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1 Introduction

Definition 1.1. Let U be a group of order u and k, A positive integers. In this
note, we often identify a subset S of U with the group ring element ) sz €
Z[U).

di,i o diun

A k x u) matrix [ (dij € U) is called a (u, k, A)-difference

de, o0 diu
matrix over U ( for short, a (u, k,A)-DM over U ) if

dinden ™'+ -+ diuade,ur Tt = AU
for any 1, (1 <i# £ <k).

1 1 1 : ’
Example 1.2. [ 1 a a? ] is a (3,3,1)-DM over (a) ~ Zs.
1 a a

The following result on difference matrices is well known.

Result 1.3. (D. Jungnickel [6]) If there exists (u, k, A)-DM, then k < uA.
A (u,u), A\)-DM is called a GH(u, \)matrix (a generalized Hadamard matrix).

The following conjecture is well known.

Conjecture. If there exists a GH(u,\) matrix over a group G, then G is a
p-group for some prime p.

The following are well known construction methods for of difference matrices

Result 1.4. (M. Buratti [1]) Let G = Zyn1 X - -+ X Zpn,, where p is a prime.
Set e = S_n; and f = |e/ max{ny,--- ,n;:}|. Then there exists a (p¢,p’,1)-DM
over G.
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Result 1.5. (M. Buratti [1]) If G > N and there exist a (|G/N|, k, A)-DM over
G/N and a (|[N|, k, u)-DM over N, then there exists a (|G|, k, A\p)-DM over G.

Result 1.6. (Kro‘neckervproduct) Let A = [a;;] and B = [b”] be a (u, k1, \1)-
DM over G and (u, k2, A2)-DM over G, respectively. Then A ® B = [a;;B] is a
(u, k1k2, uA1A2)-DM over G.

Result 1.7. (W. de Launey, [8]) Let G be any p-group of order ¢ = p". Then
there exists a (g, ¢*, ¢g?*~1)-DM over G for any positive integer .

There is a relation between difference matrices and orthogonal arrays.

Definition 1.8. A k x u?) array A over a u-set U is called an OAy(k,u)
(orthogonal array) if any 2 x u?) subarray of A contains each 2 x 1 column
vector exactly A times. '

An OA,(k,u) Ap obtained from a (u,k,\)-DM D over U is as follows:

Ap = [Dg1,--- ,Dgy), where U = {g1,--- , gu} [3]-

The above array can be extended to OA(k+1,u) in the following way : [3):

Let D = [Dy,---,D,] (VD; : k x A matrix) be a division of (u, k, \)-DM D
and set J := Jy(=[1,---,1]). Then the following is an OA(k.+ 1,u).

M= Digr - Digy Dagi - Da2gy -+ -+ Dxgi -+ Dxgu
Jg1 [P Jg1 Jg2 Jga v Jgu - Jgu

We note that U does not act on M as a class regular automorphism group of
M. Therefore D can not, in general, be extended to a (u,k + 1, \)-DM over U.

We consider following problem.
Problem. Given a group U of order u and an integer A > 0, what can we say
about k for which a (u, k, A)-DM over U exists ?

Definition 1.9. Let M be a (u, k,\)-DM over a group U of order u and set
dy = uX — k. We call dps the deficiency of M.

Result 1.10. (Drake, [5]) Assume that ) is odd and a group U has a nontrivial
cyclic Sylow 2-subgroup, If there exists (u, k,A)-DM, then k < 2.

Result 1.11. (Lampio-Ostergard, [7]) The follovvmg holds.
(1) max{k | 3(3, k,5)-DM over Z3} = 9.
(ii) max{k | 3(5, k, 3)-DM over Zs} = 8.
(iii) max{k | 3(6, k,2)-DM over Zg} = 6.

2 Examples of maximal difference matrices

Example 2.1. (Drake [5]) Let G = {g1 = 1,---,92.} be a group of order
2n with a cyclic Sylow 2-subgroup. If 2 1 A, then the followmg is a maximal
(2n,2,X)-DM over G _
My, = T P D |

gl .« .. gl .. CREEY g2n .. g2n
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Example 2.2. Let p be a prime and set a;; = ij (mod p) (i,j € Z,). Then
D, = [asjlo<i,j<p-1 18 @ (p,p, 1)-DM over Z,. When p = 3,5, we can verify that
D, is the only maximal (p, k, 1)-DM. Therefore, any (p, k,1)-DM with p € {3, 5}
can be extended to (p,p,1)-DM. However when p = 7, the following is also a
maximal (7,3,1)-DM :

0 00O O0O0OTPO

M=|012 3 4 5 6|, wheredy = 4.
0 2516 4 3

Example 2.3. The following is a maximal (3, 3,2)-DM over Zs.

