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Abstract

In this article, we survey recent developments of generalization error analysis
of Multiple Kernel Learning (MKL) and a refined method based on the theoretical
developments. The main target in this article is dense type regularizations including
$P_{p}$-MKL that imposes $\ell_{p}$-mixed-norm regularization instead of $\ell_{1}$-mixed-norm regu-
larization. According to the recent numerical experiments, the sparse regularization
does not necessarily show a good performance compared with dense type regulariza-
tions. Motivated by this fact, a general theoretical tool was recently established to
derive fast learning rates that is applicable to arbitrary mixed-norm-type regulariza-
tions in a unifying manner. As a by-product, the general result gives a fast leaming
rate of $\ell_{p}$-MKL that is tightest among existing bounds. The leaming rate achieves
the minimax lower bound. As a consequence, when the complexities of candidate
reproducing kemel Hilbert spaces are inhomogeneous, it is shown that dense type
regularization shows better learning rate compared with sparse $\ell_{1}$ regularization.
Moreover, on the basis of the theoretical analysis, a new method of MKL that uti-
lizes an adaptively weighted regularization has been proposed. The method controls
strength of penalty for each kernel depending on its importance so that important
components are amplified and unimportant components are shrinked.

1 Introduction
Multiple Kemel Learning (MKL) proposed by [20] is one of the most promising methods
that adaptively select the kemel function in supervised kernel leaming. $A$ kemel method
is widely used and several studies have supported its usefulness [25]. However the per-
formance of kernel methods critically relies on the choice of the kernel function. Many
methods have been proposed to deal with the issue of kernel selection. [23] studied hy-
perkrenels as a kemel of kemel functions. [2] considered $DC$ programming approach to
leam a mixture of kernels with continuous parameters. Some studies tackled a problem
to leam non-linear combination of kemels as in [4, 9, 37]. Among them, leaming a linear
combination of finite candidate kernels with non-negative coefficients is the most basic,
fundamental and commonly used approach. The seminal work of MKL by [20] considered
leaming convex combination of candidate kernels. This work opened up the sequence of
the MKL studies. [5, 22] showed that MKL can be reformulated as a kemel version of
the group lasso [39]. This formulation gives an insight that MKL can be described as a
$\ell_{1^{-}}mixed$-norm regularized method. As a generalization of MKL, $\ell_{p}$-MKL that imposes
$\ell_{p}$-mixed-norm regularization has been proposed [22, 14]. $\ell_{p}$-MKL includes the original
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MKL as a special case as $\ell_{1}$ -MKL. Another direction of generalizing MKL is elasticnet-
MKL [26, 34] that imposes a mixture of $\ell_{1^{-}}mixed$-norm and $\ell_{2}$-mixed-norm regularizations.
Recently numerical studies have shown that $\ell_{p}$-MKL with $p>1$ and elasticnet-MKL show
better performances than $\ell_{1}$-MKL in several situations [14, 8, 34]. An interesting per-
ception here is that both $\ell_{p}$-MKL and elasticnet-MKL produce denser estimator than the
original $\ell_{1}$ -MKL while they show favorable performances. $\cdot$

In the pioneering paper of [20], a convergence rate of MKL is given as $\sqrt{\frac{M}{n}}$ , where $M$

is the number of given kernels and $n$ is the number of samples. [27] gave improved leaming
bound utilizing the pseudo-dimension of the given kemel class. [38] gave a convergence
bound utilizing Rademacher chaos and gave some upper bounds of the Rademacher chaos
utilizing the pseudo-dimension of the kernel class. [8] presented a convergence bound for
a learning method with $L_{2}$ regularization on the kemel weight. [10] gave the convergence

rate of $\ell_{p}$-MKL as $\frac{M^{1-\frac{1}{p}}\vee\sqrt{\log(M)}}{\sqrt{n}}$ for $1\leq p\leq 2$ . [15] gave a similar convergence bound
with improved constants. [16] generalized this bound to a variant of the elasticnet type
regularization and widened the effective range of $p$ to all range of $p\geq 1$ while in the
existing bounds $1\leq p\leq 2$ was imposed. One concern about these bounds is that all
bounds introduced above are “global” bounds in a sense that the bounds are applicable
to all candidates of estimators. Consequently all convergence rate presented above are of
order $1/\sqrt{n}$ with respect to the number $n$ of samples. However, by utilizing the localization
techniques including so-called local Rademacher complexity [6, 17] and peehng device [35],
we can derive a faster leaming rate. Instead of uniformly bounding all candidates of
estimators, the localized inequality focuses on a particular estimator such as empirical
risk minimizer, thus can gives a sharp convergence rate.

Localized bounds of MKL have been given mainly in sparse learning settings [18, 21, 19],
and there are only few studies for non-sparse settings in which the sparsity of the ground
truth is not assumed. [13] gave a localized convergence bound of $\ell_{p}$-MKL. However, their
bound is a little bit larger than the minimax optimal rate.

Recently [31, 30] gave a unified framework to derive fast convergence rates of MKL
with various regularization types. The framework is applicable to arbitrary mixed-norm
regularizations including $\ell_{p^{arrow}}$MKL and elasticnet-MKL. The derived learning rate utilizes
the localization technique, thus is tighter than global type leaming rates. Moreover the
analysis deals with more general regularization than that of [13]. It is shown that the bound
achieves the minimax-optimal rate. As a by-product, it gives a tighter convergence rate of
$\ell_{p}$-MKL than existing results. According to the analysis, dense type regularizations can
outperforms sparse $\ell_{1}$ regularization when the complexities of the RKHSs are not uniformly
same. As far as the authors know, this research is the first theoretical attempt to clearly
show advantage of dense type MKL.

On the basis of the theoretical analysis by [31, 30], [32] proposed a new MKL method
that utilizes an adaptively tailored regularization to improve the performance. The method
consists of two stages. In the first stage, it computes a rough estimator to approximate
the true function. Then in the second stage, it constructs an adaptively weighted penalty
based on the rough estimator obtained in the first stage, and compute an estimator using
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the adaptively weighted penalty. The adaptive weight is intended to amplify important
components and shrink unimportant components. The method can be seen as the MKL
version of adaptive lasso [40], but th\’e framework involves more general regularizations
than $P_{1}$-regularization.

This article gives an overview of the recent developments given by [31, 30, 32].

2 Preliminary
In this section, we give the problem formulation, the notations and the assumptions re-
quired for the convergence analysis.

