On Butson Hadamard matrices and

an extension of difference matrices

熊本大学·教育学部 平峰 豊 Yutaka Hiramine

Department of Mathematics, Faculty of Education, Kumamoto University, Kurokami, Kumamoto, Japan hiramine@kumamoto-u.ac.jp

1 Introduction

Definition 1.1. Let U be a group of order u and k, λ positive integers. In this note, we often identify a subset S of U with the group ring element $\sum_{x \in S} x \in \mathbb{Z}[U]$.

A
$$k \times u\lambda$$
 matrix $\begin{bmatrix} d_{1,1} & \cdots & d_{1,u\lambda} \\ \vdots & & \vdots \\ d_{k,1} & \cdots & d_{k,u\lambda} \end{bmatrix}$ $(d_{ij} \in U)$ is called a (u, k, λ) -difference matrix over U (for short, a (u, k, λ) -DM over U) if $d_{i,1}d_{\ell,1}^{-1} + \cdots + d_{i,u\lambda}d_{\ell,u\lambda}^{-1} = \lambda U$ for any i, ℓ $(1 \le i \ne \ell \le k)$.

Example 1.2.
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix}$$
 is a $(3,3,1)$ -DM over $\langle a \rangle \simeq \mathbb{Z}_3$.

The following result on difference matrices is well known.

Result 1.3. (D. Jungnickel [6]) If there exists (u, k, λ) -DM, then $k \leq u\lambda$.

A $(u, u\lambda, \lambda)$ -DM is called a $GH(u, \lambda)$ matrix (a generalized Hadamard matrix).

The following conjecture is well known.

Conjecture. If there exists a $GH(u, \lambda)$ matrix over a group G, then G is a p-group for some prime p.

The following are well known construction methods for of difference matrices

Result 1.4. (M. Buratti [1]) Let $G = \mathbb{Z}_{p^{n_1}} \times \cdots \times \mathbb{Z}_{p^{n_t}}$, where p is a prime. Set $e = \sum n_i$ and $f = \lfloor e / \max\{n_1, \dots, n_t\} \rfloor$. Then there exists a $(p^e, p^f, 1)$ -DM over G.

Result 1.5. (M. Buratti [1]) If $G \triangleright N$ and there exist a $(|G/N|, k, \lambda)$ -DM over G/N and a $(|N|, k, \mu)$ -DM over N, then there exists a $(|G|, k, \lambda \mu)$ -DM over G.

Result 1.6. (Kronecker product) Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be a (u, k_1, λ_1) -DM over G and (u, k_2, λ_2) -DM over G, respectively. Then $A \otimes B = [a_{ij}B]$ is a $(u, k_1 k_2, u \lambda_1 \lambda_2)$ -DM over G.

Result 1.7. (W. de Launey, [8]) Let G be any p-group of order $q = p^n$. Then there exists a (q, q^{2t}, q^{2t-1}) -DM over G for any positive integer t.

There is a relation between difference matrices and orthogonal arrays.

Definition 1.8. A $k \times u^2 \lambda$ array A over a u-set U is called an $OA_{\lambda}(k,u)$ (orthogonal array) if any $2 \times u^2 \lambda$ subarray of A contains each 2×1 column vector exactly λ times.

An $OA_{\lambda}(k, u) A_D$ obtained from a (u, k, λ) -DM D over U is as follows:

 $A_D := [Dg_1, \dots, Dg_u], \text{ where } U = \{g_1, \dots, g_u\} [3].$

The above array can be extended to $OA_{\lambda}(k+1,u)$ in the following way: [3]: Let $D = [D_1, \dots, D_u] \ (\forall D_j : k \times \lambda \text{ matrix})$ be a division of (u, k, λ) -DM D and set $J := J_{\lambda}(= [1, \dots, 1])$. Then the following is an $OA_{\lambda}(k+1, u)$.

$$M = \begin{bmatrix} D_1g_1 & \cdots & D_1g_u & D_2g_1 & \cdots & D_2g_u & \cdots & \cdots & D_{\lambda}g_1 & \cdots & D_{\lambda}g_u \\ Jg_1 & \cdots & Jg_1 & Jg_2 & \cdots & Jg_2 & \cdots & \cdots & Jg_u & \cdots & Jg_u \end{bmatrix}$$
 We note that U does not act on M as a class regular automorphism group of

M. Therefore D can not, in general, be extended to a $(u, k+1, \lambda)$ -DM over U.

We consider following problem.

