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Abstract

In this paper we evaluate the upper and lower bounds on the number of disjunctive (normal) forms of

an $n$ -variable Boolean function (for our purpose we take the constant 1 function which always takes the

value 1). The enumeration problem of the disjunctive forms is equivalent to enumerating elements of a

distributive lattice, and it can be solved by enumerating antichains on the temary $n$ -cube which is

isomorphic to the partially ordered set formed by all terms of the given function. For the upper bound we

use a newly invented decomposition of the partially ordered set into chains (we introduce a tree structure

which spans the cube). For the lower bounds, we evaluate the number of anticains on the cube by

analyzing dependency among three consecutive layers instead of two. Put $|DF(1)|$ the number of

different disjunctive forms for the constant 1 function. We obtain newly improved upper and lower

bounds:

$2^{2^{r}\cdot(\begin{array}{l}nr\end{array})(\begin{array}{l}nr\end{array})\cdot(1+e^{-r^{2}2^{-r}})}<|DF(1)|<( \frac{\sqrt[4]{3}}{3}n)^{2^{r}\cdot(\begin{array}{l}nr\end{array})}$

where $r\fallingdotseq 2n/3$ , the Spemer rank for the temary cube. ‘Ihis serves as a basis for the upper and lower

bound on the number of disjunctive forms for all $n$ -variable Boolean functions as well as a basis for the

enumeration of many-valued logic functions.
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1. Introduction

Logic function is usually represented by a disjunctive form, i.e., logical $OR$ of logical product of its

variables (terms), and so it is also called logical sum or disjunctive normal form. Given a logic function

there are in general many finite number of disjunctive forms representing it. Finding the number of

disjunctive forms for a function, or of the total number of them for the set of all $n$ -variable logic function

are fundamental for knowing the representing capability of disjunctive forms as well as for enumerating

$k$ -valued logic functions [1,2].

It is well-known that $\infty$unting the number of disjunctive forms is equivalent to $\infty$unting that of the

elements of a distributive lattice, and generally it is considered to be a hard problem. Indeed, the exact

numbers of them are known hitherto only up to $n-4[3]$. Among enumeration problem of logic

functions the so-called Dedekind problem is a famous one with more than a hundred years history. It is a

problem to $\infty unt$ the number of monotone logical functions of Boolean-variables. This is equivalent to

countming the number of elements of the free distributive lattice with $n$ generating set [4]. This is a hard

enumeration problem and the numbers are known only up to $n-8$ [5]. As the set of disjunctive forms

include as its proper subset the set of monotone logic functions, the numbers of disjunctive forms are larger

than the Dededind numbers.

In this paper we present new upper and lower bounds on the number of disjunctive forms. It is

known that the number of elements of a finite distributive lattice is equal to the number of antichains in the

partial ordered set formed from its irreducible elements [6,7]. In our case terms (with some restrictions)

coincides with the irreducible elements. So our task is to evaluate the number of antichains contained in

the partial ordered set formed from terms. Our approach follows the one used to obtain the upper and

lower bounds on the number of monotone logical functions [8,9], but applyming technique used in the

enumeration of the number of fuzzy logic functions [10,11]. To derive new bounds we introduce new

ideas in both analyzing upper and lower bounds.

2. Defmitions

Let $n$ be a positive integer. Let $0$ and 1 represent Boolean values as well $(0$ for False and 1 for

True). Put $B-\{0,1\}$ . An $n$ -variable logic (or Boolean) function is a map $f:B^{n}arrow B$ . Let $P_{2}^{n}$
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denote the set of all $n$ -variable logic functions. Let us denote (Boolean) variables by $x_{i}(i-1,\cdots,n)$

and let us denote logical operations (connectives) AND, $OR$ and NOT by (logical product operation),

$v$ (logical sum) and $\sim$ (negation). $A$ logical formula (of $n$ variables) is a formula obtained by

combining the variables $x_{i}(i\approx 1,\cdots,n)$ by the above logical operations. $A$ formula represents an

$n$ -variable logical function. Call $x_{i}$ and $\sim x_{i}$ a literal. $A$ term is a product of literals where each

index $i$ appears at most once, i.e., no hterals $x_{i}$ and $\sim x_{i}$ appears in it simultaneously. Let $T$ be

the set of all terms. By definition null term (null string) is a term and we represent it by 1. Let $\alpha_{i}$

and $\alpha_{j}$ be distinct tenns. Define arelation $\subset$ by:

