Reversible multi－head finite automata and space－bounded Turing machines

Kenichi Morita
Graduate School of Engineering，Hiroshima University
morita．rcomp＠gmail．com

1 Introduction

A multi－head finite automaton is a classical model for language recognition，and has relatively high recognition capability（see［1］for the survey）．In［6］，a reversible two－ way multi－head finite automaton is introduced，and it is conjectured that a deterministic two－way multi－head finite automaton can be simulated by a reversible one with the same number of heads．Here，we show it by giving a concrete conversion method．The technique employed here is based on the method of Lange et al．［2］where a computation tree of a deterministic space－bounded Turing machine is traversed by a reversible one using the same amount of space．But，our method is much simpler and does not assume a simulated automaton always halts，and hence the converted reversible automaton traverses a computation graph that may not be a tree．This method can be applied to a general class of deterministic Turing machines．We also show that reversible MFAs can be easily implemented by a rotary element，a kind of a reversible logic element．

2 A two－way multi－head finite automaton

Definition $1 A$ two－way multi－head finite automaton（MFA）consists of a finite－state control，a finite number of heads that can move in two directions，and a read－only input tape（Fig．1）．An MFA with k heads is denoted by MFA（k）．It is formally defined by

$$
M=\left(Q, \Sigma, k, \delta, \triangleright, \triangleleft, q_{0}, A, R\right)
$$

where Q is a nonempty finite set of states，Σ is a nonempty finite set of input symbols， $k(\in\{1,2, \ldots\})$ is a number of heads，\triangleright and \triangleleft are left and right endmarkers，respectively， which are not elements of Σ（i．e．，$\{\triangleright, \triangleleft\} \cap \Sigma=\emptyset), q_{0}(\in Q)$ is the initial state，$A(\subset Q)$ is

Figure 1：A two－way multi－head finite automaton（MFA）．
a set of accepting states, and $R(\subset Q)$ is a set of rejecting states such that $A \cap R=\emptyset . \delta$ is a subset of $\left(Q \times\left((\Sigma \cup\{\triangleright, \triangleleft\})^{k} \cup\{-1,0,+1\}^{k}\right) \times Q\right)$ that determines the transition relation on M 's configurations (defined below). Note that $-1,0$, and +1 stand for left-shift, no-shift, and right-shift of each head, respectively. In what follows, we also use - and + instead of -1 and +1 for simplicity. Each element $r=[p, \mathbf{x}, q] \in \delta$ is called a rule (in the triple form) of M, where $\mathbf{x}=\left[s_{1}, \ldots, s_{k}\right] \in(\Sigma \cup\{\triangleright, \triangleleft\})^{k}$ or $\mathbf{x}=\left[d_{1}, \ldots, d_{k}\right] \in\{-1,0,+1\}^{k}$. A rule of the form $\left[p,\left[s_{1}, \ldots, s_{k}\right], q\right]$ is called a read-rule, and means if M is in the state p and reads symbols $\left[s_{1}, \ldots, s_{k}\right]$ by its k heads, then enter the state q. A rule of the form $\left[p,\left[d_{1}, \ldots, d_{k}\right], q\right]$ is called a shift-rule, and means if M is in the state p then shift the heads to the directions $\left[d_{1}, \ldots, d_{k}\right]$ and enter the state q.

Suppose a word of the form $\triangleright w \triangleleft \in\left(\{\triangleright\} \Sigma^{*}\{\triangleleft\}\right)$ is given to M. For any $q \in Q$ and for any $\mathbf{h} \in\{0, \ldots,|w|+1\}^{k}$, a triple $[\triangleright w \triangleleft, q, \mathbf{h}]$ is called a configuration of M on w. We now define a function $s_{w}:\{0, \ldots,|w|+1\}^{k} \rightarrow(\Sigma \cup\{\triangleright, \triangleleft\})^{k}$ as follows. If $\triangleright w \triangleleft=a_{0} a_{1} \cdots a_{n} a_{n+1}$ (hence $a_{0}=\triangleright, a_{n+1}=\triangleleft$, and $w=a_{1} \cdots a_{n} \in \Sigma^{*}$), and $\mathbf{h}=\left[h_{1}, \ldots, h_{k}\right] \in\{0, \ldots,|w|+1\}^{k}$, then $s_{w}(\mathbf{h})=\left[a_{h_{1}}, \ldots, a_{h_{k}}\right]$. The function s_{w} gives a k-tuple of symbols in $\triangleright w \triangleleft$ read by the k heads of M at the position \mathbf{h}. The transition relation \vdash_{M} between a pair of configurations is defined as follows.

```
\([\triangleright w \triangleleft, q, \mathbf{h}] \vdash_{M}\left[\triangleright w \triangleleft, q^{\prime}, \mathbf{h}^{\prime}\right]\)
    iff \(\left(\left[q, s_{w}(\mathbf{h}), q^{\prime}\right] \in \delta \wedge \mathbf{h}^{\prime}=\mathbf{h}\right) \vee \exists \mathbf{d} \in\{-1,0,+1\}^{k}\left(\left[q, \mathbf{d}, q^{\prime}\right] \in \delta \wedge \mathbf{h}^{\prime}=\mathbf{h}+\mathbf{d}\right)\)
```