Problem. Given a group U of order u and an integer $\lambda > 0$, what can we say about k for which a (u, k, λ) -DM over U exists?

Definition 1.9. Let M be a (u, k, λ) -DM over a group U of order u and set $d_M = u\lambda - k$. We call d_M the deficiency of M.

Result 1.10. (Drake, [5]) Assume that λ is odd and a group U has a nontrivial cyclic Sylow 2-subgroup, If there exists (u, k, λ) -DM, then $k \leq 2$.

Result 1.11. (Lampio-Ostergard, [7]) The following holds.

- (i) $\max\{k \mid \exists (3, k, 5) \text{-DM over } \mathbb{Z}_3\} = 9.$
- (ii) $\max\{k \mid \exists (5, k, 3)\text{-DM over } \mathbb{Z}_5\} = 8.$
- (iii) $\max\{k \mid \exists (6, k, 2)\text{-DM over } \mathbb{Z}_6\} = 6.$

Examples of maximal difference matrices 2

Example 2.1. (Drake [5]) Let $G = \{g_1 = 1, \dots, g_{2n}\}$ be a group of order 2n with a cyclic Sylow 2-subgroup. If $2 \nmid \lambda$, then the following is a maximal $(2n,2,\lambda)$ -DM over G

Example 2.2. Let p be a prime and set $a_{ij} = ij \pmod{p}$ $(i, j \in \mathbb{Z}_p)$. Then $D_p = [a_{ij}]_{0 \le i, j \le p-1}$ is a (p, p, 1)-DM over \mathbb{Z}_p . When p = 3, 5, we can verify that D_p is the only maximal (p, k, 1)-DM. Therefore, any (p, k, 1)-DM with $p \in \{3, 5\}$ can be extended to (p, p, 1)-DM. However, when p = 7, the following is also a maximal (7, 3, 1)-DM:

$$M = \left[egin{array}{cccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 2 & 3 & 4 & 5 & 6 \ 0 & 2 & 5 & 1 & 6 & 4 & 3 \end{array}
ight], \; ext{where} \; d_M = 4.$$

Example 2.3. The following is a maximal (3,3,2)-DM over \mathbb{Z}_3 .

$$M = \left[egin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 1 & 2 & 2 \ 0 & 0 & 2 & 2 & 1 & 1 \end{array}
ight], ext{ where } d_M = 3.$$

However, there exists a (3,6,2)-DM.

Example 2.4. The following is a unique maximal (8, k, 1)-DM over $\langle a, b \rangle \simeq \mathbb{Z}_4 \times \mathbb{Z}_2$.

We note that there exists a $(p^3, p, 1)$ -DM over $\mathbb{Z}_{p^2} \times \mathbb{Z}_p$ for any prime p by a result of Buratti [1].

Concerning Example 2.4 we would like to raise the following question. Question. Does there exist a $(p^3, p^2, 1)$ -DM over $\mathbb{Z}_{p^2} \times \mathbb{Z}_p$ for a prime p?

Example 2.5. The following is the only maximal (9, k, 1)-DM over \mathbb{Z}_9 .

Let $U = \langle a \rangle \simeq \mathbb{Z}_{p^2}$. As $U/\langle a^p \rangle \simeq \langle a^p \rangle \simeq \mathbb{Z}_p$, by a result of Buratti [1], the exists a $((p^2, p, 1)$ -DM over \mathbb{Z}_{p^2} for any prime p.

Concerning Example 2.5 we would like to raise the following question. Question. Is a $(p^2, p, 1)$ -DM the only maximal DM over \mathbb{Z}_{p^2} ?

Example 2.6. The following is a unique maximal (4, k, 2)-DM over \mathbb{Z}_4 .

Example 2.7. The following are maximal (4, k, 2)-DMs M over $\{0, a, b, c\} \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$.

We give an infinite family of maximal difference matrices.