2.1 Problem Formulation
Suppose that we are given $n$ i.i.d. samples $\{(x_{i}, y_{i})\}_{i=1}^{n}$ distributed from a probabihty dis-
tribution $P$ on $\mathcal{X}\cross \mathbb{R}$ where $\mathcal{X}$ is an input space. We denote by $\Pi$ the marginal distribution
of $P$ on $\mathcal{X}$ . We are given $M$ reproducing kemel Hilbert spaces (RKHS) $\{\mathcal{H}_{m}\}_{m=1}^{M}$ each
of which is associated with a kernel $k_{m}$ . We consider a mixed-norm type regularization
with respect to an arbitrary given norm $\Vert\cdot\Vert_{\psi}$ , that is, the regularization is given by the
norm $\Vert(\Vert f_{m}\Vert_{\mathcal{H}_{m}})_{m=1}^{M}\Vert_{\psi}$ of the vector $(\Vert f_{m}\Vert_{\mathcal{H}_{m}})_{m=1}^{M}$ for $f_{m}\in \mathcal{H}_{m}(m=1, \ldots, M)^{*}$ . For
notational simplicity, we write $\Vert f\Vert_{\psi}=\Vert(\Vert f_{m}\Vert_{\mathcal{H}_{m}})_{m=1}^{M}\Vert_{\psi}$ for $f= \sum_{m=1}^{M}f_{m}(f_{m}\in \mathcal{H}_{m})$ .

The general formulation of MKL that we consider in this article fits a function $f=$
$\sum_{m=1}^{M}f_{m}(f_{m}\in \mathcal{H}_{m})$ to the data by solving the following optimization problem:

arg min$\hat{f}=\sum_{m=1}^{M}\hat{f}_{m}=f_{m}\in \mathcal{H}_{m}(m=1,\ldots,M)^{\frac{1}{n}\sum_{i=1}^{n}}(y_{i}-\sum_{m=1}^{M}f_{m}(x_{i}))^{2}+\lambda_{1}^{(n)}\Vert f\Vert_{\psi}^{2}$ . (1)

We call this $\psi$-norm MKL”. This formulation covers many practically used MKL meth-
ods (e.g., $\ell_{p}$-MKL, elasticnet-MKL, variable sparsity kernel learning (see later for their
definitions) $)$ , and is solvable by a finite dimensional optimization procedure due to the
representer theorem [12]. In this article, we focus on the regression problem (the squared
loss). However the discussion presented here can be generalized to Lipschitz continuous
and strongly convex losses [6, 30].

Example 1: $\ell_{p}$-MKL The first example of $\psi$-norm MKL is $\ell_{p}$-MKL [14] that employs
$\ell_{p}$-norm for $1\leq p\leq\infty$ as the regularizer: $\Vert f\Vert_{\psi}=\Vert(\Vert f_{m}\Vert_{\mathcal{H}_{m}})_{m=1}^{M}\Vert_{\ell_{p}}=(\sum_{m=1}^{M}\Vert f_{m}\Vert_{\mathcal{H}_{m}}^{p})^{\frac{1}{p}}.$

If $p$ is strictly greater than 1 $(p>1)$ , the solution of $\ell_{p}$-MKL becomes dense. In particular,
$p=2$ corresponds to averaging candidate kemels with uniform weight [22]. It is reported
that $\ell_{p}$-MKL with $p$ greater than 1, say $p= \frac{4}{3}$ , often shows better performance than the
original sparse $P_{1}$-MKL [10].

*We assume that the mixed-norm $\Vert(\Vert f_{m}\Vert_{\mathcal{H}_{m}})_{m=1}^{M}\Vert_{\psi}$ satisfies the triangular inequality with respect
to $(f_{m})_{m=1}^{M}$ , that is, $\Vert(\Vert f_{m}+f_{m}’\Vert_{\mathcal{H}_{m}})_{m=1}^{M}\Vert_{\psi}\leq\Vert(\Vert f_{m}\Vert_{\mathcal{H}_{m}})_{m=1}^{M}\Vert_{\psi}+\Vert(\Vert f_{m}’\Vert_{\mathcal{H}_{m}})_{m=1}^{M}\Vert_{\psi}$. To satisfy this
condition, it is sufficient if the norm is monotone, i.e., $\Vert a\Vert_{\psi}\leq\Vert a+b\Vert_{\psi}$ for all $a,$ $b\geq 0.$
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Example 2: Elasticnet-MKL The second example is elasticnet-MKL [26, 34] that
employs mixture of $\ell_{1}$ and $\ell_{2}$ norms ae the regularizer: $\Vert f\Vert_{\psi}=\tau\Vert f\Vert_{\ell_{1}}+(1-\tau)\Vert f\Vert_{\ell_{2}}=$

$\tau\sum_{m=1}^{M}\Vert f_{m}\Vert_{\mathcal{H}_{m}}+(1-\tau)(\sum_{m=1}^{M}\Vert f_{m}\Vert_{\mathcal{H}_{m}}^{2})^{\frac{1}{2}}$ with $\tau\in[0,1]$ . Elasticnet-MKL shares the
same spirit with $P_{p}$-MKL in a sense that it bridges sparse $\ell_{1}$-regularization and dense
$\ell_{2}$-regularization. An efficient optimization method for elasticnet-MKL is proposed by
[33].

Example 3: Variable Sparsity Kernel Learning Variable Sparsity Kemel Leaming
(VSKL) proposed by [1] divides the RKHSs into $M’$ groups $\{\mathcal{H}_{j,k}\}_{k=1}^{M_{j}},$ $(j=1, \ldots, M’)$

and imposes a mixed norm regularization $\Vert f\Vert_{\psi}=\Vert f\Vert_{(p,q)}=\{\sum_{j=1}^{M’}(\sum_{k=1}^{M_{j}}\Vert f_{j,k}\Vert_{\mathcal{H}_{j,k}}^{p})^{q}p\}^{\frac{1}{q}}$

where $1\leq p,$ $q$ , and $f_{j,k}\in \mathcal{H}_{j,k}$ . An advantageous point of VSKL is that by adjusting the
parameters $p$ and $q$ , various levels of sparsity can be introduced, that is, the parameters
can control the level of sparsity within group and between groups. This point is beneficial
especially for multi-modal tasks like object categorization.

2.2 Notations and Assumptions

Here, we prepare notations and assumptions that are used in the analysis. Let $\mathcal{H}^{\oplus M}=$

$\mathcal{H}_{1}\oplus\cdots\oplus \mathcal{H}_{M}$ . Throughout the article, we assume the following technical conditions (see
also [3] $)$ .

Assumption 1. (Basic Assumptions)

(Al) There exists $f^{*}=(f_{1}^{*}, \ldots, f_{M}^{*})\in \mathcal{H}^{\oplus M}$ such that $E[Y|X]=f^{*}(X)=\sum_{m=1}^{M}f_{m}^{*}(X)$ ,
and the noise $\epsilon$ $:=Y-f^{*}(X)$ is bounded as $|\epsilon|\leq L.$

(A2) For each $m=1,$ $\ldots,$
$M,$ $\mathcal{H}_{m}$ is sepamble (with respect to the RKHS norm) and

$\sup_{X\in \mathcal{X}}|k_{m}(X, X)|<1.$

The first assumption in (Al) ensures the model $\mathcal{H}^{\oplus M}$ is correctly specified, and the
technical assumption $|\epsilon|\leq L$ allows $\epsilon f$ to be Lipschitz continuous with respect to $f$ . The
noise boundedness can be relaxed to unbounded situation as in [24], but we don’t pursue
that direction for simplicity.

