
common pammeter $k\in$ ] $0,2]$ , then $H$ is so.

(3) If each $H_{i}$ is $p$ -uniformly convex with common pammeter $k\in$

$]0,2]$ and $H$ is a geodesic space, then (G) is satisfied and $H$ is
$p$ -uniformly convex with pammeter $k\in$ ] $0,2].$

In the proof of Proposition 4.5, we use Proposition 2.6.
We now define the weak convergence over $\mathcal{H}$ , which generalize the

notions introduced in [8, 6, 20].
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Definition 4.6 (Weak Convergence on $\mathcal{H}$). Let $\{(H_{i}, d_{H_{i}})\}$ be a net
of complete p–uniformly convex spaces with common parameter $k\in$

$]0,2]$ and $(H, d_{H})$ a complete p–uniformly convex space with the same
parameter $k$ . We say that a net $x_{i}\in H_{i}$ weakly converges to a point
$x\in H$ if for any net of geodesic segments $\gamma^{i}$ in $H_{i}$ strongly converging
to a geodesic segment $\gamma$ in $H$ with $\gamma_{0}=x,$ $\pi_{\gamma^{i}}(x_{i})$ strongly converges
to $x$ . Here the strong convergence of $\{\gamma^{i}\}$ to $\gamma$ means that for any
$t\in[O, 1],$ $\gamma_{t}^{i}$ strongly converges to $\gamma_{t}$ . It is easy to prove that a strong
convergence implies a weak convergence and that a weakly convergent
net always has a unique weak limit.

The following proposition is omitted in [20]. We shall give it for
completeness.

Proposition 4.7 (Weak Topology on $\mathcal{H}$ ). The weak convergence over
$\mathcal{H}$ of complete $p$-uniformly convex spaces with pammeter $k\in$ ] $0,2]$ in-
duces a Hausdorff topology on it. We call it weak topology of $(H, d_{H})$ .
Remark 4.8. The notion of weak convergence over a fixed CAT(0)-space
is proposed by Jost [8]. In [20], we extend it over $\mathcal{H}$ of CAT(0)-spaces.
In Kirk-Panyanak [14], they give a different approach on the weak con-
vergence, so-called $\Delta$ -convergence, and Esp\’inola and Fern\’andez-Le\’on
[6] proved the equivalence between the weak convergence and the $\triangle-$

convergence over a fixed CAT(0)-space or CAT(l)-space whose diame-
ter strictly less than $\pi/2$ (see Proposition 5.2 in [6]). Such an equiva-
lence is also valid for a fixed p–uniformly convex space in the same way
as in the proof of Proposition 5.2 in [6].

Lemma 4.9. Let $\{(H_{i}, d_{H_{:}})\}$ be a net of complete $p$-uniformly con-
vex space with common pammeter $k\in$ ] $0,2]$ and $(H, d_{H})$ a complete

$p$ -uniformly convex space with the same pammeter $k$ . Suppose that a
net $x_{i}\in H_{i}$ is weakly convergent to $x\in H$ and a net $y_{i}\subset H_{i}$ is strongly
convergent to $y\in H$ . Then we have the following:

(1) Under (A) for all $(H_{i}, d_{H_{i}}),$ $d_{H}(x, y)\leq\varliminf_{i}d_{H_{i}}(x_{i}, y_{i})$ .
(2) Under (B) for all $(H_{i}, d_{H_{i}}),$ $\lim_{i}d_{H_{i}}(x_{i}, y_{i})=d_{H}(x, y)$ if and

only if $x_{i}\in H_{i}$ strongly converges to $x\in H.$

The main result of this section is the following theorem:

Theorem 4.10 (Banach-Alaoglu Type Theorem). Let $\{(H_{i}, d_{H_{1}})\}$ be
a net of complete $p$-uniformly convex spaces with common pamme-
ter $k\in]0,2]$ and $(H, d_{H})$ a complete $p$ -uniformly convex space with
the same pammeter $k$ and all $(H_{i}, d_{H_{i}})$ and $(H, d_{H})$ have the weak L-
convexity of Busemann type for some common $(L_{1}, L_{2})$ . Suppose one
of the following:

(1) (B) and (C) hold for $(H, d_{H})$ and $(H_{i}, d_{H_{i}})=(H, d_{H})$ holds
for all $i.$

(2) $(H, d_{H})$ is sepamble.
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Then every bounded net $\{x_{i}\}\subset \mathcal{H}$ has a weakly convergent subsequence.