Proposition 2.8. Let p be a prime with $p^n \nmid \lambda$ and let L be the multiplication table of $K = GF(p^n)$. Set $J = J_{\lambda}(=(1, \dots, 1))$. Then $M = L \otimes J$ is a maximal (p^n, p^n, λ) -DM over \mathbb{Z}_p^n .

Proof. Set $K = \{k_0 = 0, k_1, k_2, \dots, k_s\}$, $s = p^n - 1$. Then the following is a (p^n, p^n, λ) -DM over (K, +).

$$M = \left[egin{array}{ccccc} k_0 k_0 J & k_0 k_1 J & \cdots & k_0 k_s J \ k_1 k_0 J & k_1 k_1 J & \cdots & k_1 k_s J \ \cdots & \cdots & \cdots & \cdots \ k_s k_0 J & k_s k_1 J & \cdots & k_s k_s J \end{array}
ight].$$

Assume that we can obtain $(p^n, p^n + 1, \lambda)$ -DM $\widehat{M} = [m_{ij}] (0 \le i \le s + 1, 0 \le j \le p^n \lambda - 1)$ by adding the s + 2 $(= p^n + 1)$ -th row, say w to M. Let $w = (m_{s+1,0}, m_{s+1,1}, \cdots, m_{s+1,p^n \lambda - 1})$ and $m = \#\{i \mid m_{si} = 0, 0 \le i \le \lambda - 1\}$. We count $N = \#\{(i,j) \mid m_{i,j} = m_{s+1,j}, 0 \le i \le s, 0 \le j \le p^n \lambda - 1\}$ in two ways. Then we have $ap^n + (p^n \lambda - \lambda) \cdot 1 = \lambda p^n$. Thus $ap^n = \lambda$, contrary to $p^n \nmid \lambda$. \square

The following is a table of k for which there exists a maximal (u, k, λ) -DM over an abelian group U with $2 \le u\lambda \le 12$.

			<u> </u>	
u	$oldsymbol{U}$	λ	k	$u\lambda$
2	\mathbb{Z}_2	1	. 2	2
3	\mathbb{Z}_3	1	3	3
4	\mathbb{Z}_4	1	2	4
4	$\mathbb{Z}_2 imes \mathbb{Z}_2$	1	4	4
2	\mathbb{Z}_2	2	4	4
5	\mathbb{Z}_5	1	5	5
2	\mathbb{Z}_2	3	2	6
3	\mathbb{Z}_3	2	3,6	6
6	\mathbb{Z}_6	1	2	6
7	\mathbb{Z}_7	1	3,7	7
8	$\mathbb{Z}_2 imes \mathbb{Z}_4$	1	4	8
8	\mathbb{Z}_8	1	2	8
2	\mathbb{Z}_2	4	4	8
4	\mathbb{Z}_4	2	4	8
4	$\mathbb{Z}_2 imes\mathbb{Z}_2$	2	4,6,8	8

<u> </u>	14.			
u	U	λ	k	$u\lambda$
8	\mathbb{Z}_8	1	2	8
8	$\mathbb{Z}_2 imes \mathbb{Z}_2 imes \mathbb{Z}_2$	1	4,8	8
- 9	\mathbb{Z}_9	1	3	9
9	$\mathbb{Z}_3 imes \mathbb{Z}_3$	1	4,6	9
3	\mathbb{Z}_3	3	9	9
10	\mathbb{Z}_{10}	1	2	10
5	\mathbb{Z}_5	2	4,5,6,10	10
2	\mathbb{Z}_2	5	2	10
11	\mathbb{Z}_{11}	1	3,4,5,11	11
12	\mathbb{Z}_{12}	1	2	12
2	\mathbb{Z}_2	6	4,12	12
-3	\mathbb{Z}_3	4	6,9,12	12
4	$\mathbb{Z}_2 imes \mathbb{Z}_2$	3	4,5,6,12	12
4	\mathbb{Z}_4	3	2	12
6	\mathbb{Z}_6	2	4,5,6	12

From the table, it is conceivable that $d_M \geq 2$ except for GH matrices. From this, we would like to propose the following conjecture (see [4]).

