goooboooobgon
0 18420 20130 69-88

Asymptotic Behavior for Systems of Nonlinear Wave
- Equations with Multiple Speeds in 3D

MUK - BEFE FILEA—ER (Soichiro Katayama)
Department of Mathematics, Wakayama University

1. INTRODUCTION
For the variables ¢t € R and z = (z1, 7o, 73) € R3, we use the notation

0 0
O=0=—, Oph == fork=1,2,3,
0 t 8t ’ k axk or ’
and A, = Y5_, 82,
We consider the Cauchy problem for systems of semilinear wave equations
of the type

(L1) (87 - A )ui(t, x) = Fi(du(t,z)), i=1,...,N, (t,z) € (0,00) x R3
with small initial data
(1.2) u(0,z) = ef(z), (Bu)(0,z) =eg(z), =z € RS,

where c; >0 for 1 <1< N, U= (uj>1Sj.<_N7 and du = (aa’u,j)lgjsjv,osasg. We
suppose that f,g € C°(R3 RY), and that ¢ is a small positive parameter.
For simplicity we assume that each F; = F;(Y) is a homogeneous polynomial
of degree p in its arguments, where p is an integer with p > 2.

We say that the small data global existence (or SDGE in short) holds if for
any f,g € C3°(R3 RY) there exists a positive constant &, such that (1.1)-(1.2)
admits a unique global solution u € C*°([0,00) x R% RY) for any ¢ € (0, ).
It is known that SDGE holds when p > 3, however SDGE does not hold in
general when p = 2. For example, consider the following single wave equation:

(13) (87 = PA)ult,z) = (Bu(t,x))° for (¢,z) € (0,00) x R

with initial data (1.2), where c is a positive constant; it is known that there

exists a pair of functions (f,g) € (CP(R3; R))2 such that the solution u to
(1.3) with initial data (1.2) blows up in finite time for any € > 0 (see John
[4]; we will give the proof in Section 6 below for the reader’s convenience). By
contrast, a simple observation due to Nirenberg shows that we have SDGE for
a single equation with a special kind of quadratic nonlinearity:

(1.4) (82 —2A)u(t, z) = (c’)tu(t,x))2 —A\Vu(t,z)|?, (t,z) € (0,00) x R

with initial data (1.2), where V,u = (81u, Bou, 83u). If we introduce a new
unknown

(1.5) v(t,z) =1— exp(——u(t,x)),
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then we have 9,v = e ™*(,u) and 92v = e™*(82u — (Jpu)?) for 0 < a < 3;
hence we obtain the Cauchy problem
(1.6) (02 — A)v(t,z) =0, (t,x) € (0,00) x R?,
(1.7) v(0,z) =1 — e~ @ (80)(0,2) = e /Pg(z), z € R3,
which has a global solution. Conversely, if v is a global solution to (1.6)-(1.7)
with (f,g) € (C{)’°(R3;R))2, and ¢ is small enough, then we can show that
lu(t, z)| < 1 for all (t,z) € [0,00) x R3; thus

u(t,z) = —log(l —v(t,z)), (t,z) € [0,00) x R®
is well-defined, and this u is a global solution to (1.4) with initial data (1.2).
Hence the case where p = 2 is the critical one, and we restrict our consideration

to the case p = 2 in what follows. In other words, we assume that there are
some real constants Cf‘.b such that

3

(1.8) Z > CE(Bar) (Bpus).-

7,k=1 a,b=0

For the single speed case where ¢; = ¢z = -+ = cy(= ¢), Klainerman [9]
introduced a sufficient condition for SDGE, known as the null condition (see
also Christodoulou [1]): it is closely related to the example (1.4) above. To
state the null condition, we define the reduced nonlinearity

N 3
Frdw, X;0)= Y Y ClhwawnX;Xi

7,k=1a,b=0

for w = (wl,wg,wg) € S?and X = (X;,...,Xn) € RN with wy = —c, where
the constants CZ are from (1.8). We say that the null condition (for the single
speed case where ¢; = --- = ¢y = ¢) is satisfied if we have

(1.9) Ered(w,X;c)=0, wesS: XeRY, i=1,...,N.

Let ¢ be a positive constant, and let a and b be integers with 0 < a < b < 3;
we introduce the null forms

(1.10) Qo(, b3 ¢) =(0up)(8%) — (V) - (Vath),
(1.11) Qab(0, V) =(0ap)(00¥) — (Gbip)(Cat)
for smooth functions ¢ and 1. Then we can show that the null condition for
the single speed case ¢; = --- = ¢y = c is satisfied if and only if there exist
some constants A;;x and B % such that
N 3
Fy(0u) = Z AikQo(uj ugic) + > Y B Qa(ujue), i=1,...,N.
7,k=1 k=1 a,b=0

Note that the null condition is satisfied for (1.4), however the transformation
like (1.5) does not work for systems in general, even if only the null form (1.10)
is contained in the nonlinearity.
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Concerning the asymptotic behavior of the solution, we can also show that
the global solution « under the null condition for the single speed case is
asymptotically free in the energy norm, that is to say, there exists some free
solution u* = (] )1<;<n to the system of the free wave equations

(67 — GA)uf (t,2) =0, i=1,2,...,N, (t,z) € (0,00) x R?

such that

(1.12) lim ZH i = w0, =0,

t—o00

where the energy norm |[v(t)| g, is given by

Ol =5 [ (00t +1Vao ) do

for a smooth function v = v(t,z) and a positive constant c.