$\alpha_{i}\subset\alpha_{j}$
$\Leftrightarrow$ every hteral of $\alpha_{j}$ appears in $\alpha_{i}$ . (1)

The relation $\subset$ naturally induces a partial order on the set $T$ of all terms. For a set of terms

$\{\alpha_{1},\cdots,\alpha_{s}\}$ as the result does not depend on the application order of $v$ , there corresponds a logical

function defined by a formula $f-\alpha_{1}\vee\cdots va_{s}.$

[Definition 1] $A$ formula $f-\alpha_{1}v\cdots\alpha_{s}$ is a disjunctive form if its every term is irreducible, that is

$\alpha_{i}\not\subset\alpha_{j}$ for every $i\neq j.$ $\square$

It is well-known that every logical function can be represented by a disjunctive form. ($A$ constant

function $0$ which takes the constant $0$ is represented by null disjunctive form which has no term.)

For a function $f$ there can be, in general, many disjunctive fonns apart from the difference of orders

of the terms. Put $V=\{O,1/2,1\}$ . Define a partial order $\prec$ on $V$ by

$0\prec 1/2$ and $1\prec 1/2$ . (2)

Put $V-\{0,1/2,1\}^{n}$ , the temary $n$ -cube which is the set of all temary $n$ -vectors. We extend the partial

order $\prec$ on V coordinate-wise as follows.

[Defmition 2] Let $a=(a_{1},\cdots,a_{n})$ and $b=(b_{1},\cdots,b_{n})$ . Then

$a\prec b$ $\Leftrightarrow$ $a_{i}\prec b_{i}$ for all $i(i\approx 1,\cdots,n)$ . (3)

口
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Define a 1:1 map between V and $T$ as follows.

[Definition 3] For $a-(a_{1},\cdots,a_{n})\in V$ we map $\alpha(a)-x_{1}^{a_{1}}\cdots\cdot\cdot x_{n}^{a_{\hslash}}$ where we put

$\{a_{i^{-1/2}}^{a_{i}-0}a_{i}-1$
$rightarrowrightarrowarrow$ $x_{i}^{a_{i}}-\sim x_{i}x_{i}^{a_{i}}-x_{i}x_{i}^{a_{i}}-1$

($x_{i}$ does not appear)

(4)

口

It is easy to prove that the partial order $(T,\subset)$ and $(V, \prec)$ aoe isomorphic, i.e.,

$a\prec b$ $\Leftrightarrow$ $a(a)\subset a(b)$ . (5)

So the statements about $(T,\subset)$ can be interpreted as ones about $(V, \prec)$ , and vice versa.

For $a-(a_{1},\cdots,a_{n})\in V$ , put

$I(a)-\{i|a_{i}-1 or a_{i}-0\}$ . (6)

The number $r(a)-|I(a)|$ is the rank of $a$ . Let us denote by $V_{k}$ the set of vectors whose rank equals

$k$ :

$V_{k}-\{a|r(a)-k, a\in V\}$ . (7)

We have $V-\bigcup_{k-0}^{n}V_{k}$ and $|V_{k}|-2^{k}\cdot(kn)$ . The sole element $(1/2,\cdots,1/2)\in V_{0}$ is the maximal

element of $V$ $(w.r.t. \prec)$ and every element of $V_{n}(-B^{n}-\{0,1\}^{n})$ is a minimal element of V (no

other element is minimal). We put $V_{\overline{n}}(-V\backslash V_{n})$ which exactly $\infty$rresponds to the set of terms $T.$

3. Preliminaries

Let $S-\{a_{1},\cdots,a_{s}\}$ be a subset from the temary $n$ -cube V.

[Defmition 4] The set $S$ is a chain if holds $a_{1}\prec\cdots\prec a_{s}$ . It is an antichain if holds $a_{i}\prec a_{j}$ for no

$i,$ $j(i\sim j)$ . 口

The integer $|S|$ is the length (size) of the chain (antichain). We include the empty set as antichain.