Conjecture. Any $(u, u\lambda - 1, \lambda)$ -DM over a group U can be extended to a $(u, u\lambda, \lambda)$ -DM over U (i.e. $GH(u, \lambda)$ matrix).

The following two results might be relevant to this.

Result 2.9. (W. de Launey, [8]) Assume that $2 \nmid u\lambda$ and there exists a $(u, u\lambda, \lambda)$ -DM over G. Let p be a prime divisor of u and m a divisor of the square free part of λ . Then $\operatorname{Ord}_p(m) \equiv 1 \pmod{2}$.

Result 2.10. (A. Winterhof, 2002) Assume that $2 \nmid u\lambda$ and there exists a $(u, u\lambda - 1, \lambda)$ -DM over G. Let p be a prime divisor of u and m a divisor of the square free part of λ . Then $\operatorname{Ord}_p(m) \equiv 1 \pmod{2}$.

We note that though the conditions of the above two results are different, the conclusions are the same.

3 An extension to GH matrices and BH matrices

Concerning the above conjecture we prove the following.

Theorem 3.1. Let p be a prime and G an abelian group of order $q (= p^n)$. Then $(q, q\lambda - 1, \lambda)$ -DM over G can be extended to a $GH(q, \lambda)$ matrix over G.

To show this we use the following well known result on characters.

Result 3.2. (inversion formula) Let \widehat{G} be the set of characters of an abelian group G and let $f = \sum_{g \in G} a_g g \in \mathbb{C}[G]$. Then, $a_g = \frac{1}{|G|} \sum_{\chi \in \widehat{G}} \chi(f) \chi(g^{-1})$, In

particular, if
$$\chi(f) = 0$$
 for any $\chi \in \widehat{G}, \chi \neq \chi_0$, then $f = \frac{\chi_0(f)}{|G|} \sum_{g \in G} g$.

Assume that a $(q, q\lambda - 1, \lambda)$ -DM N over abelian group G is extended to $GH(q, \lambda)$ matrix over G, say M $(M_{ij} \in G)$. Let $\chi \neq \chi_0$ be any character of G and define $\chi(M) := [\chi(M_{ij})]$. Let p^e be the exponent of G. Then $\chi(M_{ij}) \in \langle \zeta_{p^e} \rangle$, where ζ_{p^e} is a primitive p^e th root of unity. As $M_{i,1}M_{\ell,1}^{-1} + \cdots + M_{i,u\lambda}M_{\ell,u\lambda}^{-1} = \lambda G$, for any i, ℓ with $i \neq \ell$, $\chi(M)$ satisfies the following.

$$\chi(M)\chi(M)^* = mI \quad (I = I_m, \ m = u\lambda). \tag{1}$$

Similarly, $\chi(N)$ is an $(m-1) \times m$ matrix satisfying

$$\chi(N)\chi(N)^* = mI_{m-1}. (2)$$

A matrix with the property (1) is defined in [2].

Definition 3.3. A matrix B of degree m is called a Butson Hadamard matrix BH(m,s) if $B_{ij} \in \langle \zeta_s \rangle$ for all i,j and B satisfies $BB^* = mI_m$.

In this note we define a matrix with the property (2) as follows.

Definition 3.4. We call a $(m-1) \times m$ $(m \geq 3)$ matrix A a near Butson Hadamard matrix and denote it by NBH(m,s) if $A_{ij} \in \langle \zeta_s \rangle$ and A satisfies $AA^* = mI_{m-1}$.

Example 3.5. The following is a BH(6,6).

$$M = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & -\omega & \omega^2 & -1 & \omega & -\omega^2 \\ 1 & 1 & \omega & \omega & \omega^2 & \omega^2 \\ 1 & \omega & \omega^2 & 1 & \omega & \omega^2 \\ 1 & -1 & \omega & -\omega & \omega^2 & -\omega^2 \end{bmatrix} , \qquad \omega = \zeta_3$$

The above conjecture gives rise to the problem of the extension of NBH(m, s) to BH(m, s).

Problem. Can NBH(m, s) be extended to BH(m, s)?

Concerning this we show that NBH(m, s) can be extended BH(m, s) under the condition that m is a power of a prime.