Klainerman’s result is extended by Yokoyama [14] to the multiple speed
case where the propagation speeds cj,co,...,cy do not necessarily coincide
with each other (see also Sideris-Tu [12], and Sogge [13]). Suppose that F; has
the form (1.8). We divide F; into three kinds of nonlinear terms, depending
on the propagation speeds: Let i = 1,..., N be given; for 1 < j,k < N there
are two cases ¢; = ¢, and c; # cy; the case ¢; = ¢y is further divided into two
cases ¢; = ¢y = ¢;, and ¢; = ¢ # ¢;; accordingly we divide F; as

(1.13) F;(0u) = N;(6u) + R}(0u) + RN (Ou), i=1,...,N,
where

NACHEIESY Z 2 (Bat;) (Oyus),

{4,k; cJ—ck-—c,} a,b=0

RY(Ou) = Z Z k(c') u;)(Opus,),

{4,k; cj#ci } a,b=0

Rluw = > Z C2h (9au;) (Bpug).-

{4,k; cj=cx#c;} a,b=0

We refer to R} and RI' as nonresonant terms of types I and II, respectively.
Note that the nonresonant terms of types I and II do not appear in the single
speed case. The null condition for the multiple speed case is a restriction on
N;(0u): We define

NFY(w, X ¢) = Z Z kaawa X

{4,k; cj=cr=c;} a,b=0
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for w = (wy,wy,ws) € S? and X = (X1,...,Xn) € RY with wy = —c;; we say
that the null condition for the multiple speed case is satisfied if we have

(1.14) N*w, X;¢) =0, weS XeRN, i=1,...,N.

Similarly to the single speed case, the null condition for the multiple speed
case is satisfied if and only if we have

(1.15) N;(Ou) = Z AijkQo(uj, uk; ci)

{j.k; cj=ck=c:}

+ Z B%blcQab(uj)uk)) 1= ].,...,N

{4.k; cj=cx=c:}

with some constants A;;x and Bgf. Note that (1.14) is a natural extension
of the null condition (1.9) for the single speed case. Yokoyama proved SDGE
under the null condition for multiple speed case.

If the null condition for the multiple speed case is satisfied, we can show
that N;(Ou) and R}(Au) decay faster than we can expect for general quadratic
terms: The interaction between the main parts of the solutions is canceled
out for the null forms, while the difference of the propagation speeds makes
the interaction of the main parts weaker for the nonresonant terms of type I.
Especially we have

(1.16) N;(8u) + Ri(8u) € L'((0,00); L*(R?))

under the null condition (see Lemma 4.4 below). Making use of (1.16), one
can easily show that the solution is asymptotically free if R = 0 for all
i=1,...,N (see Lemma 2.1 below for the details). The situation is differ-
ent for the nonresonant terms of type II. We cannot expect that the nonres-
onant terms of type II decay faster than general quadratic terms; we have
RMu) ¢ L((0,00); LX(R?)) in general, and it is not clear whether the so-
lution is asymptotically free or not when RI # 0. We have to analyze the
interaction between the fundamental solution and R in order to understand
the effect of the nonresonant terms of type II. For this purpose we will inves-
tigate the asymptotic pointwise behavior of the solutions.

Before we proceed to the main results on the asymptotic behavior for the
system of semilinear wave equations, we review the known results for the linear
wave equations in the next section.

Throughout this paper, various positive constants, which may change line
by line, are denoted by the same letter C.

2. AsYMPTOTIC BEHAVIOR FOR LINEAR WAVE EQUATIONS

Let ¢ > 0, and we consider the following Cauchy problem for the single free
wave equation with the propagation speed c:

(2.1) (02 — AL )u(t, z) =0, (t,z) € R x R3,
(2.2) v(0, ) = ¢(z), (Ow)(0,z) = P(x), z € R%.
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If (p,9) € CP(R?) x C°(R?), it is well known that the solution v can be

written as
2.3 ot ) = Uolp, =) (et )
for (t,z) € (0,00) x R3, where U, is given by
1 1
24 Uplp, W](t, ) := — as, + o (——/ dS)
(24)  Ulp,yl(t,z) = — Iy_x;:tw(y) v+ 0| o [y-x|=t90(y) y

for (t,x) € (0,00) x R3. Here dS, denotes the area element on the sphere of
radius ¢ centered at z. For (¢,z) € (—00,0) x R3, we have

v(t, ) = Uplip, —c 1) (—ct, z).
From these expressions, we see that
supp ¢ Usupp ¢ C Bg := {z € R®|z| < R}
with R > 0 implies
(2.5) u(t,z) =0, |la|-clt|| >R, teR.

This property is called the Huygens principle.
For ¢ > 0 and t € R, we define the mapping S.(t) by

Se(t) : C5°(R?) x C°(R?) 3 (0, 9) = (v(t, ), Bv(t, ) € C5°(R®) x C§°(RY),

where v is the solution to (2.1)-(2.2). Then we have the conservation of the
energy

26) IS, ) lm. (= || (062, ), 00(2, )]
where || - ||z, is defined by

o0l =5 [ (1Vest@l + S ) do

1 1
9 (IISOV|§;1<R3) + EEH¢H%Q(R3)> -

Here H'(R?) denotes the homogeneous Sobolev space. Note that lv(t, )Eee =
| (v(t,-), B2, M|l ;. where | - ||z is the energy norm defined in Section 1.
By the uniqueness of the solution, we get

Se(t+ s) = Se(t)S:(s), t,s€R.