Let an integral operator $T_{k_{m}}$ : $L_{2}(\Pi)arrow L_{2}(\Pi)$ corresponding to a kernel function $k_{m}$

be
$T_{k_{m}}f= \int k_{m}(\cdot, x)f(x)d\Pi(x)$ .

It is known that this operator is compact, positive, and self-adjoint (see Theorem 4.27 of
[28] $)$ . Thus it has at most countably many non-negative eigenvalues. We denote by $\mu_{\ell,m}$

be the $\ell$-th largest eigenvalue (with possible multiplicity) of the integral operator $T_{k_{m}}.$

Then we assume the following assumption on the decreasing rate of $\mu_{\ell,m}.$

Assumption 2. (Spectral Assumption) There exist $0<s_{m}<1$ and $0<c$ such that

(A3) $\mu_{\ell,m}\leq c\ell^{-\frac{1}{\epsilon_{m}}}, (\forall\ell\geq 1,1\leq\forall m\leq M)$ ,

where $\{\mu_{\ell,m}\}_{\ell=1}^{\infty}$ is the spectrum of the operator $T_{k_{m}}$ corresponding to the kemel $k_{m}.$
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It was shown that the spectral assumption (A3) is equivalent to the classical covering
number assumption [29]. Recall that the $\epsilon$-covering number $N(\epsilon, \mathcal{B}_{\mathcal{H}_{m}}, L_{2}(\Pi))$ with respect
to $L_{2}(\Pi)$ is the minimal number of balls with radius $\epsilon$ needed to cover the unit ball $\mathcal{B}_{\mathcal{H}_{m}}$

in $\mathcal{H}_{m}[36]$ . If the spectral assumption (A3) holds, there exists a constant $C$ that depends
only on $s$ and $c$ such that $\log N(\epsilon, \mathcal{B}_{\mathcal{H}_{m}}, L_{2}(\Pi))\leq C\epsilon^{-2s_{m}}$, and the converse is also true (see
[29, Theorem 15] and [28] for details). Therefore, if $s_{m}$ is large, the RKHSs are regarded
as “complex”, and if $s_{m}$ is small, the RKHSs are “simple”

An important class of RKHSs where $s_{m}$ is known is Sobolev space. (A3) holds with
$s_{m}= \frac{d}{2\alpha}$ for Sobolev space of $\alpha$-times continuously differentiability on the Euclidean ball
of $\mathbb{R}^{d}[11]$ . Moreover, for $\alpha$-times continuously differentiable kernels on a closed Euclidean
ball in $\mathbb{R}^{d}$ , that holds for $s_{m}= \frac{d}{2\alpha}$ [$28$ , Theorem 6.26]. According to Theorem 7.34 of [28],
for Gaussian kemels with compact support distribution, that holds for arbitrary small
$0<s_{m}$ . The covering number of Gaussian kernels with unbounded support distribution is
also described in Theorem 7.34 of [28].

Let $\kappa_{M}$ be defined as follows:

$\kappa_{M}:=\sup\{\kappa\geq 0|\kappa\leq\frac{\Vert\Sigma_{m=1}^{M}f_{m}||_{L_{2}(\Pi)}^{2}}{\Sigma_{m=1}^{M}\Vert f_{m}||_{L_{2}(\Pi)}^{2}}, \forall f_{m}\in \mathcal{H}_{m}(m=1, \ldots, M)\}$. (2)

$\kappa_{M}$ represents the correlation of RKHSs. We assume all RKHSs are not completely corre-
lated to each other.

Assumption 3. (Incoherence Assumption) $\kappa_{M}$ is strictly bounded from below; there
exists a constant $C_{0}>0$ such that

(A4) $0<C_{0}^{-1}<\kappa_{M}.$

This condition is motivated by the incoherence condition [18, 21] considered in sparse
MKL settings. This ensures the uniqueness of the decomposition $f^{*}= \sum_{m=1}^{M}f_{m}^{*}$ of the
ground truth. [3] also assumed this condition to show the consistency of $\ell_{1}$ -MKL.

Finally we give a technical assumption with respect to $\infty$-norm.

Assumption 4. (Embedded Assumption) Under the Spectral Assumption, there exists
a constant $C_{1}>0$ such that

(A5) $\Vert f_{m}\Vert_{\infty}\leq C_{1}\Vert f_{m}\Vert_{\mathcal{H}_{m}}^{1-s_{m}}\Vert f_{m}\Vert_{L_{2}(\Pi)}^{s_{m}}.$

The condition (A5) is common and practical. There is a clear characterization of the
condition (A5) in terms of real interpolation of spaces. One can find detailed and formal
discussions of interpolations in [29], and Proposition 2.10 of [7] gives the necessary and
sufficient condition for the assumption (A5).

3 Convergence Rate Analysis of $\psi$-norm MKL
Here we present the learning rate of $\psi$-norm MKL derived by [31, 30]. We suppose that
the number of kernels $M$ can increase along with the number of samples $n.$
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Now we define $\eta(t)$ $:= \eta_{n}(t)=\max(1, \sqrt{t}, t/\sqrt{n})$ for $t>0$ , and, for given positive reals
$\{r_{m}\}_{m=1}^{M}$ and given $n$ , we define $\alpha_{1},$ $\alpha_{2},$

$\beta_{1},$ $\beta_{2}$ as follows:

$\alpha_{1}:=\alpha_{1}(\{r_{m}\})=3(\sum_{m=1}^{M}\frac{r^{-2s_{m}}}{n})^{\frac{1}{2}}$
$\alpha_{2}:=\alpha_{2}(\{r_{m}\})=3\Vert(Sm_{\sqrt{n}^{-)_{m=1}^{M}\Vert_{\psi^{*}}}}^{r^{1-s_{m}}}$

$\beta_{1}:=\beta_{1}(\{r_{m}\})=3(\sum_{m=1}^{M}\frac{r_{m}^{-\frac{2\epsilon m(3-\epsilon_{m})}{1+\’{e} m}}}{n\neq_{s\overline{m}}})^{\frac{1}{2}},$
$\beta_{2}:=\beta_{2}(\{r_{m}\})=3\Vert(\frac{s_{m}r^{\frac{(1-s_{m})^{2}}{m^{1+s_{m}}}}}{n^{I\mp\epsilon_{m}}L})_{m=1}^{M}\Vert_{\psi}$

.
(3)

$(note that \alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ implicitly depends $on the$ reals $\{r_{m}\}_{m=1}^{M})$ . Then the following
theorem gives the general form of the learning rate of $\psi$-norm MKL.