Proposition 3.6. Let p be a prime and set $\theta = \zeta_{p^n}$. Let $A = [v_{ij}]$ be a $NBH(m, p^n)$ matrix such that $v_{11} = v_{21} = \cdots = v_{m-1,1} = 1$.

$$M = \begin{bmatrix} 1 & v_{12} & \cdots & v_{1,m} \\ 1 & v_{22} & \cdots & v_{2,m} \\ \vdots & \ddots & \ddots & \ddots \\ 1 & v_{m-1,2} & \cdots & v_{m-1,m} \end{bmatrix}$$

Set $v_i = (v_{i1}, \dots, v_{im}) \ (1 \le i \le m-1)$. Then,

- (i) $p \mid m$,
- (ii) Set $v = (m, 0, \dots, 0) (v_1 + \dots + v_{m-1})$. Then each entry of v is an element of $\langle \theta \rangle$. In particular, each column sum of M is m-1 or an element of $-\langle \theta \rangle$, and
- (iii) Let \tilde{A} be a matrix of degree m adding v to M as a row. Then \tilde{A} is a $BH(m,p^n)$ matrix.

To show the proposition we use the following lemma.

Lemma 3.7. Let p be a prime and set $\theta = \zeta_{p^n}$. For $a_0, \dots, a_{p^n-1} \in \mathbb{Q}$, assume that (*) $a_0 + a_1\theta + \dots + a_{p^n-1}\theta^{p^n-1} = 0$. Then,

- (i) $a_i = a_j$ whenever $i \equiv j \pmod{p^{n-1}}$ and
- (ii) if $a_0, \dots, a_{p^n-1} \in \mathbb{Z}$, then $\sum_{0 \le i \le p^{n-1}} a_i \equiv 0 \pmod{p}$.

Sketch of the proof

The cyclotomic polynomial $\Phi_{p^n}(x) = \frac{x^{p^n}-1}{x^{p^n-1}-1}$ is a minimal polynomial of θ over \mathbb{Q} . As $\Phi_{p^n}(x) = x^{(p-1)p^{n-1}} + x^{(p-2)p^{n-1}} + \cdots + x^{p^{n-1}} + 1$,

$$(**) \ \theta^{(p-1)p^{n-1}} + \theta^{(p-2)p^{n-1}} + \dots + \theta^{p^{n-1}} + 1 = 0.$$

 $(**) \quad \theta^{(p-1)p^{n-1}} + \theta^{(p-2)p^{n-1}} + \dots + \theta^{p^{n-1}} + 1 = 0.$ Hence $\theta^{(p-1)p^{n-1}+t} = -\theta^{(p-2)p^{n-1}+t} - \dots - \theta^{p^{n-1}+t} - p^t$ for any t with $0 \le t \le t$ $p^{n-1}-1$. Substituting these into (*) and using the minimality of (**) we can obtain the lemma.

Proof of Proposition 3.6

Set $I = \{0, 1, \dots, p^n - 1\}$. Let c_i be the number of θ^i contained in the multiset $\{v_{11}\overline{v_{21}}, v_{12}\overline{v_{22}}, \cdots, v_{1m}\overline{v_{2m}}\}$. As $v_{1}\overline{v_{2}}^{T} = 0$, $\sum_{i \in I} c_{i}\theta^{i} = 0$ and $\sum_{i \in I} c_{i} = m$. Therefore $p \mid m$ by (ii) of Lemma 3.7.

As $v = (m, 0, \dots, 0) - (v_1 + \dots + v_{m-1}), v \cdot v_i = m - v_i \cdot v_i = 0$. Hence $v \perp v_1, \dots, v_{m-1}$. On the other hand, setting $\alpha_t = \sum_{1 \leq i \leq m-1} v_{it}$ $(2 \leq t \leq m)$, we have $v = (1, -\alpha_2, \dots, -\alpha_m)$. Moreover $v_1 + \dots + v_{m-1} = (m-1, \alpha_2, \dots, \alpha_m)$. From this, $0 = (v_1 + \cdots + v_{m-1}, v) = m - 1 - \alpha_2 \overline{\alpha_2} - \cdots - \alpha_m \overline{\alpha_m}$. Thus $\alpha_2\overline{\alpha_2}+\cdots+\alpha_m\overline{\alpha_m}=m-1$. Let a_{tj} $(0\leq j\leq p^n-1)$ be the number of the value θ^j appeared in the multiset $\{v_{1,t}, v_{2,t}, \cdots, v_{m-1,t}\}$. As $\alpha_t = \sum_{1 \le i \le m-1} v_{it}$, it follows that

$$\alpha_t = a_{t,0} + a_{t,1}\theta + a_{t,2}\theta^2 + \dots + a_{i,p^n-1}\theta^{p^n-1}$$

$$a_{t,0} + a_{t,1} + \dots + a_{t,p^n-1} = m-1$$
(3)