[Theorem 1] For an antichain of V there exists a disjunctive form (uniquely up to the order of its
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terms) and vice versa. 口

Thus there is a 1:1 correspondence between the sets of antichains of V and those of disjunctive

forms of $T$ . So, counting the disjunctive forms is reduced to that of antichains in V. As $|V|=3^{n}$

the number of disjunctive form is bounded from above by $2^{3^{n}}$ It is well-known:

[Theorem 2] The set of disjunctive forms of $n$ -variables forms a distributive lattice with respect to the

operation$S$ $\vee(OR)$ and $\wedge(AND)$ . 口

So our problem is also to count the number of elements of a finite distributive lattice. It is clear that

the Dedekind problem (counting the monotone functions) is a special case of our problem as disjunctive

forms can be of terms with only positive literals as a special subset of disjunctive forms.

First we consider the number of disjunctive forms for a given logic function $f$ . Assume that an

$n$ -variable logic function $f(x_{1},\cdots,x_{n})$ is given. We evaluate the number of disjunctive forms which

represent $f.$

Let $\alpha=x_{1}^{a_{1}}\cdots\cdot\cdot x_{n}^{a_{n}}$ be a term. $A$ term $\alpha$ belongs to $f$ if holds

$f([a_{1}],\cdots,[a_{n}])-1$ , ($S$)

where $[a_{i}]$ denotes largest integer not exceeding $a_{i}$ , e.g., $[1/2]-0$ . The set $V(f)$ of terms of $f$

i$S$

$V(f)-\{\alpha=x_{1}^{a_{1}}\cdots\cdot\cdot x_{n}^{a_{n}}|f([a_{1}],\cdots,[a_{n}])=1, a_{1},\cdots,a_{n}\in V\}$ (9)

To a $=(a_{1},\cdots,a_{n})$ assign a subset of $B^{n}$

$a^{*}\simeq$ { $(b_{1},\cdots,b_{n})\in B^{n}|b_{i}-0$ or 1 if $a_{i}=1/2,$ $b_{i}-a_{i}$ otherwise} (10)

[Theorem 3] Let an $n$ -ary logic function $f$ be represented by a disjunctive form $f-\alpha_{1}\vee\cdots\vee\alpha_{s}$

and let $\alpha_{i}-x_{1}^{a_{i_{1}}}\cdots\cdot\cdot x_{n}^{a_{i_{n}}}$ and let $a_{i}=(a_{i_{1}},\cdots,a_{i_{n}})$ for $i(i-1,\cdots,n)$ . Then the set $\{a_{1},\cdots,a_{n}\}$

is an antichain of V and holds

$a_{1}\cup\cdots\cup a_{s}^{*}-V_{n}*(f)$ (11)
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Conversely, if the last sentence is true, then the set of terms $\{a_{1},\cdots,a_{s}\}$ defined by $a_{i}(i-1\cdots,n)$ is a

disjunctive form of $f.$

(Proof) This follows from Theorem 1. 口

We have the following.

[Theorem 4] The set of disjunctive forms of $f$ forms a distributive lattice with respect to the operations

$\vee(OR)$ and (AND) 口

Thus the problem to find all disjunctive forms for $f$ is to find all antichains $\{a_{1},\cdots,a_{n}\}$ in $V(f)$

such that the equation (11) holds.

The next statement is a slight improvement of this statement (we omit the proof). Put

$V_{\overline{n}}(f)-V(f)\backslash V_{n}(f)$ .

[Theorem 5] The number of disjunctive forms of $f$ is equal to the number of antichains in $V_{\overline{n}}(f)$ .

口

Let us denote the set of disjunctive forms of $f$ by $DF(f)$ . Let $DF$ denote the set of all

disjunctive forms for the $n$ -variable function. Then

$DF-$ $\cup DF(f)$ (12)
$f$ ぢ

As $DF(f)$ ’s are disjoint we have

$|DF|-DF(f)f$
明

$|$ . (13)

[Theorem 6] The maximal number of $|DF(f)|$ is attained when $f-1$ (a $\infty$nstant function which

always takes the value 1). 口

Thus we have

$|DF(1)|<|DF|<2^{2^{n}}\cdot|DF(1)|$ (14)

We use this formula for evaluating the bounds for $|DF|$ . So we $\infty$ncentrate on the evaluation of

$DF(1)$ .
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4. Upper bound

First, we introduce the upper bound described in [10]. For $m$ the size of a largest antichain in the

poset $V_{\overline{n}}$ , Dilworth’s theorem[7,12] says that $V_{\overline{n}}$ is the disjoint (except the maximal element of $V_{\overline{n}}$ )

union of $m$ chains. Each chain has at most $n$ elements from $V_{\overline{n}}$ and shares the maximal element