Theorem 1 ([31, 30]). Suppose Assumptions 1-4 are satisfied. Let $\{r_{m}\}_{m=1}^{M}$ be arbitmry

positive reals that can depend on $n$ , and assume $\lambda_{1}^{(n)}=(\begin{array}{l}\simeq\alpha\alpha 1\end{array})+(\frac{\beta_{2}}{\beta_{1}})^{2}$ Then for all $n$

and $t’$ that satisfy $\frac{\log(M)}{\sqrt{n}}\leq 1$ and $\frac{4\phi\sqrt{n}}{\kappa_{M}}\max\{\alpha_{1}^{2}, \beta_{1}^{2}, \frac{M\log(M)}{n}\}\eta(t’)\leq\frac{1}{12}$ and for all $t\geq 1,$

we have

$\Vert\hat{f}-f^{*}\Vert_{L_{2}(\Pi)}^{2}\leq\frac{24\eta(t)^{2}\phi^{2}}{\kappa_{M}}(\alpha_{1}^{2}+\beta_{1}^{2}+\frac{M\log(M)}{n})+4[(\frac{\alpha_{2}}{\alpha_{1}})^{2}+(\frac{\beta_{2}}{\beta_{1}})^{2}]\Vert f^{*}\Vert_{\psi}^{2}.$ (4)

with pmbability $1-\exp(-t)-\exp(-t’)$ .

The statement of Theorem 1 itself is comphcated. Thus we will show later concrete
learning rates on some examples such as $P_{p}$-MKL. The convergence rate (4) depends on
the positive reals $\{r_{m}\}_{m=1}^{M}$ , but the choice of $\{r_{m}\}_{m=1}^{M}$ are arbitrary. Thus by minimizing
the right hand side of Eq. (4), we obtain tight convergence bound as follows:

$\Vert f-f^{*}\Vert_{L_{2}(\Pi)}^{2}=\mathcal{O}_{p}(\min_{r_{m}>0}\{\alpha_{1}^{2}+\beta_{1}^{2}+[(\frac{\alpha_{2}}{\alpha_{1}})^{2}+(\frac{\beta_{2}}{\beta_{1}})^{2}]\Vert f^{*}\Vert_{\psi}^{2}+\frac{M\log(M)}{n}\})$. $(5)$

There is a trade-off between the first two terms $(a)$ $:=\alpha_{1}^{2}+\beta_{1}^{2}$ and the third term $(b)$ $:=$

$[(\begin{array}{l}-\alpha 4\alpha_{l}\end{array})+(_{\beta_{1}^{2}}^{L})^{2}]\Vert f^{*}\Vert_{\psi}^{2}$ , that is, if we take $\{r_{m}\}_{m}$ large, then the term (a) becomes small

and the term (b) becomes large, on the other hand, if we take $\{r_{m}\}_{m}$ small, then it results
in large (a) and small (b). Therefore we need to balance the two terms (a) and (b) to
obtain the minimum in Eq. (5).

We discuss the obtained learning rate in two situations, (i) homogeneous complexity
situation, and (ii) inhomogeneous compleStty situation:

(i) (homogeneous) All $s_{m}s$ are same: there exists $0<s<1$ such that $s_{m}=s(\forall m)$

(Sec.3.1).
(ii) (inhomogeneous) All $s_{m}s$ are not same: there exist $m,$ $m’$ such that $s_{m}\neq s_{m’}$

(Sec.3.2).
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3.1 Analysis on Homogeneous Settings
Here we assume all $s_{m}s$ are same, say $s_{m}=s$ for all $m$ (homogeneous setting). If we
further restrict the situation as all $r_{m}s$ are same ($r_{m}=r(\forall m)$ for some $r$ ), then the
minimization in Eq. (5) can be easily carried out as in the following corollary. Let 1 be
the $M$-dimensional vector each element of which is 1: 1 $:=(1, \ldots, 1)^{T}\in \mathbb{R}^{M}$ , and $\Vert\cdot\Vert_{\psi^{*}}$

be the dual norm of the $\psi$ -norm\dagger .

Corollary 2. When $s_{m}=s(\forall m)$ with some $0<s<1$ and $n\geq(\Vert 1\Vert_{\psi^{*}}\Vert f^{*}\Vert_{\psi}/M)^{\frac{4s}{1-s}}$ , the
bound (5) indicates that

$\Vert f-f^{*}\Vert_{L_{2}(\Pi)}^{2}=\mathcal{O}_{p}(M^{1-\frac{2s}{1+s}}n^{-\frac{1}{1+s}}(\Vert 1\Vert_{\psi^{*}}\Vert f^{*}\Vert_{\psi})^{\frac{2s}{1+s}}+\frac{M\log(M)}{n})$ . (6)

Corollary 2 is derived by assuming $r_{m}=r(\forall m)$ , which might make the bound loose.
However, when the norm $\Vert$ $\Vert_{\psi}$ is isotropic (whose definition will appear later), that
restriction $(r_{m}=r(\forall m))$ does not make the bound loose, that is, the upper bound
obtained in Corollary 2 is tight and achieves the minimax optimal rate (the minimax
optimal rate is the one that cannot be improved by any estimator). In the following, we
investigate the general result of Corollary 2 through some important examples.

Convergence Rate of $l_{p}$-MKL Here we derive the convergence rate of $\ell_{p}$-MKL $(1\leq$

$p\leq\infty)$ where $\Vert f\Vert_{\psi}=\sum_{m=1}^{M}(\Vert f_{m}\Vert_{\mathcal{H}_{m}}^{p})^{\frac{1}{p}}$ $(for p=\infty, it is$ defined $as \max_{m}\Vert f_{m}\Vert_{\mathcal{H}_{m}})$ . It is
well known that the dual norm of $\ell_{p}$-norm is given as $\ell_{q}$-norm where $q$ is the real satisfying
$\frac{1}{p}+\frac{1}{q}=1$ . For notational simplicity, let $R_{T}$

$:=( \sum_{m=1}^{M}\Vert f_{m}^{*}\Vert_{\mathcal{H}_{m}}^{p})^{\frac{1}{p}}$ Then substituting
$\Vert f^{*}\Vert_{\psi}=R_{p}$ and $||1\Vert_{\psi^{*}}=\Vert 1\Vert_{\ell_{q}}=M^{\frac{1}{q}}=M^{1-\frac{1}{p}}$ into the bound (6), the leaming rate of

$\ell_{p}$-MKL is given as

$\Vert f-f^{*}\Vert_{L_{2}(\Pi)}^{2}=\mathcal{O}_{p}(n^{-\frac{1}{1+8}}M^{1-\frac{2s}{p(1+s)}}R^{\frac{2s}{p^{1+s}}}+\frac{M\log(M)}{n})$ . (7)

If we further assume $n$ is sufficiently large so that $n\geq M^{\frac{2}{p}}R_{p}^{-2}(\log M)^{\underline{1}}s\pm\theta$ , the leading
term is the first term, and thus we have

$\Vert f-f^{*}\Vert_{L_{2}(\Pi)}^{2}=\mathcal{O}_{p}(n^{-\frac{1}{1+s}}M^{1-\frac{2s}{p(1+s)}}R^{\frac{2s}{p^{1+8}}})$ . (8)

Note that as the complexity $s$ of RKHSs becomes small the convergence rate becomes fast.
It is known that $n^{-\frac{1}{1+s}}$ is the minimax optimal learning rate for single kemel learning. The
derived rate of $\ell_{p}$-MKL is obtained by multiplying a coefficient depending on $M$ and $R_{p}$

to the optimal rate of single kemel leaming. To investigate the dependency of $R_{\tau}$ to the
learning rate, let us consider two extreme settings, i.e., sparse setting $(\Vert f_{m}^{*}\Vert_{\mathcal{H}_{m}})_{m=1}^{M}=$

$(1,0, \ldots, 0)$ and dense setting $(\Vert f_{m}^{*}\Vert_{\mathcal{H}_{m}})_{m=1}^{M}=(1, \ldots, 1)$ as in [15].