Combining Theorems 2.13 and 4.10, we obtain the following:

Corollary 4.11 (Banach-Alaoglu Type Theorem over CAT $(\kappa)$-Spaces).
Let $\{(H_{i}, d_{H_{i}})\}$ be a net of complete $CAT(\kappa)$ -spaces with diam$(H_{i})<$

$R_{\kappa}/2-\epsilon$ with $\epsilon\in$ ] $0,$ $R_{\kappa}/2[$ , and $(H, d_{H})$ a complete $CAT(\kappa)$ -space with
diam$(H)<R_{\kappa}/2-\epsilon$ with $\epsilon\in$ ] $0,$ $R_{\kappa}/2$ [. Assume that $(H_{i}, d_{H_{i}})=$

$(H, d_{H})$ for all $i$ or $(H, d_{H})$ is sepamble. Then every bounded net
$\{x_{i}\}\subset \mathcal{H}$ has a weakly convergent subsequence.

Remark 4.12. The assertion of Theorem 4.10 was proved by Theo-
rem 2.1 in Jost [8] over a fixed complete CAT(0)-space without assum-
ing the separability. In the framework of convergence over CAT $(O)-$

spaces, Lemma 5.5 in [20] extends Theorem 2.1 in [8]. For a fixed
CAT $(\kappa)$-space $(H, d_{H})$ with diam$(H)<R_{\kappa}/2-\epsilon$ with $\epsilon\in$ ] $0,$ $R_{\kappa}/2[,$

the assertion of Corollary 4.11 is essentially shown by combining Corol-
lary 4.4 and Remark 5.3 of [6]. Corollary 4.11 also extends the result
in [6].

5. VARIATIONAL CONVERGENCE OVER $p$-UNIFORMLY CONVEX
SPACES

In this section we fix $p\geq 2.$

5.1. Resolvents. Throughout this subsection, we fix a complete p-
uniformly convex space $(H, d_{H})$ with parameter $k\in$ ] $0,2]$ . Consider a
function $E:Harrow[O, \infty]$ and set $D(E):=\{x\in H|E(x)<\infty\}.$

Definition 5.1 (Moreau-Yosida Approximation, [9]). For $E:Harrow$
$[0, +\infty]$ we define $E^{\lambda}$ : $Harrow[O, +\infty]$ by

$E^{\lambda}(x);= \inf_{y\in H}(\lambda^{p-1}E(y)+d_{H}^{p}(y, x)) , x\in H, \lambda>0,$

and call it the Moreau-Yosida approximation or the Hopf-Lax formula
for $E.$

Theorem 5.2 (Existence of Resolvent). If $E$ is lower $\mathcal{S}emi$-continuous,
convex and $E\not\equiv+\infty$ , then for any $x\in H$ there exists a unique point,
say $J_{\lambda}(x)\in H$ , such that

$E^{\lambda}(x)=\lambda^{p-1}E(J_{\lambda}(x))+d_{H}^{p}(x, J_{\lambda}(x))$ .
This defines a map $J_{\lambda}$ : $Harrow H$ , called the resolvent of $E.$

Note that if $H$ is a Hilbert space and $p=2$ , and if $E$ is a closed
densely defined non-negative quadratic form on $H$ , then we have $J_{\lambda}=$