$(that is,$ element $in V_{0})$ . Thus, if $S$ is an antichain in $V_{\overline{n}}$ , then $S$ is uniquely determined by its

intersection with each of $m$ chains; the intersection contains at most one element. In the case that $S$

has the maximal element, all elements in $S$ are included by this element. As a result, we can safely

ignore the maximal element of $V_{\overline{n}}$ , and so assume that each chain has at most $n-1$ elements. Since

there are at most $n$ possibilities (including the case that we select no element) for the intersection of $S$

with any chain, $|DF(1)|$ is bounded as follows:

$|DF(1)|<n^{m}$ (15)

Here, since $V_{\overline{n}}$ enjoys the Spemer property [7,14] from [13], we assume that the largest-sized antichain

in $V_{\overline{n}}$ has cardinality $m$ , i.e., we put $m:- \max(|V_{k}|)$ . Let $r$ be the rank of the layer in $V_{\overline{n}}$ having

the cardinality $m$ (let us call it Spemer rank). Then, $r-\lceil 2n/3\rceil$ holds [10]. So, the above upper

bound becomes as follows:

$|DF(1)|<n^{2^{r}(\begin{array}{l}nr\end{array})}$ . (16)

This argument is similar to one used in [8] for estimating the upper bound of monotone logic functions with

$n$ -variables.

Now, we proceed to improve the upper bound by incorporating a new idea. The poset $V_{\overline{n}}$ we

divide at the $r-$ th (the Spemer) rank into two parts, and we focus our attention on the part of $2^{r}$

temary $n$ -vecters derived by expanding $(a_{i,j}\approx 0,1:1\leq j\leq r)$ the temary $n$ -vector $(a_{i_{1}},1/2,\cdots,1/2,a_{i_{r}})$ ,

where 1/2 appears at $n-r$ fixed (but any) coordinates; three are $(\begin{array}{l}nr\end{array})$ such copies (see Figure 1, shaded

part).
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Figure 1. Dividing the poset $V_{\overline{n}}$ into two parts at the Spemer rank $r.$

First part is a poset $\cup V_{b}$ , which is composed of $r+1$ layers in $V_{\overline{n}}$ whose rank $b$ is equal to
$0\leq bsr$

or smaller than $r.$ $Se\infty nd$ part is a poset $r+kdsn-1\cup V_{d}$
, which consists of $n-1-r$ layers in $V_{\overline{n}}$ with

the rank $d$ larger than $r$ . Here, we can observe that $\cup V_{b}$ can be divided into disjoint except the
$0sbsr$

maximal element $(1/2, \cdots,1\int 2)(\begin{array}{l}nr\end{array})$ binary trees, each of which has $2^{r}$ minimum elements in $V_{r}$

$($where, $the 1/2$ ’s positions $of each$ minimum element $is the same)$ (see Figure 2).

Figure 2. Partition of the upper cube into $(\begin{array}{l}nr\end{array})$ binary trees $(n-3, r-2)$.
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Now we divide each tree into disjoint chains in the following way: For a given tree we select a

largest path (chain) from the root of the tree (if there are many we take the leftmost path). Then we

remove the chain from the tree breaking the tree into a forest (a set of trees). We repeat the same

procedure for each tree of the forest until there remains a tree which consists of a single node (see Figure 3).

Now from the largest chain we remove the largest element of the chain; i.e. the element of $V_{0}$ . In this

way, each binary tree is divided into 2 chains of length $r$ and $2^{k}$ chains of length $r-k,$ $1\leq k\leq r-1$

(see Figure 4). The sum of these chains is $2+ \sum_{k}2^{k}(=2^{r})$ .