The reflexive and transitive closure of the relation ${\vdash_{M}}_{M}$ is denoted by \vdash_{M}^{*}.
Definition 2 Let $M=\left(Q, \Sigma, k, \delta, \triangleright, \triangleleft, q_{0}, A, R\right)$ be an $M F A$. M is called deterministic iff the following condition holds.

$$
\begin{aligned}
& \forall r_{1}=[p, \mathbf{x}, q] \in \delta, \forall r_{2}=\left[p^{\prime}, \mathbf{x}^{\prime}, q^{\prime}\right] \in \delta \\
& \left(\left(r_{1} \neq r_{2} \wedge p=p^{\prime}\right) \Rightarrow\left(\mathbf{x} \notin\{-1,0,+1\}^{k} \wedge \mathbf{x}^{\prime} \notin\{-1,0,+1\}^{k} \wedge \mathbf{x} \neq \mathbf{x}^{\prime}\right)\right)
\end{aligned}
$$

It means that for any two distinct rules r_{1} and r_{2} in δ, if $p=p^{\prime}$ then they are both read-rules and the k-tuples of symbols \mathbf{x} and \mathbf{x}^{\prime} are different.
M is called reversible iff the following condition holds.

$$
\begin{aligned}
& \forall r_{1}=[p, \mathbf{x}, q] \in \delta, \forall r_{2}=\left[p^{\prime}, \mathbf{x}^{\prime}, q^{\prime}\right] \in \delta \\
& \left(\left(r_{1} \neq r_{2} \wedge q=q^{\prime}\right) \Rightarrow\left(\mathbf{x} \notin\{-1,0,+1\}^{k} \wedge \mathbf{x}^{\prime} \notin\{-1,0,+1\}^{k} \wedge \mathbf{x} \neq \mathbf{x}^{\prime}\right)\right)
\end{aligned}
$$

It means that for any two distinct rules r_{1} and r_{2} in δ, if $q=q^{\prime}$ then they are both read-rules and the k-tuples of symbols \mathbf{x} and \mathbf{x}^{\prime} are different.

We denote a deterministic MFA (or MFA(k)) by DMFA (or DMFA(k)), and a reversible and deterministic MFA (or MFA (k)) by RDMFA (or RDMFA (k)).
Definition 3 Let $M=\left(Q, \Sigma, k, \delta, \triangleright, \triangleleft, q_{0}, A, R\right)$ be an MFA. We say an input word $w \in \Sigma^{*}$ is accepted by M, if $\left[\triangleright w \triangleleft, q_{0}, 0\right] \vdash_{M}^{*}[\triangleright w \triangleleft, q, \mathbf{h}]$ for some $q \in A$ and $\mathbf{h} \in\{0, \ldots,|w|+1\}^{k}$, where $\mathbf{0}=[0, \ldots, 0] \in\{0\}^{k}$. The configurations $\left[\triangleright w \triangleleft, q_{0}, \mathbf{0}\right]$ and $[\triangleright w \triangleleft, q, \mathbf{h}]$ such that $q \in A$ are called an initial configuration and an accepting configuration, respectively. The language accepted by M is the set of all words accepted by M, and is denoted by $L(M)$, i.e.,

$$
L(M)=\left\{w \mid \exists q \in A, \exists \mathbf{h} \in\{0, \ldots,|w|+1\}^{k}\left(\left[\triangleright w \triangleleft, q_{0}, \mathbf{0}\right] \vdash_{M}^{*}[\triangleright w \triangleleft, q, \mathbf{h}]\right)\right\} .
$$

Lemma 1 [6] Let $M=\left(Q, \Sigma, k, \delta, \triangleright, \triangleleft, q_{0}, A, R\right)$ be an RDMFA. If the initial state of M does not appear as the third component of any rule, then M eventually halts for any input $w \in \Sigma^{*}$.