0 00O0O0TUO

M=|0 011 2 2|, wheredy =3.
00 2 2 11

However, there exists a (3, 6,2)-DM.

Example 2.4. The following is a unique maximal (8, k&,1)-DM over (a,b) ~

' Z4 X Zz.

1 1 1 1 1 1 1 1

1 a a*> a® b ab a% a3

1 a2 b a? a a® ab a3
3 a% ab a% a®> a b
We note that there exists a (p3,p,1)-DM over Z,2 x Z, for any prime p by

a result of Buratti [1].

, where dys = 4.

Concerning Example 2.4 we would like to raise the following question.
Question. Does there exist a (p*, p?,1)-DM over Z,2 x Z,, for a prime p?

Example 2.5. The following is the only maximal (9, k,1)-DM over Zg.
0 00O
M=]101 2 3
0 21 6
Let U = (a) ~ Zp2. As U/(aP) ~ (aP) ~ Zp, by a result of Buratti [1], the
exists a ((p?,p,1)-DM over Z,2 for any prime p.

0 00 00O
4 5 6 7 8 (dm = 6)
8 7 3 5 4

Concerning Example 2.5 we would like to raise the following question.
Question. Is a (p?,p,1)-DM the only maximal DM over Z,2 ?

-Example 2.6. The following is a unique maximal (4, k,2)-DM over Zy,.
0 000O0O0COTP

00112233 .
M=1fg0231312 (dy =4)
003 23121

Example 2.7. The following are maximal (4,k,2)-DMs M over {0,a,b,c} ~
Zz X Zg.

0 0 0 00 0 0O

0 0 a a b b ¢ c¢ . . .
0O 0 b bcoeaal? maximal (4, 4,2)-DM with dy = 4
0 0O ¢ ¢c a a b b :



0 0 00 0 0 0 01

0 0 a a b b ¢ ¢

090 ¢ ¢ % %1 amaximal (4,6,2)-DM with das = 2

0 b a ¢c a ¢ 0 b ' '
| 0. c ¢ 0 a b b a |
[0 0 0 00 0 0 0]

0 0 a a b b ¢ ¢

0 a b ¢ 0 a b ¢

0 a ¢ b b ¢ a 0

0 b 0 b ¢c a ¢ a ’GH(4’2)

0 b a ¢ a ¢ 0 b

0O ¢c b a ¢ 0 a b

0 c ¢ 0 a b b a

L 4
We give an infinite family of maximal difference matrices.

Proposition 2.8. Let p be a prime with p™ {1 X and let L be the multiplication
table of K = GF(p™). Set J = Jx(= (1,---,1)). Then M = L®J is a mazimal
(p"™,p"™, A)-DM over Zy. ' ‘

Proof. Set K = {ky = O,kl,kg, -+ ,ks}, s = p™ — 1. Then the following is a
(p",p", A)-DM over (K,+).

kokoJ kokiJ - koksJ
b= | ol bk
kskod kskiJ -+ ksksJ

Assume that we can obtain (p”,p"™ + 1,))-DM M= [mi;](0 <i<s+1,0<

J < p"A —1) by adding the s+ 2 (= p™ + 1)-th row, say w to M. Let w =
(Mis41,0,Ms+1,157 ,May1pra—1) and m = #{i | mg =0, 0<i< A —1}. We
count N = #{(i,J) | m;; = ms41,;,0<i<s, 0<j<p"\—1}in two ways.
Then we have ap™ + (p"A — A) -1 = Ap™. Thus ap™ = A, contrary to p" tA. O

The following is a table of k for which there exists a maximal (u, k, A\)-DM |

over an abelian group U with 2 < ul < 12.