Figure3. Decomposition ofabinary tree into diqjoint chains.

ra$I$永

$r-11r02::\ovalbox{\tt\small REJECT}_{\ovalbox{\tt\small REJECT}\Vert}^{V_{0}}\ovalbox{\tt\small REJECT}\ldots\xi[\cdots[\cdots \emptyset\emptyset\cdots\bullet$

$2^{0}rightarrow 2^{1} \cdots \overline{2^{k}} \cdots rightarrow^{2^{r-1}}$

Figure 4. $2^{r}$ chains $($in $\cup V_{b})$ obtained from a binary tree.
$b$
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In addition, the second poset
$\bigcup_{d}V_{d}$

can be divided into disjoint $2^{r}(\begin{array}{l}nr\end{array})$ chains with a length of at most

$n-1-r$ by Dilworth’s theorem[7,12](see Figure5).

rank

$n-1r+2r+1: \frac{\iota||||\cdots||\cdots|||\cdots|\prime\backslash }{\backslashr}$

$2^{r}$

Figure5. $2^{r}$ chains $($in
$\bigcup_{d}V_{d})$

obtained by Dilworth’stheorem

Then, for $2^{r}$ elements in $V_{r}$ , there exist 2 chains with a length of at most $r+(n-1-r)$ and $2^{k}$

chains with a length of at most $(r-k)+(n-1-r),$ $1\leq k\leq r-1$ in the poset $\cup V_{b}$ and $\cup V_{d}$ . If $S$

$b$ $d$

is any antichain in $\cup V_{b}$ and $\cup V_{d}$ $($namely, $in V_{\overline{n}})$, then, for $2^{r}$ elements in $V_{r},$ $S$ is uniquely
$b$ $d$

detennined by its intersection with each of the above chains. Considering all possibilities, including the

case of no select, the intersections of $S$ with any chain give the upper bound of $|DF(1)|$ as follows:

$((r+(n-1-r)+1)^{2} \cdot\prod_{k-1}^{r-1}((r-k)+(n-1-r)+1)^{2^{k}})^{(\begin{array}{l}nr\end{array})}$

$-(n \cdot\prod_{k-0}^{r-1}(n-k)^{2^{k}})^{(\begin{array}{l}nr\end{array})}(n^{2^{r-1}}\cdot(n-r+1)^{2^{r-1}}\cdot\prod_{k-0}^{r-2}(1-\frac{k}{n})^{2^{k}})^{(\begin{array}{l}nr\end{array})}$ (17)

Put $r-2n/3$ , the Spemer rank, then the equation (17) $be\infty mes$ as follows:

(17) $<(n^{2^{r-1}} \cdot(\frac{n}{3}I^{2^{r-1}}\cdot(\frac{1}{3}I^{2^{r-2}})^{(\begin{array}{l}nr\end{array})}(\frac{\sqrt[4]{3}}{3}n)^{2^{r}(\begin{array}{l}nr\end{array})}$ (18)

From the above result, using the following Stirling’s approximation [15] for factorials:

$2^{r} (\begin{array}{l}nr\end{array})-\frac{3}{2\sqrt{\pi}}\cdot\frac{3^{n}}{\sqrt{n}}\cdot(1+o(\frac{1}{n}))$ , (19)

the new upper bound of $|DF(1)|$ is rewritten as follows:
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$|DF(1)|<2^{\alpha},$ (20)

where $\alpha=3^{n}\cdot\frac{3}{2\sqrt{n\pi}}(1+\frac{c}{n})\cdot\log_{2}\frac{\sqrt{3}^{4}n}{3}.$

5. Lower bound

We first introduce the lower bound described in [10]. For any $0<k<n$ , in two adjacent ranks $k$

and $k-1$ in a poset $V_{\overline{n}}$ , each element in $V_{k}$ is covered by $k$ elements in $V_{k-1}$ (see Figure 6). So,

$s$ elements in $V_{k}$ are covered by at most $ks$ elements in $V_{k-1}$ . Since the remaining $|V_{k-1}|-ks$

elements in $V_{k-1}$ do not cover the $s$ elements in $V_{k}$ , any subset of the remaining elements in $V_{k-1}$

forms an antichain. Therefore, in the case of choosing $s$ elements $($where, $0\leq s\leq|V_{k}|)$ in $V_{k}$ , the

number of antichain obtained from the remaining elements in $V_{k-1}$ is at least as follows, and this gives

the lower bound of $|DF(1)|.$

$\sum_{s}(^{|V_{k}|}s)2^{V_{k-1}\vdash k}=2^{\psi_{k-1}1}\cdot\sum_{s}(s)2^{一}$ (21)

By applying the binomial theorem [15], the equation (21) becomes as follows:

(22)
$-2^{V_{k-1}1.b+2^{-k}\uparrow^{v_{k}|}}-2^{\psi_{k-1}1}\cdot e_{u}(kn)$

(22)

where, $e_{u}-(1+2^{-k}\rangle^{2^{k}}$

In equation (22), take $k$ as $r$ , where $r=2n/3$ is the Spemer rank as described in the previous section.