3 Converting a DMFA(k) into an RDMFA(k)

We show that for any given $\operatorname{DMFA}(k) M$ we can construct an $\operatorname{RDMFA}(k) M^{\dagger}$ that simulates M. Here, we make M^{\dagger} so that it traverses a computation graph from the node that corresponds to the initial configuration. Note that, if M halts on an input w, then the computation graph becomes a finite tree. But, if it loops, then the graph is not a tree. We shall see that both cases are managed properly.
Theorem 1 For any $D M F A(k) M=\left(Q, \Sigma, k, \delta, \triangleright, \triangleleft, q_{0}, A, R\right)$, we can construct an $R D M F A(k) M^{\dagger}=\left(Q^{\dagger}, \Sigma, k, \delta^{\dagger}, \triangleright, \triangleleft, q_{0},\left\{\hat{q}_{0}^{1}\right\},\left\{q_{0}^{1}\right\}\right)$ that satisfies the following.

$$
\begin{aligned}
& \forall w \in \Sigma^{*}\left(w \in L(M) \Rightarrow\left[\triangleright w \triangleleft, q_{0}, 0\right] \vdash_{M^{\dagger}}^{*}\left[\triangleright w \triangleleft, \hat{q}_{0}^{1}, \mathbf{0}\right]\right) \\
& \forall w \in \Sigma^{*}\left(w \notin L(M) \Rightarrow\left[\triangleright w \triangleleft, q_{0}, 0\right]{\stackrel{H}{M^{\dagger}}}_{*}^{*}\left[\triangleright w \triangleleft, q_{0}^{1}, \mathbf{0}\right]\right)
\end{aligned}
$$

Proof outline. We first define the computation graph $G_{M, w}=(V, E)$ of M with an input $w \in \Sigma^{*}$ as follows. Let C be the set of all configurations of M with w, i.e., $C=\left\{[\triangleright w \triangleleft, q, \mathbf{h}] \mid q \in Q \wedge \mathbf{h} \in\{0, \ldots,|w|+1\}^{k}\right\}$. The set $V(\subset C)$ of nodes is the smallest set that contains the initial configuration [$\left.\triangleright w \triangleleft, q_{0}, \mathbf{0}\right]$, and satisfies the following condition: $\forall c_{1}, c_{2} \in C\left(\left(c_{1} \in V \wedge\left(\left.c_{1}\right|_{M} c_{2} \vee c_{2} \vdash_{M} c_{1}\right)\right) \Rightarrow c_{2} \in V\right)$. The set E of directed edges is: $E=\left\{\left(c_{1}, c_{2}\right)\left|c_{1}, c_{2} \stackrel{M}{\in} V \wedge c_{1}\right|_{M}^{M} c_{2}\right\}$. Apparently $G_{M, w}$ is a finite connected graph. Since M is deterministic, outdegree of each node in V is either 0 or 1 , where a node of outdegree 0 corresponds to a halting configuration. It is easy to see there is at most one node of outdegree 0 in $G_{M, w}$, and if there is one, then $G_{M, w}$ is a tree (Fig. 2 (a)). On the other hand, if there is no node of outdegree 0 , then the graph represents the computation of M having a loop, and thus it is not a tree (Fig. 2 (b)).

Here we assume M performs read and shift operations alternately. Hence, Q is written as $Q=Q_{\text {read }} \cup Q_{\text {shift }}$ for some $Q_{\text {read }}$ and $Q_{\text {shift }}$ such that $Q_{\text {read }} \cap Q_{\text {shift }}=\emptyset$, and δ satisfies the following condition:

$$
\begin{aligned}
& \forall[p, \mathbf{x}, q] \in \delta\left(\mathbf{x} \in(\Sigma \cup\{\triangleright, \triangleleft\})^{k} \Rightarrow p \in Q_{\text {read }} \wedge q \in Q_{\text {shift }}\right) \wedge \\
& \forall[p, \mathbf{x}, q] \in \delta\left(\mathbf{x} \in\{-, 0,+\}^{k} \Rightarrow p \in Q_{\text {shift }} \wedge q \in Q_{\text {read }}\right) .
\end{aligned}
$$

We define the following five functions.