u U A k U u U A k uA
2 Zo 1 2 2 8 Zg 1 2 8
3 Z3 1 3 3 8 | ZoaxZoxZo | 1 4,8 8
4 Z4 1 2 4 -9 Zgy 1 3 9
4 | ZoxZs | 1 4 4 9 Z3 x Zs3 1 4,6 9
2 Zo 2 4 4 3 Zs3 3 9 9
5 Zs 1 5 5 10 Z1o 1 2 10
2 Zo 3 2 6 5 Zs 2 | 4,5,6,10 | 10 |
3 Zs3 2 3,6 6 2 Za 5 2 10
6 Zg 1 2 6 11 Z11 1 34,511 | 11
7 Zr 1 3,7 7 12 Z19 1 2 12
8 | ZaxXxZyg | 1 4 8 2 Zg 6 4,12 12
8 Zsg 1 2 8 3 Z3 4 6,9,12 12
2 Z2 4 4 8 4 Zo X Lo 31 4,5,6,12 | 12
4 - Zag 2 4 8 4 Z4 3 2 12
4 | ZoxZs | 2| 4,6,8 8 6 Ze 2 4,5,6 12
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From the table, it is conceivable that dp; > 2 except for GH matrices. From
this, we would like to propose the following conjecture (see [4]).

Conjecture. Any (u,u)l — 1,1)-DM over a group U can be extended to a
(u,uA, A)-DM over U (i.e. GH(u, A) matrix).

The following two results might be relevant to this.

Result 2.9. (W. de Launey, [8]) Assume that 2 { u) and there exists a
(u,uM,A)-DM over G. Let p be a prime divisor of v and m a divisor of the
square free part of A. Then Ord,(m) =1 (mod 2).

Result 2.10. (A. Winterhof, 2002) Assume that 2 { u\ and there exists a
(u,uX — 1,1)-DM over G. Let p be a prime divisor of u and m a divisor of the
square free part of A. Then Ord,(m) =1 (mod 2).

We note that though the conditions of the above two results are different,
the conclusions are the same.

3 An extension to GH matrices and BH matri-
ces

Concerning the above conjecture we prove the following.

Theorem 3.1. Let p be a prime and G an abelian group of order q(= p").
Then (q,qA — 1,X)-DM over G can be extended to a GH(g, \) matriz over G.

To show this we use the following well known result on characters.

Result 3.2. (inversion formula) Let G be the set of characters of an abelian
1
group G and let f = Zagg € C[G]. Then, a4 = el Zx(f)x(g‘l), In

9€6G x€G
particular, if x(f) = 0 for any x € é,X # %0, then f = Xré{) Z g.
' e

Assume that a (¢,gA — 1,A)-DM N over abelian group G is extended to
GH(q, A) matrix over G, say M (M;; € G). Let x # xo be any character of G and
define x(M).:= [ x(M;;)]. Let p® be the exponent of G. Then x(M;;) € ((pe),
where (pe is a primitive p®th root of unity. As Mi,1M3,1'1+~ . -+Mi,u,\Mg,u)"1 =
AG, for any 1, £ with ¢ # ¢, x(M) satisfies the following.

X(M)x(M)* =mI (I =In, m=ul). (1)
Similarly, x(N) is an (m — 1) x m matrix satisfying |

X(N)x(N)* = mlp_,. (2)
A matrix with the property (1) is defined in [2].



Definition 3.3. A matrix B of degree m is called a Butson Hadamard matrix
BH(m, s) if B;; € ({s) for all 4, and B satisfies BB* = mI,,.

In this note we define a matrix with the property (2) as follows.

Definition 3.4. We call a (m — 1) x m (m > 3) matrix A a near Butson
Hadamard matriz and denote it by NBH(m,s) if A;; € ({s) and A satisfies
AA* = mIm_l.

Example 3.5. The following is a BH(6,6).

1 1 1 1 1 1
1 -1 1 -1 1 -1
1 —w W? -1 w —w? _
M = 1 1 w wo w? w? ’ w= (3
1 w vwz 1 w w?
1 -1 w —w w? —w?

The above conjecture gives rise to the problem of the extension of NBH(m, s)
to BH(m, s).

Problem. Can NBH(m, s) be extended to BH(m, s) ?

Concerning this we show that NBH(m, s) can be extended BH(m, s) under
the condition that m is a power of a prime.