Let H. be the completion of C§°(R?) x C5°(R3) with respect to the norm ||-||z,.
Then for each t € R, S.(¢) can be uniquely extended to a unitary operator on
H., and we write S.(t) also for this extended operator. Observe that we have
(¢,%) € H. if and only if (p,) € H(R3) x L*(R3). For (p,¢) € H,, if we
write (v(t,-), (Bw) (¢, ) = Se(t)(p, %), v gives the solution to (2.1)~(2.2) with
(v,0w) € C(R; H'(R?)) x C(R; LA(R?)).

o) =l V), teR,
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Let (o, %) € HY(R3)x L*(R®), and let G € L*((0,T); L*(R?)) for any T > 0.
We consider the Cauchy problem for the inhomogeneous wave equation

(2.7) (87 - A )uw(t, z) = G(t,z), (t,z) € (0,00) x R,
(28)  w(0,z) =p(z), (Bw)(0,2) =¢(x),  ze€R
Then by the Duhamel principle, we get

29) (w(t,),8(t, ")) = S:8)(p,¥ / Su(t = 7)(0,G(r,)dr, t>0.

Lemma 2.1. If G € L*((0,00); L*(R3)), then the solution w to (2.7)~(2.8) is

asymptotically free in the energy norm; namely there is (p*,¢*) € H'(R?) x
L?(R®) such that

lim [|w(t) — w+(t)||E’c (— lim H t), Bw(t)) — (w +(t),(ﬁ?tuﬁ’(tﬁ))“Hc) =0,

where (w¥(t), Bw* (1)) = Sc(t)(p*,¥*), namely w* is the solution to the free
wave equation (02 — c2A)wt = 0 with initial data (w*, Owt) = (p*,9v™).

< / |S:(=7)(0, G(7)
1 (<]
- / G(llas d < o0

Proof. Since we have

/Ooo Se(—7) (O, G(’r))dr

it follows that

(%, ¥") = (p,¥) + i S.(-=7)(0,G(r))dr € H,

is well-defined. Let( t), Gw*(t)) = Sc(t)(¢™,¥*). Then we obtain
H t), Grw(t) ( (1), 6 w*(t) )

/t Sc(t—T)(O,G(T))dT / [Se(t = 7)(0,G() || 5, 47
1 (o ]
= [ 160y dr =0 (1~ o0)

This completes the proof. a

8

He

Now we turn our attention to the asymptotic pointwise behavior of the
solution v to (2.1)-(2.2) with (¢, %) € C(R?) x C&(R3). If we look at the
solution for large t with fixed z, it just vanishes after a finite time because
of the Huygens principle. Hence it is more reasonable to look at the solution
for large ¢ (or large |z|) with |z| — ct being fixed. For a compactly supported
function g, we can easily expect that we have

= / 9(y)ds,
Yyw=o

lim (/ g(y)dSy)
t—o0 ly—z|=ct

|z|=r, z/|z|=w, r—ct=0
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with 0 € R and w € S? being fixed (see the figure below), where dsS,, is the
area element on the plane {y € R%y-w = o}.

R3

Y

\y-@za

In this way, taking the expression (2.3) and (2.4) into account, we are led to
the Friedlander radiation field. For p,v € C$°(R?), we define the Friedlander
radiation field

(2:10) Folp,v)(0,0) = - (RIl(0,w) ~ (GRIe)(0,0)), (0:) € Rx &,

where R[v] denotes the Radon transform of v, i.e.,

Rv)(o,w) = / v(y)dS;.

Y- w=0o
Note that supp ¢ U suppvy C Bp implies
(2.11) Fole, ¥(0,w) =0, |o| >R, we S
We also have Folp, 9] € C°(R x S?).

Lemma 2.2. Let ¢ > 0 and 0 < ¢y < c¢. Then for any (p,v) € CP(R3) x
Cs°(R3) and any v > 0 there exists a positive constant C such that

(2.12)  |ru(t,rw) — V(r — ct,w)| + |r(8w)(t, rw) — (=) (8,V)(r — ct,w)|

+ Z |7(Okv) (t, Tw) — wi (8, V) (r — ct,w)|

<SCA+t+r) M1+t —r))7"
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forr>cot > 1 and w = (w1, wa,ws) € S? where
(v(t, ), Opu(t, )) = S.(t)(p,¥), V(o,w) = Folp, c 1) (o, w).

Proof. In view of the Huygens principle and (2.11), (1 + |ct — r|) is bounded
in the support of the functions on the left-hand side of (2.12), hence it suffices
to prove the result for v = 0. The proof for the case where ¢ = 1, ¢y = 1/2,
and v = 0 can be found in Hérmander [3] for instance (see also Katayama-
Kubo [6]), and we only need some apparent modification to obtain the general

case. ad

For (p,v) € H'(R?) x L*(R3), we do not have the asymptotic pointwise
behavior like Lemma 2.2, but the Friedlander radiation field still works through
the translation representation of the solution for such initial data. We define

the mapping T, by
(2.13) T.:CP(R?) x CP(R®) 3 (p,%) — 9,Folp, c 9] € CR x §2),
namely we define
(Te(p,¥)) (0,w) = 8 Fo[w, ¢ YP)(0,w), (o,w) € Rx S2.
T. is called the translation representation because we have
(TcSc(t)(cp,i//)) (o,w) = (Tc(go,w))(a —ct,w), (o,w)€RxS% teR.
It is known that we have