If $narrow$ oo, then

$e_{u}arrow e$ (the base of natural logarithm) and $(\begin{array}{l}nr-1\end{array})arrow 2\cdot(\begin{array}{l}nr\end{array}).$

So

$|V_{r-1}|-|V_{r}|$ (23)

holds. Consequently, we obtain the lower bound of $|DF(1)|$ in [10] as follows:

$|DF(1)|>2^{|v_{r}|}\cdot e(\begin{array}{l}nr\end{array})(-2^{2^{r}(^{n})_{e}(^{n})}\prime\cdot\prime)$ (24)
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Figure6. Counting the antichains in two adjacent layers.

This argument follows in a similar way one used in [9] for counting antichains in two adjacent ranks

between $k$ and $k-1$ in a poset $V_{\overline{n}}$ for estimating the lower bound of monotone logic functions with

$n$-variables.

Here, we can obtain the same lower bound as the equation (24) by $\infty$unting antichains in two adjacent

ranks $k$ and $k+1$ in a poset $V_{\overline{n}}$ (see Figure 6). That is, each element in $V_{k}$ covers $2(n-k)$

elements in $V_{k+1}$ . So, $s$ elements in $V_{k}$ cover at most $2(n-k)s$ elements in $V_{k+1}$ . Since the

remaining $|V_{k+1}|-2(n-k)s$ elements in $V_{k+1}$ are not covered by $s$ elements in $V_{k}$ , any subset of

the remaining elements in $V_{k+1}$ forms an antichain. Therefore, in the case of choosing $s$ elements

$(0\leq s\leq|V_{k}|)$ in $V_{k}$ , the number of antichains obtained from the remaining elements in $V_{k+1}$ is at least

as follows, and gives the lower bound of $|DF(1)|.$

$\sum_{s}(^{|V_{k}|}s)2^{\psi_{k+1}|-2(n-k)s}-2^{\psi_{k+1}1}\cdot\sum_{s}(^{|V_{k}|}s)2^{-2(n-k)s}$ (25)

By applying the binomial theorem [15], the equation (25) is as follows.

(25) $-2$阪 $+$1 $|$ $\beta_{+2^{-2(n-k)}}\gamma_{-2^{|v_{k+1}|}\cdot e_{d}}^{1}r_{k}2^{3k-2n}(nk)$

, (26)
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where $e_{d}=b+2^{-2(n-k)})^{2^{2(n-k)}}$

In the equation (26), take $k$ as $r$ , where $r-2n/3$ , Spemer rank. Then $2^{3r-2n}=1$ holds. If

$narrow\infty$ , then

$e_{d}arrow e$ (the base of natural logarithm) and $(\begin{array}{ll} nr -1\end{array})arrow 2\cdot(\begin{array}{l}nr\end{array}).$

So

$|V_{r+1}|-|V_{r}|$ (27)

holds. Consequently, we obtain the same lower bound as the equation (24), as follows:

$|DF(1)|>2^{|V_{r}|}\cdot e(\begin{array}{l}nr\end{array})$

($2S$)

In two equations (24) and (28), antichains we have counted are independent each other (because, the former

is derived from the relation between $V_{r}$ and $V_{r-1}$ , and the latter from one between $V_{r}$ and $V_{r+1}$ ).

By adding both results, we can improve the lower bound only slightly as follows:

$|DF(1)|>2\cdot 2$巴
$|e(\begin{array}{l}nr\end{array})$

. (29)

Now, we proceed to improve the lower bound by counting antichains in three adjacent-ranked posets

$(V_{r-1}, V_{r} and V_{r+1})$ of $V_{\overline{n}}$ , where we take $r-2n/3$ , the Spemer rank (see Figure 7).

Figure 7. Counting the antichains in the three adjacent layers,
where $r=2n/3$ , the Spamer rank.
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Here, to simplify calculation, we regard that an element in one layer $\infty vers$ (or, is covered by) $r$

elements in the other layer between two adjacent ranked-layers. That is, $s$ elements in $V_{r+1}$ are

$\infty$vered by at most $rs$ elements in $V_{r}$ , and are covered by at most $r^{2}s$ elements in $V_{r-1}(s-$larly,

$t$ elements in $V_{r-1}$ cover at most $rt$ elements in $V_{r}$ , and cover at most $r^{2}t$ elements in $V_{r+1}$ ).