$(I+ \lambda A)^{-1}=\frac{1}{\lambda}G_{\frac{1}{\lambda}}$ . Here, $I$ is the identity operator, $A$ the infinitesimal
generator associated with $E$ , i.e., the non-negative self-adjoint operator
on $H$ such that $D(E)=\sqrt{A}$ and $E(x)=(\sqrt{A}x, \sqrt{A}x)_{H}$ for any $x\in$

$D(E)$ , where $(\cdot, \cdot)_{H}$ is the Hilbert inner product on $H$ , and $G_{\alpha}=$

$(\alpha+A)^{-1},$ $\alpha>0$ is the resolvent operator associated with $A.$
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To the end of this subsection, we always assume the convexity of $E.$

We have the following lemmas and theorems which are known for the
case that $(H, d_{H})$ is a CAT(0)-space. The proofs are omitted.

Lemma 5.3. For $\lambda,$ $\mu>0$ , we have

$\frac{1}{\mu^{p-1}}(\frac{1}{\lambda^{p-1}}E^{\lambda})^{\mu}=\frac{1}{(\lambda+\mu)^{p-1}}E^{\lambda+\mu}.$

Lemma 5.4. Let $E:Harrow[O, \infty]$ be a lower semi-continuous function
with $E\not\equiv\infty$ . For $x\in H$ and $s\in[O, 1]$ , we have

$J_{\lambda}(x)=J_{(1-s)\lambda}((1-s)x+sJ_{\lambda}(x))$ ,

where $(1-s)x+sJ_{\lambda}(x)$ is the point on the geodesic joining $x$ to $J_{\lambda}(x)$

such that $d_{H}(x, (1-s)x+sJ_{\lambda}(x))=sd_{H}(x, J_{\lambda}(x))$ .

Lemma 5.5. Let $J_{\lambda}$ : $Harrow H,$ $\lambda>0$ be the resolvent associated with
a lower semi-continuous convex function $E:Harrow[O, \infty]$ with $E\not\equiv\infty.$

$Forx\in\overline{D(E)}$, then
$\lim_{\lambdaarrow 0}d_{H}(J_{\lambda}(x), x)=0.$

Theorem 5.6. Let $E:Harrow[O, \infty]$ be a lower semi-continuous convex
function with $E\not\equiv\infty$ . Take $x\in H$ and assume that $(J_{\lambda_{n}}(x))_{n\in \mathbb{N}}$ is
bounded for some $\mathcal{S}$equence $\lambda_{n}arrow\infty$ . Then $(J_{\lambda}(x))_{\lambda>0}$ converges to a
minimizer of $E.$

5.2. Variational Convergence. Throughout this subsection, we fix
a net $\{(H_{i}, d_{H_{i}})\}$ of complete p–uniformly convex spaces with common
parameter $k\in$ ] $0,2]$ and a complete $p$-uniformly convex space $(H, d)$

with the same parameter $k\in$ ] $0,2]$ . Consider a net $\{E_{i}\}$ of functions
$E_{i}:H_{i}arrow[0, \infty]$ and a function $E:Harrow[O, \infty].$

Definition 5.7 (Asymptotic Compactness, [24],[20]). The net $\{E_{i}\}$ of
functions is said to be asymptotically compact if for any bounded net
$x_{i}\in H$ with $\varlimsup_{i}E_{i}(x_{i})<+\infty$ there exists a convergent subnet of $\{x_{i}\}.$

Definition 5.8 ( $\Gamma$-convergence). We say that $E_{i}\Gamma$ -converges to $E$ if
the following $(\Gamma 1)$ and $(\Gamma 2)$ are satisfied:

$(\Gamma 1)$ For any $x\in H$ there exists a net $x_{i}\in H_{i}$ such that $x_{i}arrow x$ and
$E_{i}(x_{i})arrow E(x)$ .

$(\Gamma 2)$ If $H_{i}\ni x_{i}arrow x\in H$ then $E(x)\leq\varliminf_{i}E_{i}(x_{i})$ .