$$
\begin{aligned}
\operatorname{prev-read}(q) & =\left\{[p, \mathbf{d}] \mid p \in Q_{\text {shift }} \wedge \mathbf{d} \in\{-, 0,+\}^{k} \wedge[p, \mathbf{d}, q] \in \delta\right\} \\
\operatorname{prev-shift}(q, \mathbf{s}) & =\left\{p \mid p \in Q_{\text {read }} \wedge[p, \mathbf{s}, q] \in \delta\right\} \\
\operatorname{deg}_{\mathrm{r}}(q) & =|\operatorname{prev}-\operatorname{read}(q)| \\
\operatorname{deg}_{\mathbf{s}}(q, \mathbf{s}) & =|\operatorname{prev}-\operatorname{shift}(q, \mathbf{s})| \\
\operatorname{deg}_{\max }(q) & = \begin{cases}\operatorname{deg}_{\mathbf{r}}(q) & \text { if } q \in Q_{\text {read }} \\
\max \left\{\operatorname{deg}_{\mathrm{s}}(q, \mathbf{s}) \mid \mathbf{s} \in(\Sigma \cup\{\triangleright, \triangleleft\})^{k}\right\} & \text { if } q \in Q_{\text {shift }}\end{cases}
\end{aligned}
$$

Assume M is in the configuration $[\triangleright w \triangleleft, q, \mathbf{h}]$. If q is a read-state (shift-state, respectively), then $\operatorname{deg}_{\mathrm{r}}(q)\left(\operatorname{deg}_{\mathrm{s}}\left(q, s_{w}(\mathbf{h})\right)\right)$ denotes the total number of previous configurations of $[\triangleright w \triangleleft, q, \mathbf{h}]$, and each element $[p, \mathbf{d}] \in \operatorname{prev}-\operatorname{read}(q)\left(p \in \operatorname{prev}-\operatorname{shift}\left(q, s_{w}(\mathbf{h})\right)\right)$ gives a previous state and a shift direction (a previous state). We further assume that the set Q and, of course, the set $\{-1,0,+1\}$ are totally ordered, and thus the elements of the sets $\operatorname{prev}-\operatorname{read}(q)$ and $\operatorname{prev}-\operatorname{shift}(q, s)$ are sorted based on these orders. So, in the following, we denote $\operatorname{prev}-\operatorname{read}(q)$ and $\operatorname{prev}-$ shift (q, s) by the ordered lists as below.

$$
\begin{aligned}
\operatorname{prev}-\operatorname{read}(q) & =\left[\left[p_{1}, \mathbf{d}_{1}\right], \ldots,\left[p_{\operatorname{deg}_{r}(q)}, \mathbf{d}_{\operatorname{deg}_{\mathrm{r}}(q)}\right]\right] \\
\operatorname{prev-\operatorname {sift}(q,\mathbf {s})} & =\left[p_{1}, \ldots, p_{\operatorname{deg}_{s}(q, \mathbf{s})}\right]
\end{aligned}
$$

We now construct an RDMFA $(k) M^{\dagger}$ that simulates the $\operatorname{DMFA}(k) M$ by traversing $G_{M, w}$ for a given w. First, Q^{\dagger} is as below.

$$
Q^{\dagger}=\{q, \hat{q} \mid q \in Q\} \cup\left\{q^{j}, \hat{q}^{j} \mid q \in Q \wedge j \in\left(\{1\} \cup\left\{1, \ldots, \operatorname{deg}_{\max }(q)\right\}\right)\right\}
$$

δ^{\dagger} is given as below, where $\mathbf{S}=(\Sigma \cup\{\triangleright, \triangleleft\})^{k}$.