\dagger The dual of the norm $\Vert\cdot\Vert_{\psi}$ is defined as $\Vert b\Vert_{\psi}.$ $:= \sup_{a}\{b^{T}a|\Vert a\Vert_{\psi}\leq 1\}.$
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$\bullet$ $(\Vert f_{m}^{*}\Vert_{\mathcal{H}_{m}})_{m=1}^{M}=(1,0, \ldots, 0):R_{p}=1$ for all $p$ . Therefore the convergence rate
$n^{-\frac{1}{1+s}}M^{1-\frac{2\epsilon}{p(1+\epsilon)}}$ is fast for small $p$ and the minimum is achieved at $p=1$ . This
means that $\ell_{1}$ regularization is preferred for sparse truth.

$\bullet$
$(\Vert f_{m}^{*}\Vert_{\mathcal{H}_{m}})_{m=1}^{M}=(1, \ldots, 1):R_{p}=M^{\frac{1}{p}}$ , thus the convergence rate is $Mn^{-\frac{1}{1+s}}$ for all $p.$

Interestingly for dense ground truth, there is no dependency of the convergence rate
on the parameter $p$ (later we will show that this is not the case in inhomogeneous
settings (Sec.3.2) $)$ . That is, the convergence rate is $M$ times the optimal learning rate
of single kernel learning $(n^{-\frac{1}{1+\epsilon}})$ for all $p$ . This means that for the dense settings, the
complexity of solving MKL problem is equivalent to that of solving $M$ single kemel
learning problems.

Comparison with Existing Bounds Here we present a comparison of the bound for
$\ell_{p}$-MKL shown above with other existing bounds. Let $\mathcal{H}_{\ell_{p}}(R)$ be the $\ell_{p}$-mixed norm ball
with radius $R: \mathcal{H}_{l_{p}}(R);=\{f=\sum_{m=1}^{M}f_{m}|(\sum_{m=1}^{M}\Vert f_{m}\Vert_{\mathcal{H}_{m}}^{p})^{\frac{1}{p}}\leq R\}.$ $[10,16,15]$ gave
“global” type bounds for $\ell_{p}$-MKL as

$R(f) \leq\hat{R}(f)+C\frac{M^{1-}p\iota_{v\sqrt{\log(M)}}}{\sqrt{n}}R$ for all $f\in \mathcal{H}_{\ell_{p}}(R)$ , (9)

where $R(f)$ and $\hat{R}(f)$ is the population risk and the empirical risk. First observation is
that the bounds by [10] and [15] are restricted to the situation $1\leq p\leq 2$ . On the other
hand, the presented analysis and that of [16] covers all $p\geq 1$ . Second, since the bound (8)
is speciahzed to the regularized risk minimizer $f$ defined at Eq. (1) while the bound (9) is
applicable to all $f\in \mathcal{H}_{\ell_{p}}(R)$ , the bound (8) is sharper than theirs for sufficiently large $n.$

To see this, suppose $n\geq M^{\frac{2}{p}}R_{p}^{-2}$ , then we have $n^{-\frac{1}{1+\epsilon}}M^{1-\frac{2*}{p(1+\epsilon)}}\leq n^{-\frac{1}{2}}M^{1-\frac{1}{p}}$. Moreover
we should note that $s$ can be large as long as Spectral Assumption (A3) is satisfied. Thus
the bound (9) is formally recovered by our analysis by approaching $s$ to 1.

Recently [13] gave a tighter convergence rate utilizing the localization technique as $\Vert f-$

$f^{*} \Vert_{L_{2}(\Pi)}^{2}=\mathcal{O}_{p}(\min_{p’\geq p}\{_{\overline{p}\overline{-1}}nM^{1-\frac{2\iota}{p(1+\epsilon)}}R^{\frac{2\epsilon}{p1+\theta}}\})$ . Comparing the presented bound (8)

with their result, there are not $\min_{p’\geq p}$ and $\overline{p},\overline{-1}1’$ in the bound (8) (if there is not the term
$\overline{p},-\overline{1}L’$ , then the minimum of $\min_{p’\geq p}$ is attained at $p’=p$ , thus the bound (8) is tighter).

Convergence Rate of Elasticnet-MKL Elasticnet-MKL employs a mixture of $\ell_{1}$ and
$\ell_{2}$ norm ae the regularizer: $\Vert f\Vert_{\psi}=\tau\Vert f\Vert_{\ell_{1}}+(1-\tau)\Vert f\Vert_{\ell_{2}}$ where $\tau\in[0,1]$ . Then its
dual norm is given by $\Vert b\Vert_{\psi*}=\min_{a\in \mathbb{R}^{M}}\{\max$ $( \frac{\Vert a||\ell}{\tau}, \frac{\Vert a-b\Vert_{\ell_{2}}}{1-\tau})\}$ . Therefore by a sim-

ple calculation, we have $\Vert 1\Vert_{\psi*}=\frac{\sqrt{M}}{1-\tau+\tau\sqrt{M}}$ . Hence Eq. (6) gives the convergence rate of
elasticnet-MKL as

$\Vert f-f^{*}\Vert_{L_{2}(\Pi)}^{2}=\mathcal{O}_{p}(n^{-\frac{1}{1+\ell}}\frac{M^{1-\Leftrightarrow\overline{s}}}{(1-\tau+\tau\sqrt{M})\#_{8}}(\tau\Vert f^{*}\Vert_{\ell_{1}}+(1-\tau)\Vert f^{*}\Vert_{\ell_{2}})^{\frac{2s}{1+\epsilon}}+\frac{M\log(M)}{n})$ .

Note that, when $\tau=0$ or $\tau=1$ , this rate is identical to that of $\ell_{2}$-MKL or $\ell_{1}$ -MKL
obtained in Eq. (7) respectively.