Definition 5.9 (Mosco convergence). We say that $E_{i}$ converges to $E$

in the Mosco sense if both $(\Gamma 1)$ in Definition 5.8 and the following $(\Gamma 2’)$

hold.
$(\Gamma 2’)$ If $H_{i}\ni x_{i}arrow x\in H$ weakly, then $E(x)\leq\varliminf_{i}E_{i}(x_{i})$ .

Note that $(\Gamma 2’)$ is a stronger condition than $(\Gamma 2)$ , so that a Mosco
convergence implies a $\Gamma$-convergence.

It is easy to prove the following proposition. The proof is omitted.
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Proposition 5.10. Assume that $\{E_{i}\}$ is $a\mathcal{S}$ymptotically compact. Then
the following (1)$-(3)$ are all equivalent to each other.

(1) $E_{i}$ converges to $E$ in the Mosco sense.
(2) $E_{i}\Gamma$ -converges to $E.$

(3) $E_{i}$ compactly converges to $E.$

In what follows, we assume that all $H_{i}$ and $H$ are $p$-uniformly convex
spaces with a common parameter $k\in$ ] $0,2]$ having the weak $L$-convexity
of Busemann type, and all functions $E_{i}$ : $H_{i}arrow[0, +\infty]$ and $E:Harrow$

$[0, +\infty]$ are all lower semi-continuous, convex, and are not identically
equal $to+\infty$ . Let $J_{\lambda}^{i}$ and $J_{\lambda}$ be the resolvents of $E_{i}$ and $E$ respectively.

Theorem 5.11. Suppose that all $(H_{i}, d_{H_{i}})$ satisfy the condition (B).
Assume that $(H_{i}, d_{H_{i}})=(H, d_{H})$ for all $i$ and $(H, d_{H})$ satisfies (C), $or$

$(H, d_{H})$ is sepamble. If $E_{i}$ converges to $E$ in the Mosco sense, then for
any $\lambda>0$ we have the following (1) and (2).

(1) $E_{i}^{\lambda}$ strongly converges to $E^{\lambda}.$

(2) $J_{\lambda}^{i}$ stmngly converges to $J_{\lambda}.$

Proposition 5.12. If $E_{i}^{\lambda}$ strongly converges to $E^{\lambda}$ for any $\lambda>0$ , then
$E_{i}\Gamma$-converges to $E.$

Propositions 5.10, 5.12 and Theorem 5.11 together imply the follow-
ing

Corollary 5.13. Assume that $\{E_{i}\}$ is asymptotically compact and all
$(H_{i}, d_{H_{i}})\mathcal{S}$atisfies the condition (A). Then, the following (1) and (2)
are equivalent.

(1) $E_{i}$ compactly converges to $E.$

(2) $E_{i}^{\lambda}$ strongly converges to $E^{\lambda}$ for any $\lambda>0.$

6. CHEEGER TYPE SOBOLEV SPACE OVER $L^{p}$-MAPS

In this section, we prepare several notions for our main Theorem 1.1.

6.1. The space of $U$-maps. Let $(X, \mathcal{X}, m)$ be a $\sigma$-finite measure
space. Denote by $\mathcal{X}^{m}$ the completion of $\mathcal{X}$ with respect to $m$ . In
what follows, we simply say measumble (resp. $\mathcal{X}^{m}$ -measumble) for $\mathcal{X}-$

measurable (resp. $\mathcal{X}^{m}$-measurable). $A$ numerical function $f$ on $X$ is a
map $f$ : $Xarrow[-\infty, \infty]$ . For a measurable numerical function $f$ on $X,$

we set $\Vert f\Vert_{p};=(\int_{X}|f(x)|^{p}m(dx))^{1/p},$ $\Vert f\Vert_{\infty}$ $:= \inf\{\lambda>0||f(x)|\leq$