$$
\begin{aligned}
& \delta^{\dagger}=\delta_{1} \cup \cdots \cup \delta_{6} \cup \hat{\delta}_{1} \cup \cdots \cup \hat{\delta}_{5} \cup \delta_{\mathrm{a}} \cup \delta_{\mathrm{r}} \\
& \delta_{1}=\left\{\left[p_{1}, \mathbf{d}_{1}, q^{2}\right] ; \ldots,\left[p_{\operatorname{deg}_{r}(q)-1}, \mathbf{d}_{\operatorname{deg}_{r}(q)-1}, q^{\operatorname{deg}_{r}(q)}\right],\left[p_{\operatorname{deg}_{r}(q)}, \mathbf{d}_{\operatorname{deg}_{r}(q)}, q\right] \mid\right. \\
& \left.q \in Q_{\text {read }} \wedge \operatorname{deg}_{\mathrm{r}}(q) \geq 1 \wedge \operatorname{prev}-\operatorname{read}(q)=\left[\left[p_{1}, \mathbf{d}_{1}\right], \ldots,\left[p_{\operatorname{deg}_{r}(q)}, \mathbf{d}_{\operatorname{deg}_{r}(q)}\right]\right]\right\} \\
& \delta_{2}=\left\{\left[p_{1}, \mathbf{s}, q^{2}\right], \ldots,\left[p_{\operatorname{deg}_{s}(q, \mathbf{s})-1}, \mathbf{s}, q^{\operatorname{deg}_{s}(q, \mathbf{s})}\right],\left[p_{\operatorname{deg}_{s}(q, \mathbf{s})}, \mathbf{s}, q\right] \mid\right. \\
& \left.q \in Q_{\text {shift }} \wedge \mathbf{s} \in \mathbf{S} \wedge \operatorname{deg}_{\mathbf{s}}(q, \mathbf{s}) \geq 1 \wedge \operatorname{prev-shift}(q, \mathbf{s})=\left[p_{1}, \ldots, p_{\operatorname{deg}_{s}(q, \mathbf{s})}\right]\right\} \\
& \delta_{3}=\left\{\left[q^{1},-\mathrm{d}_{1}, p_{1}^{1}\right], \ldots,\left[q^{\operatorname{deg}_{r}(q)},-\mathrm{d}_{\operatorname{deg}_{r}(q)}, p_{\operatorname{deg}_{r}(q)}^{1}\right] \mid\right. \\
& \left.q \in Q_{\text {read }} \wedge \operatorname{deg}_{\mathrm{r}}(q) \geq 1 \wedge \operatorname{prev}-\operatorname{read}(q)=\left[\left[p_{1}, \mathbf{d}_{1}\right], \ldots,\left[p_{\operatorname{deg}_{\mathrm{r}}(q)}, \mathbf{d}_{\operatorname{deg}_{\mathrm{r}}(q)}\right]\right]\right\} \\
& \delta_{4}=\left\{\left[q^{1}, \mathbf{s}, p_{1}^{1}\right], \ldots,\left[q^{\operatorname{deg}_{s}(q, \mathbf{s})}, \mathbf{s}, p_{\operatorname{deg}_{s}(q, \mathbf{s})}^{1}\right] \mid\right. \\
& \left.q \in Q_{\text {shift }} \wedge \mathbf{s} \in \mathbf{S} \wedge \operatorname{deg}_{\mathbf{s}}(q, \mathbf{s}) \geq 1 \wedge \operatorname{prev}-\operatorname{shift}(q, \mathbf{s})=\left[p_{1}, \ldots, p_{\operatorname{deg}_{\mathrm{g}}(q, \mathbf{s})}\right]\right\} \\
& \delta_{5}=\left\{\left[q^{1}, \mathbf{s}, q\right] \mid q \in Q_{\text {shift }}-(A \cup R) \wedge \mathbf{s} \in \mathbf{S} \wedge \operatorname{deg}_{\mathbf{s}}(q, \mathbf{s})=0\right\} \\
& \hat{\delta}_{i}=\left\{[\hat{p}, \mathbf{x}, \hat{q}] \mid[p, \mathbf{x}, q] \in \delta_{i}\right\}(i=1, \ldots, 5) \\
& \delta_{6}=\left\{\left[q, \mathbf{s}, q^{1}\right] \mid q \in Q_{\text {read }}-\left\{q_{0}\right\} \wedge \mathbf{s} \in \mathbf{S} \wedge \neg \exists p([q, \mathbf{s}, p] \in \delta)\right\} \\
& \delta_{\mathrm{a}}=\left\{\left[q, \mathbf{0}, \hat{q}^{1}\right] \mid q \in A\right\} \\
& \delta_{\mathrm{r}}=\left\{\left[q, \mathbf{0}, q^{1}\right] \mid q \in R\right\}
\end{aligned}
$$

The set of states Q^{\dagger} has four types of states. They are of the forms q, \hat{q}, q^{j} and \hat{q}^{j}. The states without a superscript (i.e., q and \hat{q}) are for forward computation, while those with a superscript (i.e., q^{j} and \hat{q}^{j}) are for backward computation. Note that Q^{\dagger} contains q^{1} and \hat{q}^{1} even if $\operatorname{deg}_{\max }(q)=0$. The states with "^" (i.e., \hat{q} and \hat{q}^{j}) are the ones indicating that an accepting configuration was found in the process of traverse, while those without "^" (i.e., q and q^{j}) are for indicating no accepting configuration has been found so far.