68



3.1.1 Minimax Lower Bound

It can be shown that the presented leaming rate (6) achieves the minimax-leaming rate
on the $\psi$-norm ball

$\mathcal{H}_{\psi}(R):=\{f=\sum_{m=1}^{M}f_{m}|\Vert f\Vert_{\psi}\leq R\},$

when the norm is isotropic. We say the $\psi$-norm $\Vert$ $\Vert_{\psi}$ is isotropic when there exits a
universal constant $\overline{c}$ such that

$\overline{c}M=\overline{c}\Vert 1\Vert_{\ell_{1}}\geq\Vert 1\Vert_{\psi^{*}}\Vert 1\Vert_{\psi}, \Vert b\Vert_{\psi}\leq\Vert b’\Vert_{\psi} (if 0\leq b_{m}\leq b_{m}’(\forall m))$ , (10)

(note that the inverse inequahty $M\leq 11\Vert_{\psi^{*}}\Vert 1\Vert_{\psi}$ of the first condition always holds by the
definition of the dual norm). Practically used regularizations usually satisfy this isotropic
property. In fact, $P_{p}$-MKL, elasticnet-MKL and VSKL satisfy the isotropic property with
$\overline{c}=1.$

To derive the minimax leaming rate, we consider a simpler situation. First we assume
that each RKHS is same as others. That is, the input vector is decomposed into $M$

components like $x=(x^{(1)}, \ldots, x^{(M)})$ where $\{x^{(m)}\}_{m=1}^{M}$ are $M$ i.i.d. copies of a random
variable $\tilde{X}$ , and $\mathcal{H}_{m}=\{f_{m}|f_{m}(x)=f_{m}(x^{(1)}, \ldots, x^{(M)})=\tilde{f}_{m}(x^{(m)}),\tilde{f}_{m}\in\tilde{\mathcal{H}}\}$ where $\tilde{\mathcal{H}}$ is
an RKHS shared by all $\mathcal{H}_{m}$ . Thus $f\in \mathcal{H}^{\oplus M}$ is decomposed as $f(x)=f(x^{(1)}, \ldots, x^{(M)})=$

$\sum_{m=1}^{M}\tilde{f}_{m}(x^{(m)})$ where each $\tilde{f}_{m}$ is a member of the common RKHS $\tilde{\mathcal{H}}$ . We denote by $\tilde{k}$ the
kernel associated with the RKHS $\tilde{\mathcal{H}}.$

In addition to the condition about the upper bound of spectrum (Spectral Assumption
(A3) $)$ , we assume that the spectrum of all the RKHSs $\{\mathcal{H}_{m}\}_{m=1}^{M}$ have the same lower
bound of polynomial rate.

Assumption 5. (Strong Spectral Assumption) There exist $0<s<1$ and $0<c,$ $c’$

such that

(A6) $c’\ell^{-\frac{1}{s}}\leq\tilde{\mu}\ell\leq c\ell^{-\frac{1}{s}}, (1\leq\forall\ell)$,

where $\{\tilde{\mu}_{\ell}\}_{\ell=1}^{\infty}$ is the spectrum of the integml opemtor $T_{\overline{k}}$ corresponding to the kernel $\tilde{k}$ . In
particular, the spectrum of $T_{k_{m}}$ also satisfies $\mu_{\ell,m}\sim\ell-\frac{1}{S}(\forall\ell, m)$ .

Without loss of generality, we may assume that $E[f(\tilde{X})]=0$ $(\forall f\in\tilde{\mathcal{H}})$ . Since each
$f_{m}$ receives i.i. $d$ . copy of $\tilde{X},$

$\mathcal{H}_{m}s$ are orthogonal to each other:

$E[f_{m}(X)f_{m’}(X)]=E[\tilde{f}_{m}(X^{(m)})\tilde{f}_{m’}(X^{(m’)})]=0$ $(\forall f_{m}\in \mathcal{H}_{m}, \forall 拓\prime \in \mathcal{H}_{m’}, \forall m\neq m’)$ .

We also assume that the noise $\{\epsilon_{i}\}_{i=1}^{n}$ is an i.i. $d$ . normal sequence with standard deviation
$\sigma>0.$

Under the assumptions described above, we have the following minimax $L_{2}(\Pi)$-error.
Theorem 3 ([31, 30]). Suppose $R>0$ is given and $n> \frac{\overline{c}^{2}M^{2}}{R^{2}\Vert 1\Vert_{\psi*}^{2}}$ is satisfied. Then the
minimax-learning $mte$ on $\mathcal{H}_{\psi}(R)$ for isotropic norm $\Vert\cdot\Vert_{\psi}$ is lower bounded as

$\min_{\hat{f}f^{*}}\max_{\in \mathcal{H}\psi(R)}E[\Vert f-f^{*}\Vert_{L_{2}(\Pi)}^{2}]\geq CM^{1-\frac{2s}{1+s}}n^{-\frac{1}{1+s}}(\Vert 1\Vert_{\psi}*R)^{\frac{2s}{1+s}}$, (11)

where $\inf$ is taken over all measurable functions of $n$ samples $\{(x_{i}, y_{i})\}_{i=1}^{n}.$
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One can see that the convergence rate derived in Eq. (8) achieves the minimax rate on
the $\psi$-norm ball (Theorem 3) up to $\frac{M\log(M)}{n}$ that is negligible when the number of samples
is large. Indeed if

$n \geq\frac{M^{2}\log(M)^{1}sR^{\delta}}{\Vert 1\Vert_{\psi}^{2}.\Vert f^{*}\Vert_{\psi}^{2}}$ , (12)

then the first term in Eq. (8) dominates the second term $M\log(M)n$ and the upper bound
coincides with the minimax optima rate. Note that the condition (12) for the sample size
$n$ is equivalent to the condition for $n$ assumed in Theorem 3 up to factors of $\log(M)^{\underline{1}}S\pm s$

and a constant.
By the definition of the dual norm, one can check that the norm that minimizes this

bound (6) is the $\ell_{1}$-norm. Moreover, if $\psi$-norm is isotropic, the bound is tight and can
not be improved as shown in Theorem 3. Therefore, $\ell_{1}$-norm is the optimal regularization
among all isotropic norms in homogeneous settings. However if $\psi$-norm is not isotropic,
the bound is no longer tight. That means non-isotropic norms can outperform isotropic
norms if the non-isotropic norm is appropriately chosen. In particular, $\ell_{1}$ -norm can be
outperformed by some non-isotropic norm for a particular choice of $f^{*}$ . In Section 4, we
introduce an adaptive method that utihzes a non-isotropic norm regularization specifically
tailored to the truth $f^{*}.$

3.2 Analysis on Inhomogeneous Settings

In the previous section (analysis on homogeneous settings), we have not seen any theoreti-
cal justification supporting the fact that dense MKL methods like $\ell_{\frac{4}{3}}$ -MKL can outperform
the sparse $\ell_{1}$-MKL [10]. However, it can be shown that dense type regularizations can
outperform the sparse regularization in inhomogeneous settings (there exists $m,$ $m’$ such
that $s_{m}\neq s_{m’}$ ). For simphcity, we focus on $\ell_{p}$-MKL, and discuss the relation between the
learning rate and the norm parameter $p.$