$\lambda$ m-a.e. $x\in X\}$ . For $p\in$ ] $0,$ $\infty]$ , denote by $U(X;m)$ the family of
$m$-equivalence classes of $\mathcal{X}^{m}$-measurable functions finite with respect
to $\Vert$ $\Vert_{p}$ . Denote by $L^{0}(X;m)$ the family of $m$-equivalence classes of
$\mathcal{X}^{m}$-measurable numerical functions $f$ : $Xarrow[-\infty, \infty]$ with $|f|<\infty$

m-a. $e.$
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Let $(Y, d)$ be a metric space. For $p\in$ ] $0,$ $\infty]$ and measurable maps
$f,$ $g$ : $Xarrow Y$ , define a pseudo distance $d_{p}(f, g)$ by $d_{p}(f, g)$ $:=\Vert d(f, g)\Vert_{p}.$

If $p<\infty$ , then

$d_{p}(f, g) :=( \int_{X}d^{p}(f(x), g(x))m(dx))^{1/p}$

If $p=\infty$ , then $d_{\infty}(f, g)$ is the $m$-essentially supremum of $x\mapsto d(f(x), g(x))$ .
We say that $f$ and $g$ are $m$-equivalent if

$f(x)=g(x)$ m-a.e. $x\in X$

and write $f\sim mg$ . For a fixed measurable map $h:Xarrow Y$ , we set
$L_{h}^{p}(X, Y;m) :=\{f\in \mathcal{X}/\mathcal{B}(Y)|d(f, h)\in L^{p}(X;m)\}/\sim m$

The map $h$ : $Xarrow Y$ is called a base map. If $m(X)<\infty$ and $h$ : $Xarrow Y$

is bounded, then $L_{h}^{p}(X, Y;m)$ is independent of the choice of such $h.$

Lemma 6.1. Let $(Y, d)$ be a metric space. For a fixed measumble map
$h:Xarrow Y$ and $p\in[1, \infty]$ , we have the following;

(1) If $(Y, d)$ is complete (resp. sepamble), then $(L_{h}^{p}(X, Y;m), d_{p})$ is
$so.$

(2) Suppose that $(Y, d)$ is a geodesic space and any two points can be
connected by a unique minimal geodesic. For given $\gamma_{0},$ $\gamma_{1}\in Y$

and each $t\in[0,1]$ , let $\gamma_{t}$ be the $t$ -point in a unique minimal
geodesic $\gamma$ : $[0,1]arrow Y$ joining $\gamma_{0}$ to $\gamma_{1}$ . Assume that for each
$t\in[0,1],$ $\gamma_{t}$ is continuous with respect to $(\gamma_{0}, \gamma_{1})$ . Then for
given $f_{0},$ $f_{1}\in L_{h}^{p}(X, Y;m)$ , the map $f_{t}$ : $Xarrow Y$ defined by
$f_{t}(x);=(f_{0}(x)f_{1}(x))_{t}$ belongs to $L_{h}^{p}(X, Y;m)$ and forms a $\min-$

imal geodesic joining $f_{0}$ to $f_{1}$ in $L_{h}^{p}(X, Y;m)$ . In particular,
$(L_{h}^{p}(X, Y;m), d_{p})$ is a geodesic space.

Theorem 6.2. Let $(Y, d)$ be a complete $p$ -uniformly convex space hav-
ing the weak $L$ -convexity of Busemann type. Fix a measumble map
$h:Xarrow Y$ . Then we have the following:

(1) $(L_{h}^{p}(X, Y;m), d_{p})$ is a complete $p$-uniformly convex space having
the weak $L$ -convexity of Busemann type.

(2) Let $\gamma$ : [$0,$ $\infty[arrow L_{h}^{p}(X, Y;m)$ be a minimal geodesic. Then for
each $x\in X$ and $L\in[0,$ $\infty[$ , there exists a minimal segment

$\tilde{\gamma}^{(L)}(x)$ : $[0, L]arrow Y$ such that $d_{p}(\gamma_{t},\tilde{\gamma}_{t}^{(L)})=0$ for all $t\in[0, L],$

where $\tilde{\gamma}^{(L)}$ : $[0, L]arrow L_{h}^{p}(X, Y;m)$ is a minimal segment defined
by $\tilde{\gamma}^{(L)}(x)$ .