The set of rules $\delta_{1}\left(\delta_{2}\right.$, respectively) is for simulating forward computation of M in $G_{M, w}$ for M 's shift-states (read-states). δ_{3}^{\prime} (δ_{4}, respectively) is for simulating backward computation of M in $G_{M, w}$ for M 's read-states (shift-states). δ_{5} is for turning the direction of computation from backward to forward in $G_{M, w}$ for shift-states. $\hat{\delta}_{i}(i=1, \ldots, 5)$ is the set of rules for the states of the form \hat{q}, and is identical to δ_{i} except that each state has " $» " . \delta_{6}$ is for turning the direction of computation from forward to backward in $G_{M, w}$ for halting configurations with a read-state. δ_{a} (δ_{r}, respectively) is for turning the direction of computation from forward to backward for accepting (rejecting) states. Each rule in δ_{a} makes M^{\dagger} change the state from a one without "^" to the corresponding one with " ${ }^{\wedge}$ ". We can verify that M^{\dagger} is deterministic and reversible by a careful inspection of δ^{\dagger}.
M^{\dagger} simulates M as follows. First, consider the case $G_{M, w}$ is a tree. If an input w is given, M^{\dagger} traverses $G_{M, w}$ by the depth-first search (Fig. 2 (a)). Note that the search starts not from the root of the tree but from the leaf node $\left[\triangleright w \triangleleft, q_{0}, 0\right]$. Since each node of $G_{M, w}$ is identified by the configuration of M of the form [$\triangleright w \triangleleft, q, \mathbf{h}$], it is easy for M^{\dagger} to keep it by the configuration of M^{\dagger}. But, if $[\triangleright w \triangleleft, q, \mathbf{h}]$ is a non-leaf node, it may be visited $\operatorname{deg}_{\max }(q)+1$ times (i.e., the number of its child nodes plus 1) in the process of depth-first search, and thus M^{\dagger} should keep this information in the finite state control. To do so, M^{\dagger} uses $\operatorname{deg}_{\max }(q)+1$ states $q^{1}, \ldots, q^{\operatorname{deg}_{\max }(q)}$, and q for each state q of M. Here, the states $q^{1}, \ldots, q^{\operatorname{deg}_{\max }(q)}$ are used for visiting its child nodes, and q is used for visiting its parent node. In other words, the states with a superscript are for going downward in the tree (i.e., a backward simulation of M), and the state without a superscript is for going.
upward in the tree (i.e., a forward simulation). At a leaf node [$\triangleright w \triangleleft, q, \mathbf{h}]$, which satisfies $\operatorname{deg}_{s}\left(q, s_{w}(\mathbf{h})\right)=0, M^{\dagger}$ turns the direction of computing by the rule $\left[q^{1}, s_{w}(\mathbf{h}), q\right] \in \delta_{5}$.

If M^{\dagger} enters an accepting state of M, say q_{a}, which is the root of the tree while traversing the tree, then M^{\dagger} goes to the state \hat{q}_{a}, and continues the depth-first search. After that, M^{\dagger} uses the states of the form \hat{q} and \hat{q}^{j} indicating that the input w should be accepted. M^{\dagger} will eventually reach the initial configuration of M by its configuration $\left[~ \triangleright w \triangleleft, \hat{q}_{0}^{1}, \mathbf{0}\right]$. Thus, M^{\dagger} halts and accepts the input. Note that we can assume there is no rule of the form $\left[q_{0}, \mathbf{s}, q\right]$ such that $\mathbf{s} \notin\{\triangleright\}^{k}$ in δ, because the initial configuration of M is $\left[\triangleright w \triangleleft, q_{0}, \mathbf{0}\right]$. Therefore, M^{\dagger} never reaches a configuration $\left[~ \triangleright w \triangleleft, q_{0}, \mathbf{h}\right]$ of M such that $\mathbf{h} \neq \mathbf{0}$. If M^{\dagger} enters a halting state of M other than the accepting states, then it continues the depth-first search without entering a state of the form \hat{q}. Also in this case, M^{\dagger} will finally reach the initial configuration of M by its configuration $\left[~ \triangleright w \triangleleft, q_{0}^{1}, 0\right]$. Thus, M^{\dagger} halts and rejects the input.

Second, consider the case $G_{M, w}$ is not a tree (Fig. 2 (b)). In this case, since there is no accepting configuration in $G_{M, w}, M^{\dagger}$ never enters an accepting state of M no matter how M^{\dagger} visits the nodes of $G_{M, w}$. Thus, M^{\dagger} uses only the states without "*". From δ^{\dagger} we can see q_{0}^{1} is the only halting state without " "". By Lemma $1, M^{\dagger}$ must halt with the configuration $\left[\triangleright w \triangleleft, q_{0}^{1}, 0\right]$, and rejects the input. By above, we have the theorem.