ITe(0, ¥)llz sy = 10, ), (0,9) € CE(R®) x C5°(R?),

and that 7, can be uniquely extended to an isometric isomorphism from H.
onto L?(R x S?) (see Lax-Phillips [10, Chapter IV]); we write T, also for this

extension.
For a real-valued function W € L?(R x §2), we define an R*-valued function

D.W by

(214)  (DW)(t,z) = (2|7 W(lz| = ct, 2/I2) (=1, 1/ |z], 22/ |2], 73/ |])
for (t,z) € [0,00) x (R®\ {0}). Note that we have

(D.W)(t, x)|*dx =2/0 ( . W (r — ct,w)|2d5w> dr

|
R3

_—_2/ ( , W (o, w)IQdSw) do < 2||W||%2(Rxsz),

—ct

where dS,, is the area element on S%. The following lemma is an essential tool
to combine the asymptotic pointwise behavior to the asymptotic freedom in
the energy norm:

Lemma 2.3. Assume that W € L*(R x S?) be given. We put
(90,1/’) = Tc_IW € H,
(v(t, ), Bev(t, ) == Se(t) (@, ¥)(= S. ()T, W) € H..



Then we have

lim |DW(t,-) = (¢ 6w(t, ), Vou(t )HLZ(R:, =0.

t—o00

Proof. Let € > 0. Then there is (g, %) € C(R3) x C°(R3) such that
(e, %) — (vo,%0) 1. <&
We put (vo(t, ), 8ivo(t, ) = Se(t)(o,%0), and Wy = Te(0,%0). Then we get
1w =v0)(O)llz.c =IW = Woll2mxsz) = [l %) = (w0, %o)ll . <&
It follows that
||DCW(t, ) - (c—lﬁtv( ), Vzu(t HL2(R3)
< HDcWO(tv ) — (C_latvo( ) Vao(t )”Lz(RB)
+ V2] (v = ) (1) |5, + V2IW = Woll2mus2)
< |DWo(t, ) = (7 Beuo(t, ), Vvo(t, ) || gy + 2V 2.

Thus our task is to prove

(2.15) tlil’glo HDCWO(t, ) — (c—lat’UO( ) \Y 'U0 HL2(R3) =0.
Indeed, once (2.15) is established, we get
lim sup ||DCW(t, ) = (7' Ow(t,-), Vau( “Lz(RS) < 2v/2¢
t—oo

for any £ > 0, which implies the desired result immediately.

We choose 0 < ¢y < ¢. Since (g, 1) is compactly supported, there is a
positive constant R such that supp e U suppg C Bgr. Then the Huygens
principle and (2.11) yield

(c_latvo(t, x), vao(t,x)) = D Wy(t,z) =0

€ [0,00) x R? with |z| < ct — R. Observing that we have cot < ct — R

for (¢,z) €
t > R/(c — c), we obtain

for

1/2
(216) (/ ’DCWO(t, .’13) —_ (C“lat'v()(t, x), vaO(t, :L')) |2 d$> =0
|z|<cot

for t > R/(c — cp).
By Lemma 2.2, we get

IDWa(t, 2) — (¢ n(t, 2), Vavo(t,)[* < C(L -+t + [o]) o] 2
for |z| > ¢t > 1, which leads to

1/2
(2.17) (/ | DWo(t, z) — (¢ Bwo(t, z), Voo (t, )) |2 d:c>
|z|>cot

o0 1/2
SC(/ (1+t+7")*2d""> <CAL+H™2 =0 (t— oo).
0

We obtain (2.15) from (2.16) and (2.17). This completes the proof. a

7
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Let u = (uy,...,un) be the solution to (1.1)-(1.2). From Lemma 2.3, we
see that if we can find V; = V;(o,w) € L% (R x S?) such that

(2.18) hmZH (¢ 'Beui(t, -), Voui(t, -)) — eD Vil )”L2(R3 =0,

t-—00

then we obtain

lim Z lui(t) = uf () ||lEe; =0,

t—o0

where (uf(t,-), S (t,")) = eSci( )T;'V;. Our strategy here is to obtain

1

(2.18) by deriving asymptotic pointwise behavior, which is similar to that
in Lemma 2.2, for systems of semilinear wave equations.

3. THE MAIN RESULTS

The first result is the asymptotic pointwise behavior for the general case
under the null condition for the multiple speed case.

Theorem 3.1. Fiz 0 < § < 1. Let0 < ¢y < 1 so that ¢g < min{cy,...,cn}/2.
Suppose that the null condition (1.14) for the multiple speed case is satisfied.
Let u = (uj)1<j<n be the global solution to (1.1)~(1.2). Then for any f,g €
C(R3; RY) and sufficiently small e > 0, there exist a function V = (Vi)1<i<n
of (o,w) € R x S2, and a positive constant C such that

(3.1) |7 (Bew;) (¢, rw) — (—)eVi(r — cit,w)|

3
+ Z |r(Bkus) (¢, Tw) — wreVi(r — cit, w)|

k=1

<Ce(l+t+7r) A+ |ct—7r))%, 1<i<N

forrt > cot > 1 and w = (w1, w2, ws) € S2. Moreover we have
(3.2) [Vi(o,w) — (8,U7) (o,w)| < Ce(1+ o)™, 1<i<N

for (0,w) € R x 8%, where U? = Fo[fi,g:]. Here V may depend on €, but C is
independent of €.