(3) Assume that $(Y, d)$ satisfies the quasi-$L$ -convexity of Busemann
type for some $(L_{1}, L_{2})$ . $Then(L_{h}^{p}(X, Y;m), d_{p})is$ so.

Lemma 6.3. Let $(Y, d)$ be a complete $p$ -uniformly convex space having
the weak $L$ -convexity of Busemann type such that $(Y, d)$ satisfies (A).
Let $F$ be a closed convex subset of $(L_{h}^{p}(X, Y;m), d_{p})$ . For each $x\in X,$

set $F(x)$ $:=\{f(x)|f\in F\}.$

34



(1) For each $x\in X,$ $F(x)$ is convex in $(Y, d)$ .
(2) Take an $f\in L_{h}^{p}(X, Y;m)$ . Then $\pi_{F}(f)=(\pi_{\overline{F(x)}}(f(x)))_{x\in X}$ in

$L_{h}^{p}(X, Y;m)$ .

Theorem 6.4. Let $(Y, d)$ be a complete $p$ -uniformly convex space hav-
$ing$ the weak $L$ -convexity of Busemann type. The following hold:

(1) If $(Y, d)$ satisfies (A), then $(L_{h}^{p}(X, Y;m), d_{p})$ does so.
(2) If $(Y, d)$ satisfies (B), then $(L_{h}^{p}(X, Y;m), d_{p})$ does so.
(3) If $(Y, d)$ satisfies (C), then $(L_{h}^{p}(X, Y;m), d_{p})$ does so.

Corollary 6.5. For $p\geq 2,$ $U(X;m)$ satisfies (A), (B), (C).

Corollary 6.6. Let $(Y, d)$ be a complete $CAT(\kappa)$ -space with a diameter
strictly less than $R_{\kappa}/2$ . Then we have the following:

(1) $(L_{h}^{2}(X, Y;m), d_{2})$ is a 2-uniformly convex space with the same
pammeter $k\in$ ] $0,2]$ having the weak $L$ -convexity of Busemann
type.

(2) $(L_{h}^{2}(X, Y;m), d_{2})$ satisfies (A), (B) and (C).

Hereafter, we focus only on the case that $X$ is a locally compact
separable metric space and $h\equiv 0$ , where $0\in Y$ is a fixed base point.
We write $L_{o}^{r}(X, Y;m)$ instead of $L_{h}^{r}(X, Y;m)$ in such a case.

Definition 6.7 (Lipschitz Maps with Compact Support). The support
$supp[u]$ ‘for a measurable map $u:Xarrow Y$ is defined to be the subset
of $X$ satisfying the condition that $x\in X\backslash supp[u]$ if and only if there
exists an open neighborhood $U$ of $x$ such that $u=0$ on $U$ . Denote
by $C_{o}^{Lip}(X, Y)$ the set of Lipschitz continuous maps $u$ : $Xarrow Y$ with
compact support $supp[u].$

Theorem 6.8. Suppose that $(Y, d)$ is a separable geodesic space. Let
$r\geq 1$ . Then $C_{o}^{Lip}(X, Y)is$ adense subset of $(L_{o}^{r}(X, Y;m), d_{r})$ .

6.2. Upper gradient and Cheeger’s Sobolev spaces. In what $fo1-$

lows, let $(X, d_{X})$ be a metric space, and $U\subset X$ be an open set, and $m$

be a Borel regular measure on $X$ such that any ball with finite positive
radius is of finite positive measure. Let $(Y, d)$ be a complete geodesic
space.