As $\alpha_i \overline{\alpha_i} = \sum_{i,k \in I} a_{ij} a_{ik} \theta^{j-k} = \sum_{r \in I} \left(\sum_{k \in I} a_{i,k+r} a_{i,k} \right) \theta^r$, we have

$$\sum_{r \in I} \left(\sum_{2 \le i \le m} \sum_{k \in I} a_{i,k+r} a_{i,k} \right) \theta^r = m - 1$$

$$\tag{4}$$

Comparing the coefficients of $\theta^{sp^{n-1}}$ $(0 \le s \le p-1)$ in (4) and applying the lemma, we have

$$\sum_{2 \le i \le m} (a_{i,0}^2 + \dots + a_{i,p^n-1}^2) - (m-1)$$

$$= \sum_{2 \le i \le m} \sum_{0 \le k \le p^n-1} a_{i,k+sp^{n-1}} a_{i,k} \quad (1 \le \forall s \le p-1)$$

From this,
$$\sum_{2 \le i \le m} \sum_{0 \le k \le p^n - 1} (a_{i,k+sp^{n-1}} - a_{i,k})^2 = 2(m-1).$$

Thus, by (3),
$$\sum_{0 \le k \le p^n - 1}^{2 \le i \le m} (a_{i,k+sp^{n-1}} - a_{i,k})^2 = 2 \quad (2 \le \forall i \le m - 1).$$

It follows that, for each i, there exists a unique ℓ $(0 \le \ell \le p^{n-1} - 1)$ such that

$$\{a_{i,k}, \ a_{i,k+sp^{n-1}}, \ \cdots, \ a_{i,k+(p-1)p^{n-1}}\}$$

$$= \begin{cases} \{c_{\ell}, \ \cdots, \ c_{\ell}, \ c_{\ell} - 1\} & \text{if } k = \ell \text{ and} \\ \{c_{k}, \ \cdots, \ c_{k}, \ c_{k}\} & \text{otherwise} \end{cases}$$

as multisets.

Hence, for each i, there exists $d_i \geq 0$ such that

$$\alpha_i = a_{i,0} + a_{i,1}\theta + a_{i,2}\theta^2 + \dots + a_{i,p^n-1}\theta^{p^n-1} = -\theta^{d_i}$$
. Thus $v = (1, -\alpha_2, \dots, -\alpha_m) = (1, \theta^{d_2}, \dots, \theta^{d_m})$ and so the proposition holds.

By the proposition, we have

Theorem 3.8. Let $q = p^n$ with p a prime. Then every NBH(m,q) matrix can be extended to BH(m,q) matrix.

We now prove the main theorem.

4 An extension to GH matrices

Let G be an abelian group. For an element $f = \sum_{x \in G} a_x x \in \mathbb{Z}[G]$, we set $f^{(-1)} = \sum_{x \in G} a_x x^{-1}$. Moreover, we set $\widehat{G} = \sum_{x \in G} x \in \mathbb{Z}[G]$ and $R = \mathbb{Z}[G]/\mathbb{Z}[\widehat{G}]$. For $u = (u_1, \dots, u_m), \ v = (v_1, \dots, v_m) \in V := \mathbb{R}^m, \ (u_i, v_j \in \mathbb{R})$ we define the product of u and v in the following way:

$$u \cdot v = u_1 v_1^{(-1)} + \dots + u_m v_m^{(-1)}$$

Then, for
$$v = (g_1, \dots, g_m), w = (h_1, \dots, h_m)$$
 $(g_i, h_j \in G)$
 $v \perp w = 0$ in $R \iff v_1 w_1^{-1} + \dots + v_m w_m^{-1} = (m/|G|)\widehat{G}$

We now prove the following.