Comparing (3.1) with (2.12), we see that du; asymptotically behaves like
derivatives of free solutions in the pointwise sense even if R}' # 0. Since UY

vanishes for large |o| (see (2.11)), (3.2) implies that V; € L%(R x S?). Moreover
we have

1/2
(3.3) lim (/ |Dci‘/;(t,x)|2da:> =0.
|z|<cot

t—o00

From the a priori estimate for u (see Lemma 4.3 below), we get

1/2
(3.4) lim (/ | (¢ 0uui(t, x), Voui(t, ) |2dx) = 0.
|z|<cot

t—o00



By (3.1), we obtain

1/2
(3.5) (/ | (¢ Bult, ), Vou(t, ) — eDg, Vilt, x)]2dac)
|z|>cot

<Ce(l+t)~ WD L0 (¢t — o0).
From (3.3), (3.4), and (3.5) we obtain (2.18), which leads to the following:

Corollary 3.2. Suppose that the null condition (1.14) for the multiple speed
case is satisfied. Then, for any f, g € CZ(R3; RY) and sufficiently smalle > 0,
there exist f+ = (f;_)lstN € Hl(RS;RN) and g+ = (gj)lstN € L2(R3;RN)
such that

tll,rgé Z ” HE Ci T 07

where u = (u;)1<j<n S the global solution to (1. 1) —(1.2), and each uy z's the
solution to (87 — c2Ag)u = 0 with initial data v} = f; and S} = g at
t=20.

Hence the global solution to (1.1) with small data is asymptotically free in
the energy norm even if the nonresonant terms of type II are present in the

nonlinearity.
Next we will see that we have a better asymptotic pointwise behavior if the
nonresonant terms of type II are not included in the nonlinearity.

Theorem 3.3. Let 0 < p < 1, and let ¢y and u = (uj)1<j<nv be as in The-
orem 3.1. Suppose that the null condition (1.14) for the multiple speed case
is satisfied. If we assume R = 0 for 1 < i < N in addition, then for
any f,g € C(R3;RYN) and sufficiently small € > 0, there exist a function
U = (U)i<i<n of (o0,w) € R x 5%, and a positive constant C such that
(3.6) Irui(t,rw) — elUs(r — eit,w)| < Ce(L+t+r)™", 1<i<N,

(3.7) Im(Oewi) (T, Tw) — (—¢:)e(0,U;) (r — ¢t w)|

3
+ Y |r(Bkws) (¢, 7w) — wie (B, U3) (r — eit, w)|
k=1
<Ce(l+t+r) A +|gt—r)™?, 1<i<N

forr>cpt > 1 and w = (wy,ws,ws3) € S2. Moreover we have
(3.8) Z (85U — (8EUY) (o,w)| < Ce(1 + o) 7>

for (o,w) € R X 5% and k = 0,1, where U? is defined as in Theorem 3.1.

Comparing (3.7) with (3.1), the convergence rate is improved; more impor-
tantly (3.6) gives the asymptotic pointwise behavior of u = (uy, ..., uy) itself.
We see that not only Ou; but also u; behaves similarly to the free solutions
when R¥=0for 1 <i< N.

79
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Now we are led to the question whether we can obtain an estimate corre-
sponding to (3.6) when the nonresonant terms of type II are included in the
nonlinearity, and u itself behaves similarly to the free solution: The next result
shows that this is impossible, and that u behaves differently from free solu-
tions in some case where R # 0; in other words, the assumption RI' = 0 for
1 <1 < N is essential to derive (3.6) in Theorem 3.3.

Theorem 3.4. Let 0 < c; < c¢;. Suppose that u = (u1,uz) be the global
solution to

(6 - G = ABua)?, 3
3.9 t 0 N
( ) {(a? - C%A;L-)’U,Q = (at’Uq)z, ( ,J)) € ( OO) X

with initial data v = €f and Oyu = €9 at t = 0, where A is a nonnegative
constant. Then there exist f, g € C(R3;R?), R >0, Ty > 0, and C > 0 such
that

(3.10) Cle(1+elog(2+1t)) < |rug(t,z)| < Ce (1 +elog(2 +t))
for To < cot < |z| < cot + R, provided that € is small enough.

This estimate shows that u, decays slightly slower than the free solutions.

More precisely, (3.6) implies
ui(t,z) ~ Ce(l+t + |z])™!
along the line {|z| — ¢;t = 0,z/|z| = w} for large ¢ and fixed (o,w) € R x S?,
while (3.10) leads to
up(t,z) ~ Ce(L+t+ |z|) 7 (1 + elog(2 + t))

along the line {|z|—cyt = 0, z/|z| = w} for large t and fixed (o,w) € [0, R} x 2.

In conclusion, the effect of the nonresonant terms of type II is so weak that
the solution u exists globally, its derivatives behave similarly to those of the

free solutions, and the solution u is asymptotically free in the energy norm;
but it is strong enough to affect the decay rate of the solution w itself.