Definition 6.9 (Upper Gradient). A Borel function $g:Uarrow[O, \infty]$ is
called an upper gmdient for a map $u$ : $Uarrow Y$ if, for any unit speed
curve $c:[0, \ell]arrow U$ , we have

$\Phi(u(c(0)), u(c(\ell)))\leq\int_{0}^{\ell}g(c(s))ds.$
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Definition 6.10 (Upper Pointwise Lipschitz Constant Function). For
a map $u:Uarrow Y$ and a point $z\in U$ , we define

Lip $u(z):= \varliminf_{rarrow 0}\sup_{d_{X}(z,w)=r}\frac{d(u(z),u(w))}{r},$

$d(u(z), u(w))$
Lip $u(z):=$ lim sup

$rarrow 0_{0<d_{X}(z,w)<r} d_{X}(z, w)$

and we put Lip $u(z)=$ Lip $u(z)=0$ if $z$ is an isolated point. Clearly
Lip $u\leq$ Lip $u$ on $X$ . We call Lip $u$ the upper pointwise Lipschitz con-
stant function for $u.$

Cheeger [4] proved that for a locally Lipschitz function $u:Uarrow \mathbb{R},$

then Lipu, hence Lip $u$ , is an upper gradient for $u$ . We next define
the Cheeger type Sobolev spaces. Fix a point $0\in Y$ as a base point
and $p\in[1,$ $\infty[$ . Let $U_{o}(U, Y;m)$ be the space of $L^{p}$-maps as defined in
the previous section. We write $L^{p}(U, Y;m)$ instead of $U_{o}(U, Y;m)$ for
simplicity.

Definition 6.11 (Cheeger Type Sobolev Space). For $u\in L^{p}(U, Y;m)$ ,
we define the Cheeger type $p$-energy of $u$ as

$E_{p}(u) := inf\varliminf\Vert g_{i}\Vert_{L^{p}(U;m)}^{p},$

$\{(u_{i},g_{i)\}_{i=1}^{\infty}}iarrow\infty$

where the infimum is taken over all sequences $\{(u_{i}, g_{i})\}_{i=1}^{\infty}$ such that
$u_{i}arrow u$ in If$(U, Y;m)$ as $iarrow\infty$ and $g_{i}$ is an upper gradient for $u_{i}$ for
each $i$ . The Cheeger type $(1, p)$ -Sobolev space is defined by

$H^{1,p}(U, Y;m) :=\{u\in L^{p}(U, Y;m)|E_{p}(u)<\infty\}.$

By definition, if $u=v$ m-a.e. on $U$ , then $E_{p}(u)=E_{p}(v)$ .

The following is proved in [26].

Theorem 6.12 (Lower Semi Continuity of Energy, see Theorem 2.8 in
[26] $)$ . If a sequence $\{u_{i}\}_{i=1}^{\infty}$ converges to $u$ in $U(U, Y;m)$ , then $E_{p}(u)\leq$

$\varliminf_{iarrow\infty}E_{p}(u_{i})$ .

Definition 6.13 (Generalized Upper Gradient). $A$ function $g\in L^{p}(U;m)$

is called a genemlized upper gmdient for $u\in H^{1,p}(U, Y;m)$ if there ex-
ists a sequence $\{(u_{i}, g_{i})\}_{i=1}^{\infty}$ such that $g_{i}$ is an upper gradient for $u_{i}$ and
$u_{i}arrow u,$ $g_{i}arrow g$ in $L^{p}(U, Y;m),$ $L^{p}(U;m)$ respectively as $iarrow\infty.$

From the definition of the p–energy, $E_{p}(u)\leq\Vert g\Vert_{L^{p}(U;m)}^{p}$ for any gen-
eralized upper gradient $g\in L^{p}(U;m)$ for $u\in H^{1,p}(U, Y;m)$ .