Figure 2: Examples of computation graphs $G_{M, w}$ of a $\operatorname{DMFA}(k) M$. Each node represents a configuration of M, though only a state of the finite-state control is written in a circle. Thick arrows are the edges of $G_{M, w}$. The node labeled by q_{0} represents the initial configuration of M. An $\operatorname{RDMFA}(k) M^{\dagger}$ traverses these graphs along thin arrows using its configurations. (a) This is a case M halts in an accepting state q_{a}. Here, the state transition of M^{\dagger} in the traversal of the tree is as follows: $q_{0} \rightarrow q_{2} \rightarrow q_{6}^{3} \rightarrow q_{3}^{1} \rightarrow q_{3} \rightarrow q_{6} \rightarrow q_{\mathrm{a}}^{2} \rightarrow q_{7}^{1} \rightarrow q_{4}^{1} \rightarrow q_{4} \rightarrow q_{7}^{2} \rightarrow q_{5}^{1} \rightarrow q_{5} \rightarrow q_{7} \rightarrow$ $q_{\mathrm{a}} \rightarrow \hat{q}_{\mathrm{a}}^{1} \rightarrow \hat{q}_{6}^{1} \rightarrow \hat{q}_{1}^{1} \rightarrow \hat{q}_{1} \rightarrow \hat{q}_{6}^{2} \rightarrow \hat{q}_{2}^{1} \rightarrow \hat{q}_{0}^{1} .(\mathrm{b})$ This is a case M loops forever. Here, M^{\dagger} traverses the graph as follows: $q_{0} \rightarrow q_{2}^{2} \rightarrow q_{3}^{1} \rightarrow q_{1}^{1} \rightarrow q_{1} \rightarrow q_{3}^{2} \rightarrow q_{6}^{1} \rightarrow q_{5}^{1} \rightarrow q_{2}^{1} \rightarrow q_{0}^{1}$.

4 Applying the method to Turing machines

It has been shown by Lange et al. [2] that $\operatorname{DSPACE}(S(n))=\operatorname{RDSPACE}(S(n))$ holds for any space function $S(n)$. However, by applying the method of the previous section, we can convert a deterministic Turing machine to a reversible one very easily. By this, we can obtain a slightly stronger result by a much simpler method. (Here, we omit its proof.)

Figure 3: A two-tape Turing machine.
Definition $4 A$ two-tape Turing machine (TM) consists of a finite-state control with two heads, a read-only input tape, and a storage tape (Fig. 3). It is defined by

$$
T=\left(Q, \Sigma, \Gamma, \delta, \triangleright, \triangleleft, q_{0}, \#, A, R\right)
$$

where Q is a nonempty finite set of states, Σ and Γ are nonempty finite sets of input symbols and storage tape symbols. \triangleright and \triangleleft are left and right endmarkers such that $\{\triangleright, \triangleleft\} \cap(\Sigma \cup \Gamma)=\emptyset$, where only \triangleright is used for the storage tape. $q_{0}(\in Q)$ is the initial state, $\#(\notin \Gamma)$ is a blank symbol of the storage tape, $A(\subset Q)$ and $R(\subset Q)$ are sets of accepting and rejecting states such that $A \cap R=\emptyset$. δ is a subset of $(Q \times(((\Sigma \cup$ $\left.\left.\left.\{\triangleright, \triangleleft\}) \times(\Gamma \cup\{\triangleright, \#\})^{2}\right) \cup\{-1,0,+1\}^{2}\right) \times Q\right)$ that determines the transition relation on T's configurations. Each element $r=[p, x, y, q] \in \delta$ is called a rule (in the quadruple form) of T, where $(x, y)=\left(s_{1},\left[s_{2}, s_{3}\right]\right) \in\left((\Sigma \cup\{\triangleright, \triangleleft\}) \times(\Gamma \cup\{\triangleright, \#\})^{2}\right)$ or $(x, y)=$ $\left(d_{1}, d_{2}\right) \in\{-1,0,+1\}^{2}$. A rule of the form $\left[p, s_{1},\left[s_{2}, s_{3}\right], q\right]$ is called a read-write-rule, and means if T is in the state p and reads an input symbol s_{1} and a storage tape symbol s_{2}, then rewrites s_{2} to s_{3} and enters the state q. A rule of the form $\left[p, d_{1}, d_{2}, q\right]$ is called a shift-rule, and means if T is in the state p then shift the two heads to the directions d_{1} and d_{2}, and enter the state q. Determinism and reversibility of T are defined similarly as in the case of MFAs.