4. PRELIMINARY RESULTS

For ¢ > 0 we put O, = 82 — ¢*A,. We introduce

S =to;+x- Vg,
Q2 =(4, Q, Qa) =XV, = (33233 — 230,, 2301 — 103,102 — 33231),
where the symbols “-” and “x” denote the inner and the exterior products in

R3, respectively. We put
I'= (PO)Flw"‘)F7) = (S,Q,a)

with 8 = (0, 81, 0s,03). We write ['* = [g°I'y*---I'77 with a multi-index
a = (ag, a1, .. .,ar). Since we have [S,0.] = —20,, and [8,,0,] = [Q;,0, =0
for0 <a<3and 1< j<3, we have

I%p(t,x) = (To +2)*T{" - - T7"0ep(t, )
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for a smooth function ¢(¢,z) and a multi-index o = (ag, oy, ..., ar). We can
check that [[,, ] = ZZ:O C&®Ty, and [Ty, 8] = Zi:o D@9, with appropriate
constants C2® and D@®. For a nonnegative integer m and a smooth function
© = ¢(t,x), we define
ot 2)lm = ) ID%(t,2)]
|a|<m
Let z = (z1,22,23) € R® We use the polar coordinates r = |z| and w =
(w1, w2, ws) = z/|x|. We put 8, = Z?zl(:cj/h:l)aj, and
aﬂ:,c = 5t + Car
for ¢ > 0. Then we have
Ve =wl, — 17 lw x Q,
1

1
0 =5(0-c+0uc)s B = o(=0-o+0:0),

1
O4.c =;(cS + (r — ct)dy)
From these identities we obtain the following:

Lemma 4.1. For ¢ > 0, there ezists a positive constant C' such that

0up(t, @) — (=) Do, @) + Y 18kt &) — we D op(t, )|

< CL+r)" (et 2)h + et — 7] |0p(t, z)])
for a smooth function ¢ = p(t,z), where D_, = —(2c)™10_ .. We also have

lr@tgo(t,a:) - (—c)DA,C(er(t,x)H + Z |r8k<,o(t,:c) - ka~,C(T<p(t, x))|
< C(let, z)|1 + et —r[[0p(t, T)|) .

This lemma says that the main contribution to d,¢ and e (k = 1,2, 3) are
(=c)D- cp and wyD_ ., respectively, as far as we have a good control of |¢|;
and |ct — r||0p|. As a corollary, we obtain the enhanced decay for the null
forms; the key observation is that we have

Qo(w, %5 ¢) = (—=¢)*(D_ep)(D- ) — |w*(D—e0) (D cth) = 0,
Qab(@ﬂ/’) ~ (waD—,c(P)(wbD——,cw) - (wbD—,c(p)(waD—,cw) =0
with wy = —c, where “~” indicates the main contribution:

Corollary 4.2. Let ¢ > 0, and let m be a nonnegative integer. Suppose that
Qp,¥) = Qolp,¥;¢) or Qo) = Qab(p,¥). Then there is a positive con-

stant C' such that we have
1Qw1, w5) o SO(L + 7)™ (10wt hts + [0y Gu0l)
+ C(L+ 1) r — ct| |Ow]imy2)|Ow|m
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for any smooth function w = (wy, ws), where [m/2] denotes the largest integer
not exceeding m/2.

Using the weighted L™-L> estimates for the wave equation, and the en-
ergy inequality, Yokoyama. [14] obtained the following a priori estimate, which
leads to global existence of small solutions with the help of the local existence
theorem:

Lemma 4.3. Let 0 < § < 1, and let m be a nonnegative integer. Suppose that
the null condition is satisfied. Then for the solution u to (1.1)~(1.2), we have

_ l4+ct+r
. ; < 1 -
(4.1) lui(t,z)|m <Ce(l+t+7) (log prap r|> :
(4.2) |0u;(t, 2)|m <Ce(1+ 7)1 + |cit — 7|)*

fori=1,..., N, provided that € is sufficiently small.

We are in a position to observe good behavior of the null forms and the
nonresonant terms of type I. We put

w_(t,7) = j=r§1'i.r.1N(1 + |ejt — 1]).

Let 0 < g K 1. If0§t<c0‘l or 0 < r < ¢pt, we have
I1+t+r<C+|ct—r|)
for i =1,..., N with a positive constant C, and (4.2) yields
(4.3) |ou(t,z)|2, < Ce*(1+t+7)"2(1+7)72
Let 7 > cot > 1. Then we have 1 +¢t+r < C(1 + ). Hence we get
|0ui(t, ) |m < CE* (L +t+1) A + |eit — 7).

Since c; # ¢ implies (1+|c;t—7|) " (1 +|ext —7|)7 < CA+t+7)"tw_(t,r)?,
we obtain

|R{(Ou)|m < CE2(L+t+7)Pw_(¢,7)!, r2>cot 21

We fix 0 < § < 1. Then we have logs < Cs’ for s > 1. Hence, in view of
Corollary 4.2, it follows from (4.1) and (4.2) that

INi(0U)|m < CE2(L+t+7) 3P (A + et —r|) 7270, 7> cot > 1.
Summing up we get the following lemma.

Lemma 4.4. Fiz 0 < § < 1. Suppose that the null condition is satisfied, and
let u be the solution to (1.1)—(1.2). Then for a nonnegative integer m we have

| Ny (OU) | 4| RH(OU) | < CE*(L+t4+7) "2 ((L4+t+7) T Pw_(¢, 7)1 0+ (1+7) %)

in [0,00) x R? for small €.