Let us consider an extreme situation where $s_{1}=s$ for some $0<s<1$ and $s_{m}=0(m>$
$1)^{\iota}$ . In this situation, we have

$\alpha_{1}=3(\frac{\gamma_{1}^{-2\epsilon}+M-1}{n})^{\frac{1}{2}}, \alpha_{2}=3^{\underline{s}\tau^{1-\epsilon}}\succ_{n}, \beta_{1}=3(\frac{r_{1}^{-\frac{2\iota(3-*)}{1+S}}+M-1}{n^{I}f_{\epsilon}})^{\frac{1}{2}}, \beta_{2}=3\frac{sr^{\frac{(1-\epsilon)^{2}}{11+8}}}{n+_{s}}.$

for all $p$ . Note that these $\alpha_{1},$ $\alpha_{2},$
$\beta_{1}$ and $\beta_{2}$ have no dependency on $p$ . Therefore the

learning bound (5) is smallest when $p=\infty$ because $\Vert f^{*}\Vert_{\ell_{\infty}}\leq\Vert f^{*}\Vert_{\ell_{p}}$ for all $1\leq p<\infty.$

In particular, when $(\Vert f_{m}^{*}\Vert_{\mathcal{H}_{m}})_{m=1}^{M}=1$ , we have $\Vert f^{*}\Vert_{\ell_{1}}=M\Vert f^{*}\Vert_{\ell_{\infty}}$ and thus obviously the
learning rate of $\ell_{\infty}$-MKL given by Eq. (5) is faster than that of $\ell_{1}$ -MKL. In fact, through
a bit cumbersome calculation, one can check that $\ell_{\infty}$-MKL can be $M^{\frac{2\epsilon}{1+\epsilon}}$ times faster
than $\ell_{1}$-MKL in a worst case. This indicates that, when the complexities of RKHSs are
inhomogeneous, the generalization abilities of dense type regularizations $(e.g., \ell_{\infty}- MKL)$

can be better than the sparse type regularization ($\ell_{1}$-MKL). In real settings, it is hkely that
$i_{In}$ our assumption $s_{m}$ should be greater than $0$ . However we formally put $s_{m}=0(m>1)$ for

simplicity of discussion. For rigorous discussion, one might consider arbitrary small $s_{m}\ll s.$
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one uses various types of kemels and the complexities of RKHSs become inhomogeneous.
As mentioned above, it has been often reported that $\ell_{1}$ -MKL is outperformed by dense type
MKL such as $\ell_{\frac{4}{3}}$ -MKL in numerical experiments [10]. The theoretical analysis explains
well this experimental results.

4 Adaptively weighted estimator
[32] proposed a two-stage method that adaptively make use of a non-isotropic norm reg-
ularization. The estimating procedure is as follows: In the first stage, we prepare a rough
estimator $f= \sum_{m=1}^{M}\tilde{f}_{m}$ , then, in the second stage, we compute the $\psi$-norm MKL estima-
tor where, as the regularization term, we employ the following norm based on the rough
estimator $\tilde{f}$:

$\Vert f\Vert_{\psi,\gamma}:=\Vert(\Vert f_{m}\Vert_{\mathcal{H}_{m}}/\Vert\tilde{f}_{m}\Vert_{\mathcal{H}_{m}}^{\gamma})_{m=1}^{M}\Vert_{\psi}.$

This estimator is called an adaptively weighted estimator. Note that, when $\gamma=0$ , the
adaptively weighted estimator is just the normal $\psi$-norm MKL. In general, the norm
$\Vert f\Vert_{\psi,\gamma}$ is not isotropic for $\gamma>0$ even if $\Vert\cdot\Vert_{\psi}$ is isotropic. Suppose the rough estimator
$f$ well approximate the true function $f^{*}$ , then the adaptively weighted estimator imposes
a large penalty on the components where $f_{m}^{*}$ is small and imposes a small penalty on the
components of large $f_{m}^{*}$ . Intuitively the adaptive estimator amplifies important compo-
nents and diminishes unimportant components. The parameter $\gamma$ controls the strength of
the adaptivity. This kind of idea is already proposed in a hnear regression model as an
adaptive lasso [40]. The adaptively weighted estimator can be seen as its MKL version.

To see the effectiveness of the method, we give an informal discussion on an extreme
situation where $\tilde{f}_{m}=f_{m}^{*}$ for all $m,$ $f_{m}^{*}=\tilde{f}_{m}=0$ for $m=2,$ $\ldots,$

$M$ , and $\Vert f_{1}^{*}\Vert_{\mathcal{H}_{1}}=1.$

For simplicity, we assume $\gamma<1$ and use a convention $\Vert f_{m}^{*}\Vert_{\mathcal{H}_{m}}/\Vert f_{m}^{*}\Vert_{\mathcal{H}_{m}}^{\gamma}=\Vert f_{m}^{*}\Vert_{\mathcal{H}_{m}}^{1-\gamma}=0$

for $m=2,$ $\ldots,$
$M$ . In this situation, letting $\Vert\cdot\Vert_{\psi^{*},\gamma}$ be the dual norm of $\Vert\cdot\Vert_{\psi,\gamma}$ , we have

$\Vert a\Vert_{\psi^{*},\gamma}=\Vert(a_{1},0, \ldots, 0)\Vert_{\psi^{*},\gamma}$. Hence we can check that using the bound (5) the adaptively
weighted estimator $f$ yields the following leaming rate:

$\Vert f-f^{*}\Vert_{L_{2}(\Pi)}^{2}=\mathcal{O}_{p}(n^{-\frac{1}{1+s}}(\Vert 1\Vert_{\psi^{*}}\Vert f^{*}\Vert_{\psi})^{\frac{2s}{1+s})},$

for sufficiently large $n$ . This learning rate is $M^{1-\frac{2s}{1+s}}$ times faster than the bound (6).
This (informal) discussion indicates that, if $f^{*}$ is well approximated by $f$, the adaptively
weighted estimator yields a better performance than the non-adaptive one.