Proposition 3.6. Let p be a prime and set § = (pn. Let A = [v;] be a

NBH(m, p") matriz such that vy = vgy =+ = V=1, = L.
1 v12 V1,m
M= 1 v22. V2,m
1 Um-1,2 e .'Um—l,m

Set v; = (vi1, -+ ,Vim) (1 <i<m—1). Then,

i) plm,

(i) Setv =.(m,0,---,0) — (v + -+ vm—1). Then each entry of v is an
element of (6). In particular, each column sum of M is m — 1 or an
element of (8), and

(iii) Let A be a matriz of degree m adding v to M as a row. Then A is a

BH(m,p"™) matriz.

To show the proposition we use the following lemma.

Lemma 3.7. Letp be a prime and set 0 = (pn. Forag,--- ,apn_1 € Q, assume
that (*) ao+a160+---+ apn_lé’p"‘l = 0. Then, :

(i) a; = a; whenever i =j (mod p™~!) and
(ii) if ao, - "y Gpno1 € Z, then > o<i<pn-1i =0 (mod D).

Sketch of the proof
1

The cyclotomic polynomial ®,n (z) = ——ﬁi—f—I is a minimal polynomial of 6 over

Q. As Byn(e) = P00 o0 4y g

65
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(k%) O@-DP"71 4 g(P-2p" " 4 g™ 11 =0,
Hence (P-1P" "+t — _g-2)p" "4t _ .. _ 0”" "+t _pt for any ¢t with 0 < ¢ <
p"~! — 1. Substituting these into (*) and using the minimality of (**) we can

obtain the lemma.
Proof of Proposition 3.6
Set I = {0,1,---,p™ —1}. Let ¢; be the number of §* contained in the multiset

{ v11V31, V12032, , VimUzm}- As 1Tt =0, Y, ;ci0  =0and Y, ;ci=m
Therefore p | m by (ii) of Lemma 3.7.

As v = (m,0,---,0) — (v1 + -+ Vp_1), v-v; = m —v; -v; = 0. Hence
vl - ,upn_1. On the other hand, setting oy = ZISiSm—l vt (2 <t <m),
we have v = (1, —ag, - , —auy). Moreover v1+- - -+vpm—1 = (Mm—1,00, * , ).
From this, 0 = (v; + -+ + V;m_1,¥) = m — 1 — a8z — -+ — amOy. Thus
azaz+- -+ ambm =m—1. Let a;; (0 < j < p™—1) be the number of the value
67 appeared in the multiset {vit,vat, " ,Um—-1,}. AS ¢ = Y 1<i<m—i Vit, it

follows that

2 n_1
ot = a0+ 0,10 + a20° + -+ ajpn 167

ato+ag1+ -+ agpn1=m-—1 (3)
As aya; = Z a”a,ke Z (Z ai,k.;_rai’k)gr, we have
J.kel rel kel

Z ( Z Za,—,k+rai,k) " =m - 1 (4)

rel 2<i<m kel

Comparing the coefficients of #°" (0 <s<p-1)in (4) and applying the
lemma, we have

Y. (o +-tal, )~ (m-1)

2<i<m

Z Z Qi ktspr-1 ik (L <Vs<p—1)

2<i<m 0<k<p"-1

From this, z Z (@5 kg spn-t — i) = 2(m —1).
2<i<m 0<k<pn—1
Thus, by (3), Z (@i pyopn-1 —@ik)> =2 (2<Vi<m-—1).
0<k<pn—1
It follows that, for each ¢, there exists a unique £ (0 < £ < p"~! — 1) such that

{aiks Giktspr-1y “ 0y Gikgp—1)pn-1}
{ce, -+, ce, co—1} ifk=¢and
{ek, ~--, cky ck} otherwise

as multisets.
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Hence, for each i, there exists d; > 0 such that

Q; = a0+ ai,lﬁ + ai,262 + o+ A pn 19” —1 = _g%_ Thus .
v=(1,-ag, - ,—an) = (1, 9d2 e, 0%m) and so the proposition holds O

By the proposition, we have

Theorem 3.8. Let ¢ =p™ with p a prime. Then every NBH(m q) matriz can
be ea:tended to BH(m, q) matriz.

We now prove the main theorem.