Now (1.16) follows immediately from Lemma 4.4, because we get
1Vi(Ou) (D) |2y + 1 Ri(0u) ()| 2mey < Ce*(1+ )7
By contrast we only have
(4.4) |R(Ou)lm < CE(1+7)72 Y (I+[et —r]) 72,
{diciei}

which just gives |[RI(Ou)(t)||r2ms) < Ce?(1+ 1)

In [5] the author studied the Cauchy problem for

Oew; = Fy(u,0u), i=1,...,N

in three space dimensions, where F; = N;(0u) + RX0u) + RM(u, du) with a
new kind of nonlinearity

3
RM(u,0u)= > > Bfu;(Oaux)

{i.k; cj#cx} a=0

r- We refer to R as the nonresonant terms of type
III. Global existence of small solutions under the null condition (1.14) is proved
for the system above (see [8] for further development). Employing the a priori
estimates obtained in [5] we get the following.

with some constants B%

Lemma 4.5. Let 0 < p < 1, and let m be a nonnegative integer. Suppose that
the null condition is satisfied, and R (Ou) =0 for alli=1,...,N. Then for
the solution u to (1.1)—(1.2), we have

(4.5) [ui(t, 2)|m <Ce(l +t+ 7)1 + |t — )7L,

(4.6) |0u; (t, )| <Ce(1+ 1) Y1+ |t —r|)~17°

fori=1,... N, provided that ¢ is sufficiently small.

This is the reason why we have the improvement in Theorem 3.3 compared
to Theorem 3.1.

Remark 4.6. Knowing the global existence results in [14] and [5], one may
expect that SDGE holds for the system

Oc.wi = Fi(u, 0u) := N;(0u) + Ri(0u) + RM0u) + R (u,0u), 1<i<N

when the null condition (1.14) is satisfied, because SDGE for the case R =
0 is proved in [14], and SDGE for the case RI' = 0 in [5]. However this
expectation turns out to be false in general; Ohta [11] proved that SDGE fails
for the system

Oc,u1 = Fi(u, 0u) := ua(Opuq),

Og,us = Fy(u, 0u) := (Opuy)?
when 0 < ¢; < ¢p. Observe that F; and F3 are nonresonant terms of types III
and II, respectively.
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5. OUTLINE OF THE PROOF FOR THEOREMS 3.1 AND 3.3

Finally we would like to explain the main tool to obtain the asymptotic
pointwise behavior. Switching to the polar coordinates, we have

(5.1) 8y o(D—o(rp)) = —(2¢) 7 (rOce + r Aup)

for a smooth function ¢, where A, Z '_1 2. We use this equation to obtain

the asymptotic pointwise behavior by applymg Proposition 5.1 below. Then

with the help of Lemma 4.1 we get the asymptotic pointwise behavior for du.
We choose 0 < ¢y < 1 and set

Ao = {(t,7) € (0,00) x (0,00);7 > cot > 1}.
Fori=1,...,N, we put to;(c) = max{—0c/(¢c; — co),1/co}.

Proposition 5.1. Let ci,...,cy be positive constants. Fix arbitrary i €
{1,...,N}. Suppose that ui,...,un and k1,..., KN are nonnegative constants
satisfying the following:

o ui>landk; >0 ifc;=c

o ;>0 and k; >1ifc; #c;.
If we have

By v(t,rw) = G(t,T,w), (t,7) € Ao, w € S?,

and

(5.2) |G(t,r,w)| < (L4+t+r) (14|t —r)7™™, (1) € Ay, w € S?

uMz

with some nonnegatzve constants By, ..., By, then there ezists a positive con-
stant C such that
o(t,r,w) = V(r —cit,w)| SC > Bi{l+t+7) M (14|t —r|)™
{Ficj=ci}
+ > Bi(l+t+r)™
{7icj#ci}
for any (t,7) € Ay and w € S?%, where

[e o]

V(o,w) = v(tos(0),m0i(0),w) + / G(s,0 + ¢cis,w)ds

to,i(0)
and 1 ;(0) = 0 + cito;(0). Here the constant C may depend on u; and k;, but
are independent of B;.

Proof. The proof is similar to that of Lemma 2.1 in a sense: We can explicitly
solve v and we obtain

(5.3) lu(t,r,w) — V(r — gt ,w)| < /too |G(s,r — et — s),w) | ds.

We use (5.2) to estimate the right-hand side of (5.3). We omit the details of
calculation here. a



Observe that the difference of the propagation speeds plays important role
in the assumption of Proposition 5.1.

Outline of proof of Theorem 3.1. We set (u(t,-),dul(t,-)) = Se,(t)(fi, 9i),
and %; = u; — eu). By Lemma 2.2, we know that the asymptotic pointwise

i .
behavior for d,u)(t, ) can be written in terms of d,U°(co,w). Hence our task
is to obtain the asymptotic behavior for 9,%; for 0 < a < 3.

We set
Ui(t,r,w) = D_ ., (rt;(t, rw)).
Then we have
Oy Vi(t, ryw) = Ri(t, 7, w),
where
Ri(t,r,w) = —(2¢:) 7 (rFi(Ou(t, rw)) + 1 AL Ti(t, Tw))
(cf. (5.1)). It follows from Lemma 4.4 and (4.4) that
rE(Bu(t,rw))| < > CEX(L+t+7) (1 + [ejt — r[) 717
{Gicj=ci}
+ Y CELAt+r)T L+ et — r]) 72
{dicj#eid
for (t,7) € Ag and w € S?. Similarly to (4.1), we get
Ir AT (¢ Tw)| < CE*(L+t+7) 21 + et — 7)) 7%, (¢,7) € Ag, w € 52