Definition 6.14 (Minimal Generalized Upper Gradient). $A$ general-
ized upper gradient $g\in L^{p}(U;m)$ for a map $u\in H^{1,p}(U, Y;m)$ is said
to be minimal if it satisfies $E_{p}(u)=\Vert g\Vert_{L^{p}(U;m)}^{p}.$
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Hereafter, we assume that $(Y, d)$ is weakly $L$-convex with $L_{1}L_{2}=0,$

that is, $(Y, d)$ is a Busemann’s NPC space. Then the distance function
$d:Y\cross Yarrow[O,$ $\infty[$ is convex. We know the following results:

Lemma 6.15 (See, Lemma 3.1 in [28]). Suppose that $(Y, d)$ is weakly
$L$ -convex with $L_{1}L_{2}=0$ . Let $u_{1},$ $u_{2}$ : $Uarrow Y$ be $map_{\mathcal{S}}$ . For any upper
gmdient $g_{1},$ $g_{2}$ for $u_{1},$ $u_{2}$ respectively and $0\leq\lambda\leq 1$ . The function
$g:=(1-\lambda)g_{1}+\lambda g_{2}$ is an upper gmdient for the map $v:=(1-\lambda)u_{1}+\lambda u_{2}.$

In particular, for any $u_{1},$ $u_{2}\in H^{1,p}(U, Y;m)$ with $1\leq p<\infty$ and for
any $0\leq\lambda\leq 1$ , we have

$E_{p}((1-\lambda)u_{1}+\lambda u_{2})^{1/p}\leq(1-\lambda)E_{p}(u_{1})^{1/p}+\lambda E_{p}(u_{2})^{1/p}.$

Theorem 6.16 (See, Theorem 3.2 in [26]). Let $p\in$ ] $1,$ $\infty[$ . Suppose
that $(Y, d)$ is weakly $L$ -convex with $L_{1}L_{2}=0$ . Then for any $u\in$

$H^{1,p}(U, Y;m)$ , there exists a unique minimal genemlized upper gmdient
$g_{u}$ for $u.$

For $p\in]1,$ $\infty[$ , we define a distance $d_{H^{1,p}}$ on $H^{1,p}(U, Y;m)$ : for $u,$ $v\in$

$H^{1,p}(U, Y;m)$ ,

(6.1) $d_{H^{1,p}}(u, v) :=d_{p}(u, v)+\Vert g_{u}-g_{v}\Vert_{L^{p}(U;m)},$

where $g_{u},$ $g_{v}$ is the minimal generalized upper gradient for $u,$ $v\in$

$H^{1,p}(U, Y;m)$ , respectively. Let $(\overline{H}^{1,p}(U, Y;m), d_{\overline{H}^{1,p}})$ be the comple-
tion of $(H^{1,p}(U, Y;m), d_{H^{1,p}})$ .

The following assertion is not declared clearly in [26]. We provide
its proof for completeness.

Theorem 6.17. Let $p\in$ ] $1,$ $\infty[$ . We have $\overline{H}^{1,p}(U, Y;m)=H^{1,p}(U, Y;m)$ .

Remark 6.18. Theorem 6.17 does not necessarily imply the $d_{H^{1,p}}$ -comple-
teness of $H^{1,p}(U, Y;m)$ , that is, $d_{\overline{H}^{1,p}}=d_{H^{1,p}}$ on $H^{1,p}(U, Y;m)$ .
6.3. $p$-harmonic maps. In this subsection, we still assume that $(Y, d)$

is weakly $L$-convex with $L_{1}L_{2}=0.$

Definition 6.19 ($p$-Harmonic Map). For $v\in H^{1,p}(U, Y;m)$ , let
$H_{v}^{1,p}(U, Y;m)$ be the $d_{H^{1,p}}$-closure of

$\{u\in H^{1,p}(U, Y;m)|suppd(u, v)\Subset U\}.$

$v$ is said to be $p$-harmonic if and only if $E_{p}(v)= \inf_{u\in H_{v}^{1,p}(U,Y;m)}E_{p}(u)$ .

Theorem 6.20. Suppose $p\geq 2$ . If there exists $C>0$ such that for
any $f\in H_{0}^{1,p}(U)$ ,

$\int_{U}|f|^{p}dm\leq C\int_{U}|g_{f}|^{p}dm$ , (Poincar\’e Inequality)

then there exists a $p$ -harmonic map in $H_{v}^{1,p}(U, Y;m)$ for given $v\in$

$H^{1,p}(U, Y;m)$ .
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