4 An extension to GH matrices

Let G be an abelian group. For an element f = > zec @ T € Z[G], we set
fED = > eeq @z L. Moreover, we set G = 2 zcc® € Z|G] and R =

Z[G)/Z[G). For u = (uq,--- Um), V= (v1,--- ,Um) € V i= R™, (u;,v; € R)
we define the product of u and v in the following way :

U-v = ulvl(_l) + . + umvm(—l)

Then) for v = (gla e ,gm),w = (h11 e >h/'m) (g'iah'j € G) R
vilw=0inR<<= viwy~ +- - +vgpwnt = (m/|G)E

We now prove the following.

Theorem 4.1. Let G be an abelian group of order ¢ = p™ with D a prime.

Then every (g,g\ —1,A)-DM over G can be extended to a GH(u, A) matriz over
G. A

To prove the theorem it suffices to show the following.

Proposition 4.2. Let G be an abelian group of order ¢ = p™ with p a prime
and M = [gi;] a (¢,q)\ — 1,A)-DM over G such that m;1 = 1 for each i :

1 912 oo gi,m
M= ? %) wherem =g,
Im-—1,2 v gm—1,m
Define gm; (1 <] < m) by
m~—1 m—1
I9m1 =1, gme =AG — Zgz% T, gmm:)\G_Zgz’m-
m=1 m=1

Then the following holds.
(ii) M = [gi;] is a GH(q,\) matriz over G.
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Proof of Proposition 4.2

Set R = Z[G]/ Z[G), V = R™, where m = g\. We identify the ith row Vi of M
with an element of V. By definition of a difference matrix

v -v; =0 (i # j) and v; - v; = m. Set v = (m,0,- ,0) = (v1 + -+ Um—1).
Then v - v,—m-v, vZ—O(1<z<m—1)a,ndsovivz Hence,
setting I = {1, -- — 1}, wehave v=(1,— Y .c; 92, »— 2 ics Gim)
and v L v +v2+-~-+vm_1. Set zj; = Y i1 9 (j = 2,---,m). Then
v:(l,—zg,---,—zm)and0=v-(v1+---+vm_1)=m—1—(z2z2("1)+---+

Zm2m (™). Therefore
z2z2(_1)+"'+zmzm(_1) :m-—l inR

Let p€ be the exponent of G and set G = {ho, - - , hg—1}. Let {xo0, X1, -+ » Xq-1}

be the set of characters of G. Fix z; (2 < j < m—1) and consider each character

Xu # Xo of G. Clearly x(M) is a NBH(m, p°) matrix and each entry of its first

column is 1. Applying Proposition 3.6, x,(z;) = —6*, for some i, € NU {0}.

Set zj = agho + - - + aqg—1hq—1 (a0, -+ ;a4-1 € NU {O}) Then
ap+ai+---+ag-1 =m—1and

xolho)  xolh) - xolhe—) [ % i
Xl(ho) X1(h1) -+ X1(hg-1) R N
Xq- 1(h0) xq-1(h1) o Xg-1(hg-1) aq._l _gias

Hence a; = (1/g)(m -1~ (xl(h )01 + -+ + xg-1(hi)8'e-1). As m = g,
ai = A= (14 x1(he)0 + -+ xq—1(hs )0 a-1)/q. By Lemma 3.7, we have either
(1) or (2).

(1) Xl(hi)eil == Xq—l(hi)eiq_l = 1.
(2) 1+ x1(ha)8™ +--- + Xq—l(hi)ﬂiq—l =0.

If (1) occurs, then xs(h;) = 6% (1 < s < q—1)and a; = A — 1. If (2) occurs,
then clearly a; = A.

On the other hand, } 5 ;c, 10 =m—1=¢qgA -1 Therefore, as a multiset,
{ao,a1,- -+ yag-1} = {A =1, A, .-~ , A}. Thus there exists a unique r; such that

xl(h ) =04, X2(hr3) = 6%, -, xg-1(hr,) = 's=* by (1).
Hence Xy (z;) = —6™ = —xu(h,j) for any u 7& 0. It follows that x.(z; +hsr;) = 0

for any u # 0 and 2; + h,, = = ¢ for some c. In particular, ¢ = m/q = A. Hence
2 = AG—h,, foreach j € {2,--- ,m}. Thusv = (L, =AG+hp,, - , —AG+hr,,)
Therefore (1,hyy,- -+ ,hy ) Loy (1<t <m—1)holds. O

We would like to raise the following question.

Question. Can an (u,uX — 1,1)-DM over G be extended to GH(u, A) matrix
even if G is non-abelian p-group 7 .
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