Hence if we put

517;(0, w) =7 (to,i(a),fro,i(a),w) +/ Ri(s,0 + ¢;s,w)ds,

t(),,;(a')
then Lemma 5.1 implies
(5.4)  [ilt,rw) — eVi(r — ity w)| < CEXA + ¢+ 1) (1 + |eit — 7))

for (t,7) € Ag and w € S?. Finally we set V;(0,w) = U%(0,w)+ Vi(o,w). Using
Lemmas 4.1 and 4.3, we obtain (3.1) and (3.2) from (5.4). O

Outline of proof of Theorem 3.3. Going similar lines to the proof of Theo-
rem 3.1, but using Lemma 4.5 instead of Lemma 4.3, we can easily obtain
(3.7) and (3.8) for k = 1. We use (3.7) to obtain

lru(t, r,w) — eUi(r — cit, w)| <

/ O (Au;(t, Aw) — eUi(X\ — ¢it,w)) dA

SCs/ (T+t4+ X)L+ et — A|)Pd),

which yields (3.6). (3.8) for k = 0 can be similarly obtained from (3.8) for
k = 1. This completes the proof. O
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6. OUTLINE OF THE PROOF OF THEOREM 3.4

Before we state the outline of the proof of Theorem 3.4, we give a simple
proof of the blow up of solutions for (1.3), following the argument in Godin [2]
where two space-dimensional case was treated (see also [7]), because the nec-
essary tools are similar.

Proposition 6.1. Consider the Cauchy problem
(6.1) Ou(t,z) = (Bu(t, ), (t,z) € [0,T) x R?,
(6.2) u(0,z) = 0, (6u)(0,z) = eg(x), z € R°.

If g(# 0) € CP(R?) is radially symmetric and nonnegative, then for anye > 0
there is a positive and finite time T, such that

lim sup |(Gwu)(t, x)| = oo.
Jim sup |(8:u)(1, )

and we cannot extend the classical solution u beyond the time T..

Proof. Let g(z) = ¢g*(|z|) with some function g*. Then we can show that  is
radially symmetric in z-variable, namely there exists a function u* = u*(Z,7)
such that u(t,z) = u*(t, |z|). We put g(r) = rg*(|r]) for r € R, and a(t,r) =
ru*(t, |r|) for (¢,7) € [0,00) x R. Then we have

e r4ct 1 t r+c(t—7) 1 )
(6.3)  a(t,r) =%/T g(A\)dA + 55/0 /; :\-(atu) (1, A)dX | dr,

~ct —c(t—T)

and

gir—ct)+g(r+ct) 1 f° (8yw)* (7,7 + ct — 7))
2 *3 /0 r+c(t—7) ar

1 [t (8a)?(r,r —c(t — 7))
+—/0 =7 dr.

(6.4) Oowu(t,r) =€

2

We suppose that g*(A) > 0 for all A > 0. Let r — ct = ¢ > 0. Then, since
g(r +ct) > 0, we get

3 eg(o) 1 /t (Byw)?(T,cT + o)
> 22 4 = :
ovu(t,ct + o) > 5 +t3 ; p dr =: W(t, o)
We obtain \ ,
(G)?(t,ct +0) _ W?(t,0)
— >
AW (t, o) 2(ct+0) T 2(ct+o0)’
which leads to
2cW(0,0)
oyu(t, ct > W{(t > ’
tU(,C +0)— (70) —~2C_W(O’O_)log(co__1t+1)
2ceg(o)

“4c—eg(o) log(co 1t + 1)
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whose right-hand side blows up to infinity as ¢ /' ¢™'o (exp (4¢/(e§(0))) — 1)
if g(o) > 0. This completes the proof. O

Now we turn our attention to the outline of the proof of Theorem 3.4. We
suppose that g = (g1, g2) is nonnegative and radially symmetric, and let u be
the solution to (3.9) with initial data u = 0 and d;u = eg at t = 0. We assume
0 <ecy <. Fori=1,2, we write g;(z) = g7 (|z|) and w; (¢, |z|) = u}(t,|z|). We
put g;(r) = rg;(|r]) for r € R, and ;(¢,7) = rul(t,|r|) for (t,r) € [0,00) x R.

From a similar formula to (6.4), we get

g —cit
(6.5) zmm@ﬂzs@@73220
for r > ¢;¢. Similarly to (6.3), we obtain
€ T-4+c2t
66 wtn =g [ pt
Co r—cCot
1 t r4co(t—7) 1 )
+ — —(Optty)*(1, N)d\ | dT.
- 2¢2 g /T—cz(t—r) )\( ki) (7, )

From (6.6) the upper bound in (3.10) is easily obtained (see also (4.1)). To
obtain the lower bound, we assume that 0 < r — ¢yt = 0 < R. If t is large
enough, we have

2cot -R
{hA;COF sfsi%%f;—nQTSASQT+R}
1 — 02 1 2

C{(r,A);0<7<t, r—c(t—7)<A<r+c(t—1)}.
Hence it follows from (6.5) and (6.6) that

€ 2¢cat+o
(67) ﬂg(t, Cgt + O') Z% / gg(/\)dA
2 Jo

2czt+a——R

2 e Fe c1T+R
+ 6—/ e (/ AHa (A — clT)|2d)\) dr

8C2 fod T

61—62
€ 2cot+o
> e ga(A)dA
= g2(A)
2¢cpt+0—~R

82 R c1teg 1
— g1 () [Pd ) d
+802</0 B0 )/ i
€2

c]—

for large t, which implies the desired lower bound if we choose appropriate g,
and gs. ]
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