In Figure 7, we $\infty$nsider the case that, firstly $s$ elements are chosen in $V_{r+1}$ , and secondly $t$ elements

are chosen from the elements which have remained after removing the $\infty$vering $r^{2}s$ elements in $V_{r-1}$

(since the number of remaining elements is at most $|V_{r-1}|-r^{2}s$ elements). Then, as for inclusion

relations, the remaining elements $($namely, $|V_{r}|-rs-rt$ elements) in $V_{r}$ are included neither in the

shadow of the $s$ elements in $V_{r+1}$ nor in the anti-shadow of the $t$ elements in $V_{r-1}$ , respectively. So,

any subset of the remaining elements in $V_{r}$ forms an antichain. Therefore, in the case of choosing $s$

elements $(0\leq s\leq|V_{r+1}|)$ in $V_{r+1}$ and choosing $t$ elements $(0\leq t\leq|V_{r-1}|-r^{2}s)$ in $V_{r-1}$ , the number

of antichains obtained from the remaining elements in $V_{r}$ can be at least as follows, and this gives a new

lower bound of $|DF(1)|$ :

$\sum_{s}(^{|V_{r+1}|}s)\sum_{t}(^{|V|-r^{2_{S}}}r-1_{t})2^{\psi_{r}|-rs-rt}$

$-2$防 $|$ . $\sum_{s}(^{|V_{r+1}|}s)2^{-rs}\sum_{t}(^{|V_{r-1}|-r^{2_{S}}}t)2^{-rt}$ (30)

Here, in the above equation, by applying the binomial theorem we have:

$\underline{V_{r-1}|} -\underline{r^{2_{S}}}$

$\sum_{t}(^{|V_{r-1}|-r^{2_{S}}}t)2^{-rt}-\beta_{+2^{-r}}V^{r-1}|-r^{2_{S}}-e_{1^{2^{r}}}$ $e_{1}2^{r}$ (31)

where $e_{1}-b+2^{-r})^{2^{r}}$

So the equation (30) becomes as follows:

$2^{\psi_{r}1} \cdot e\sum_{s}(^{|V_{r+1}|}s)2^{-r(1+\frac{r}{2^{r}}\log_{2}e_{1})s}\frac{\psi_{r-1}1}{1^{2^{r}}}$. (32)
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Furthermore, in the above equation (32), put $A-1+ \frac{r}{2^{r}}\log_{2}e_{1}$ . By repeated application of the

binomial theorem we have:

$\sum_{s}(^{|V_{r+1}|}s)2^{-rAs}=(1+2^{-rA}l^{v_{r+1}|}=e^{\frac{r_{r+1}^{\gamma}1}{2^{2^{rA}}}}$ (33)

where $e_{2}\approx(1+2^{-rA}\rangle^{2^{rA}}$

So the equation (32) becomes as follows:

$\underline{V_{r-1}|} |v_{r+1}|$

$2^{\psi_{r}1}\cdot e_{1^{2^{r}}}$ $e_{\overline{2^{2^{rA}}}}$ (34)

In equation (34), if $narrow\infty$ , then $e_{1}arrow e$ and $e_{2}arrow e$ . Then, $|V_{r-1}|-|V_{r}|$ and $|V_{r+1}|-|V_{r}|$ hold.

Consequently, the new lower bound of $|DF(1)|$ we obtain as follows:

$|DF(1)|>2$跨 $|.ee=2^{|V_{r}|}\cdot e$

Combining (14), (18), (35) we can obtain bounds for the number of disjunctive foms for all $n$ -variable

logic functions.

6. Conclusions

In this paper we have presented new upper and lower bounds on the number of disjunctive forms of an

$n$ -variable binary logic function (we took the constant function 1 for our purpose). We have followed

the methods described in [10] (they originate from [8,9]) incorporating new ideas. It is interesting to note

that the lower bound by counting antichains contained in the adjacent three layers (the Spemer rank,

$r\approx 2n/3$ at the center) can be simplified as shown herein. If we apply Gilbert’s method [8] and

Shapiro’s method [9] to upper and lower bound, respectively, for the poset $V_{\overline{n}}$ satisfying Spemer’s lemma,

we would not expect to obtain an essential improvement over the upper and lower bounds obtained here.
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