Theorem 4.1. Let G be an abelian group of order $q = p^n$ with p a prime. Then every $(q, q\lambda - 1, \lambda)$ -DM over G can be extended to a $GH(u, \lambda)$ matrix over G.

To prove the theorem it suffices to show the following.

Proposition 4.2. Let G be an abelian group of order $q = p^n$ with p a prime and $M = [g_{ij}]$ a $(q, q\lambda - 1, \lambda)$ -DM over G such that $m_{i1} = 1$ for each i:

$$M=egin{bmatrix}1&g_{12}&\cdots&g_{1,m}\\1&g_{22}&\cdots&g_{2,m}\\\vdots&\cdots&\cdots&\vdots\\1&g_{m-1,2}&\cdots&g_{m-1,m}\end{bmatrix},\ where\ m=q\lambda.$$

Define $g_{mj} \ (1 \le j \le m)$ by

$$g_{m1} = 1$$
, $g_{m2} = \lambda G - \sum_{m=1}^{m-1} g_{i2}$, \cdots , $g_{mm} = \lambda G - \sum_{m=1}^{m-1} g_{im}$.

Then the following holds.

- (i) $g_{mj} \in G$.
- (ii) $\tilde{M} = [g_{ij}]$ is a $GH(q, \lambda)$ matrix over G.

Proof of Proposition 4.2

Set $R = \mathbb{Z}[G]/\mathbb{Z}[\hat{G}]$, $V = R^m$, where $m = q\lambda$. We identify the *i*th row v_i of M with an element of V. By definition of a difference matrix

 $v_i \cdot v_j = 0 \ (i \neq j) \ \text{and} \ v_i \cdot v_i = m.$ Set $v = (m, 0, \dots, 0) - (v_1 + \dots + v_{m-1}).$ Then $v \cdot v_i = m - v_i \cdot v_i = 0 \ (1 \leq i \leq m-1) \ \text{and so} \ v \perp v_i.$ Hence, setting $I = \{1, \dots, m-1\}$, we have $v = (1, -\sum_{i \in I} g_{i2}, \dots, -\sum_{i \in I} g_{im})$ and $v \perp v_1 + v_2 + \dots + v_{m-1}.$ Set $z_j = \sum_{i \in I} g_{i,j} \ (j = 2, \dots, m).$ Then $v = (1, -z_2, \dots, -z_m)$ and $0 = v \cdot (v_1 + \dots + v_{m-1}) = m - 1 - (z_2 z_2^{(-1)} + \dots + z_m z_m^{(-1)}).$ Therefore

$$z_2 z_2^{(-1)} + \dots + z_m z_m^{(-1)} = m - 1$$
 in R

Let p^e be the exponent of G and set $G=\{h_0,\cdots,h_{q-1}\}$. Let $\{\chi_0,\chi_1,\cdots,\chi_{q-1}\}$ be the set of characters of G. Fix z_j $(2 \le j \le m-1)$ and consider each character $\chi_u \ne \chi_0$ of G. Clearly $\chi_u(M)$ is a NBH (m,p^e) matrix and each entry of its first column is 1. Applying Proposition 3.6, $\chi_u(z_j)=-\theta^{i_u}$, for some $i_u \in \mathbb{N} \cup \{0\}$. Set $z_j=a_0h_0+\cdots+a_{q-1}h_{q-1}$ $(a_0,\cdots,a_{q-1}\in\mathbb{N}\cup\{0\})$. Then

 $a_0 + a_1 + \cdots + a_{q-1} = m-1$ and

$$\begin{bmatrix} \chi_0(h_0) & \chi_0(h_1) & \cdots & \chi_0(h_{q-1}) \\ \chi_1(h_0) & \chi_1(h_1) & \cdots & \chi_1(h_{q-1}) \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \chi_{q-1}(h_0) & \chi_{q-1}(h_1) & \cdots & \chi_{q-1}(h_{q-1}) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{q-1} \end{bmatrix} = \begin{bmatrix} m-1 \\ -\theta^{i_1} \\ \vdots \\ -\theta^{i_{q-1}} \end{bmatrix}$$

Hence $a_i = (1/q)(m-1-(\overline{\chi_1(h_i)}\theta^{i_1}+\cdots+\overline{\chi_{q-1}(h_i)}\theta^{i_{q-1}})$. As $m=q\lambda$, $a_i = \lambda - (1+\overline{\chi_1(h_i)}\theta^{i_1}+\cdots+\overline{\chi_{q-1}(h_i)}\theta^{i_{q-1}})/q$. By Lemma 3.7, we have either (1) or (2).