5 Numerical Experiments

5.1 Comparison between Homogeneous and Inhomogeneous
Settings

Here we investigate numerically how the inhomogeneity of the complexities affects the
performances using synthetic data. In particular, we numerically compare two situations:
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(a) all complexities of RKHSs are same (homogeneous situation) and (b) one RKHS is
complex and other RKHSs are evenly simple $($ inhomogeneous situation$)^{\S}.$

The experimental settings are as follows. The input random variable is 20 dimensional
vector $x=(x^{(1)}, \ldots, x^{(20)})$ where each element $x^{(m)}$ is independently identically distributed
from the uniform distribution on $[0,1]:x^{(m)}\sim$ Unif$([O, 1])(m=1, \ldots, 20)$ . For each
coordinate $m=1,$ $\ldots,$

$20$ , we put one Gaussian RKHS $\mathcal{H}_{m}$ with a Gaussian width $\sigma_{m}$ : the
number of kemels is 20 $(M=20)$ and

$k_{m}(x, x’)= \exp(-\frac{(x^{(m)}-x^{\prime(m)})^{2}}{2\sigma_{m}^{2}}) (m=1, \ldots, 20)$ ,

for $x=(x^{(1)}, \ldots, x^{(20)})$ and $x’=(x^{\prime(1)}, \ldots, x^{\prime(20)})$ . To generate the ground truth $f^{*}$ , we
randomly generated 5 center points $\mu_{i,m}(i=1, \ldots, 5)$ for each coordinate $m=1,$ $\ldots,$

$20$

where $\mu_{i,m}$ is independently generated by the uniform distribution on $[0,1]$ . Then we
obtain the following form of the true function:

$f^{*}(x)= \sum_{m=1}^{20}f_{m}^{*}(x)$ , where $f_{m}^{*}(x)= \sum_{i=1}^{5}\alpha_{i,m}\exp(-\frac{(x^{(m)}-\mu_{i,m})^{2}}{2\sigma_{m}^{2}})\in \mathcal{H}_{m},$

for $x=(x_{1}, \ldots, x_{m})$ . Each coefficient $\alpha_{i,m}$ is independently identically distributed from
the standard normal distribution. The output $y$ is contaminated by a noise $\epsilon$ where the
noise $\epsilon$ is distributed from the Gaussian distribution with mean $0$ and standard deviation
0.1: $y=f_{m}^{*}(x)+\epsilon,$ where $\epsilon\sim \mathcal{N}(O, 0.1)$ .

We generated 200 realizations $\{(x_{i}, y_{i})\}_{i=1}^{n}(n=200)$ , and estimated $f^{*}$ using $\ell_{p}$-MKL
with $p=1,1.1,1.2,$ $\ldots,$

$3\iota$ . The estimator is computed with various regularization pa-
rameters $\lambda_{1}^{(n)}$ . The generalization error $\Vert f-f^{*}\Vert_{L_{2}(\Pi)}^{2}$ was numerically calculated. We
repeated the experiments for 100 times, averaged the generahzation errors over 100 rep-
etitions for each $p$ and each regularization parameter, and obtained the optimal average
generalization error among all regularization parameters for each $p$ . The true function was
randomly generated for each repetition. We investigated the generalization errors in the
following homogeneous and inhomogeneous settings:

1. (homogeneous) $\sigma_{m}=0.5$ for $m=1,$ $\ldots,$
$20.$

2. (inhomogeneous) $\sigma_{1}=0.01$ and $\sigma_{m}=0.5$ for $m=2,$ $\ldots,$
$20.$

The difference between the above homogeneous and inhomogeneous settings is the value
of $\sigma_{1}$ ; whether $\sigma_{1}=0.5$ or $\sigma_{1}=0.01.$

Figure 1 shows the average generahzation errors in (a) the homogeneous setting, and
(b) the inhomogeneous setting. Each broken line corresponds to one regularization pa-
rameter. The bold sohd line shows the best (average) generalization error among all the
regularization parameters. We can see that in the homogeneous setting $\ell_{1}$ -regularization

\S More detailed descriptions about the experiment can be found in [30].
$\iota_{We}$ included a bias term in this experiment, that is, we fitted $\hat{f}(x)+b$ to the data: $\min_{f_{m}b}\frac{1}{n}\sum_{i=1}^{n}(y_{i}-$

$\Sigma_{m=1}^{M}f_{m}(x_{i})-b)^{2}+\lambda_{1}^{(n)}\Vert f\Vert_{\ell_{p}}^{2}.$
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(a) Homogeneous Setting (b) Inhomogeneous Setting

Figure 1: The expected generalization error $E[\Vert\hat{f}-f^{*}\Vert_{L_{2}(\Pi)}^{2}]$ against the parameter $p$ for
$\ell_{p}$-MKL. Each broken line corresponds to one regularization parameter. The bold solid
line shows the best generalization error among all the regularization parameters.

shows the best performance, on the other hand, in the inhomogeneous setting the best
performance is achieved at $p>1$ . This experimental result matches the theoretical inves-
tigations.

5.2 Evaluation of Adaptively Weighted Estimator
In this section, we present a numerical experiment that demonstrates the effectiveness of
the adaptively weighted estimator presented in Section $4^{\Vert}$ . 13 datasets included in the
IDA benchmark repository were used. All of them are binary classification tasks. Since
the analyses in previous sections are about regression problems where the squared loss is
employed, that can not be applied directly to binary classifications. However, there are
tight relations between properties of classification and regression. Thus a performance
analysis in regression problems gives the same qualitative evaluation also for classification
tasks. The candidate kernels were Gaussian kemels with 10 different bandwidths (0.5
$12571012151720)$ apphed on jointly all the variables, Gaussian kemels with 5
different bandwidths (15101520) applied on individual variables and polynomial kemels
of degree 1 to 3 applied on jointly all the variables. The total number of candidate kernels
is $5\cross d+13$ , where $d$ is the number of variables.

As the rough estimator $f$, we employed the $\ell_{2}$-MKL estimator where the logistic loss
is used. Then we computed the adaptively weighted estimator for $\ell_{p}$-norm regularization
with $p=(1.1,4/3,1.5,2)$ and $\gamma=0,1,2$ . We repeated the experiments 20 times on
different training-test sample combinations, and averaged the classification accuracies.
We have three free parameters: the regularization constants $\lambda_{1}^{(n)}$ for the rough estimator
and the second stage estimator and the parameter $p$ for the second stage estimator. We
chose the parameters that achieves the best averaged classification accuracy. Table 5.2
shows the averaged classification accuracy $($% $)$ for each $\gamma$ and each datasets. Here again
note that $\gamma=0$ corresponds to the naive $\ell_{p}$-MKL. We can see that the adaptively weighted

$\Vert$ The experiment is originally presented in [32]
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Table 1: The averaged classification accuracy % over 20 independent repetition. The best
method in terms of the averaged accuracy is indicated by boldface.

estimator $(\gamma=1,2)$ shows favorable performances against the naive approach $(\gamma=0)$ .
This result supports the effectiveness of our proposed adaptive estimator.

Finally we would hke to note that the incoherence assumption (A4) is not satisfied in
this experiment. However the numerical experiment shows that, even if the assumption is
not satisfied, the adaptively weighted estimator can give a favorable performance.

6 Conclusion
We reviewed the recently developed convergence analysis of MKL [31, 30] and the adap-
tively weighted estimator [32]. The unified framework gives the leaming rate of MKL
with arbitrary mixed-norm-type regularization. We have seen that the convergence rate of
$P_{p}$-MKL obtained in homogeneous settings is tighter than existing results. Moreover, the
derived leaming rate is minimax optimal. Furthermore, we observed that the bound well
explains the favorable experimental results for dense type MKL by considering the inho-
mogeneous settings. We also presented the adaptively weighted estimator and observed
its effectiveness through numerical experiments and an informal theoretical discussion.
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