(1)
$$\overline{\chi_1(h_i)}\theta^{i_1} = \cdots = \overline{\chi_{q-1}(h_i)}\theta^{i_{q-1}} = 1.$$

(2)
$$1 + \overline{\chi_1(h_i)}\theta^{i_1} + \dots + \overline{\chi_{q-1}(h_i)}\theta^{i_{q-1}} = 0$$

If (1) occurs, then $\chi_s(h_i) = \theta^{i_s}$ ($1 \le s \le q - 1$) and $a_i = \lambda - 1$. If (2) occurs, then clearly $a_i = \lambda$.

On the other hand, $\sum_{0 \le i \le q-1} a_i = m-1 = q\lambda - 1$. Therefore, as a multiset, $\{a_0, a_1, \dots, a_{q-1}\} = \{\lambda - 1, \lambda, \dots, \lambda\}$. Thus there exists a unique r_j such that $\gamma_1(h_{r_i}) = \theta^{i_1}, \quad \gamma_2(h_{r_i}) = \theta^{i_2}, \quad \dots, \gamma_{q-1}(h_{r_q}) = \theta^{i_{q-1}}$ by (1).

 $\chi_1(h_{r_j}) = \theta^{i_1}, \quad \chi_2(h_{r_j}) = \theta^{i_2}, \quad \cdots, \chi_{q-1}(h_{r_j}) = \theta^{i_{q-1}} \text{ by (1)}.$ Hence $\chi_u(z_j) = -\theta^{i_u} = -\chi_u(h_{r_j})$ for any $u \neq 0$. It follows that $\chi_u(z_j + h_{r_j}) = 0$ for any $u \neq 0$ and $z_j + h_{r_j} = c\hat{G}$ for some c. In particular, $c = m/q = \lambda$. Hence $z_j = \lambda \hat{G} - h_{r_j}$ for each $j \in \{2, \cdots, m\}$. Thus $v = (1, -\lambda \hat{G} + h_{r_2}, \cdots, -\lambda \hat{G} + h_{r_m})$ Therefore $(1, h_{r_2}, \cdots, h_{r_m}) \perp v_t$ $(1 \leq t \leq m-1)$ holds. \square

We would like to raise the following question.

Question. Can an $(u, u\lambda - 1, \lambda)$ -DM over G be extended to $GH(u, \lambda)$ matrix even if G is non-abelian p-group?

References

- [1] M. Buratti, Recursive construction for Difference Matrices and Relative Difference Families, J. Combin. Designs 6 (1998) 165-182.
- [2] A. T. Butson, Generalized Hadamard matrices. Proc. Amer. Math. Soc. 13 (1962) 894-898.
- [3] C.J. Colbourn and J.H. Dinitz, "The CRC Handbook of Combinatorial Designs", Second Edition, Chapman & Hall/CRC Press, Boca Raton, 2007.
- [4] W. de Launey, "Algebraic Design Theory", Mathematical Survey and Monographs, Volume 175, American Mathematical Society, 2011.
- [5] D.A. Drake, Partial λ -geometries and generalized Hadamard matrices over groups, Canad. J. Math. 31 (1979), 617-727.
- [6] D. Jungnickel, On difference matrices, resolvable transversal designs and generalised Hadamard matrices, Math. Z., Vol. 167 (1979), 49-60.
- [7] P.H.J. Lampio, P.R.J. Östergard, Classification of difference matrices over cyclic groups, J. Statist. Plann. Inference 141 (2011) 1194-1207.
- [8] W. de Launey, On the non-existence of generalized Hadamard matrices, Journal of Statistical Planning and Inference (1984), Vol.10, 385-396.