Theorem 2 For any $D T M T=\left(Q, \Sigma, \Gamma, \delta, \triangleright, \triangleleft, q_{0}, \#, A, R\right)$, we can construct an $R D T M$ $T^{\dagger}=\left(Q^{\dagger}, \Sigma, \Gamma, \delta^{\dagger}, \triangleright, \triangleleft, q_{0}, \#,\left\{\hat{q}_{0}^{1}\right\},\left\{q_{0}^{1}\right\}\right)$ such that the following holds.

$$
\begin{array}{ll}
\forall w \in \Sigma^{*} & \left(w \in L(T) \Rightarrow\left[\triangleright w \triangleleft, \triangleright, q_{0}, 0,0\right] \vdash_{T^{\dagger}}^{*}\left[\triangleright w \triangleleft, \triangleright, \hat{q}_{0}^{1}, 0,0\right]\right) \\
\forall w \in \Sigma^{*} & (w \notin L(T) \wedge T \text { with } w \text { uses bounded amount of the storage tape } \\
& \left.\Rightarrow\left[\triangleright w \triangleleft, \triangleright, q_{0}, 0,0\right] \vdash_{T^{*}}^{*}\left[\triangleright w \triangleleft, \triangleright, q_{0}^{1}, 0,0\right]\right) \\
\forall w \in \Sigma^{*} & (w \notin L(T) \wedge T \text { with } w \text { uses unbounded amount of the storage tape } \\
& \left.\Rightarrow T^{\dagger} \text { s computation starting from }\left[\triangleright w \triangleleft, \triangleright, q_{0}, 0,0\right] \text { does not halt }\right)
\end{array}
$$

Furthermore, if T uses at most m squares of the storage tape on an input w, then T^{\dagger} with w also uses at most m squares in any of its configuration in its computing process.

5 Reversible logic circuits that simulate RDMFAs

It is possible to implement an RDMFA using only rotary elements as in the case of a reversible Turing machine $[3,4,5]$. A rotary element [3] is a reversible logic element with 4 input and 4 output lines, and 2 states shown in Fig. 4. In [3, 5], a construction method of a finite control unit and a tape square unit of a reversible Turing machine out of rotary elements is given. Though a similar method can also be applied for constructing an RMFA, accessing a tape square by many heads should be managed properly. Here, we show an example of the circuit without giving a detailed explanation.

Figure 4: Operation of a rotary element. The case where the directions of the bar and the comimg signal are parallel (left), and the case where they are orthogonal (right).

Figure 5: A circuit composed only of rotary elements that simulates the RMFA(2) $M_{2^{m}}^{\prime}$.
Consider the RDMFA(2) $M_{2^{m}}$ in the quadruple form that accepts $L_{2^{m}}=\left\{1^{n} \mid n=\right.$ 2^{m} for some $\left.m \in\{0,1, \ldots\}\right\}$, where $\$$ is used as both left and right end-markers.

$$
\begin{aligned}
& M_{2^{m}}=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{\mathrm{a}}, q_{\mathrm{r}}\right\},\{1\}, 2, \delta_{2 m}, \$, \$, q_{0},\left\{q_{\mathrm{a}}\right\},\left\{q_{\mathrm{r}}\right\}\right) \\
& \delta_{2^{m}}=\left\{(1)\left[q_{0},[\$, \$],[0,+], q_{1}\right],(2)\left[q_{1},[\$, 1],[0,+], q_{1}\right],(3)\left[q_{1},[\$, \$],[+,-], q_{2}\right],\right. \\
& \text { (4) }\left[q_{2},[1,1],[0,-], q_{3}\right],(5)\left[q_{2},[1, \$],[-,+], q_{4}\right],(6)\left[q_{2},[\$, \$],[0,0], q_{\mathrm{r}}\right], \\
&(7)\left[q_{3},[1,1],[+,-], q_{2}\right],(8)\left[q_{3},[1, \$],[-, 0], q_{5}\right],(9)\left[q_{4},[1,1],[-,+], q_{4}\right], \\
& \text { (10) }\left[q_{4},[\$, 1],[+,-], q_{2}\right],(11)\left[q_{5},[\$, \$],[0,0], q_{\mathrm{a}}\right], \\
&\text {, (12) } \left.\left[q_{5},[1, \$],[0,0], q_{\mathrm{r}}\right]\right\}
\end{aligned}
$$

Fig. 5 shows the whole circuit of $M_{2^{m}}$ for the input 1^{2}. Giving a particle at the Begin port in Fig. 5, the circuit starts to simulate $M_{2^{m}}$. The particle finally comes out from the output port Accept since $1^{2} \in L_{2^{m}}$. If an input $1^{n} \notin L_{2^{m}}$ is given, the particle will appear from the Reject port.

References

[1] Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata: Origins and directions. Theoret. Comput. Sci. 412, 83-96 (2011)
[2] Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space. J. Comput. Syst. Sci. 60, 354-367 (2000)
[3] Morita, K.: A simple reversible logic element and cellular automata for reversible computing. In: Proc. 3rd Int. Conf. on Machines, Computations, and Universality, LNCS 2055. pp. 102-113. Springer-Verlag (2001)
[4] Morita, K.: Reversible computing and cellular automata - A survey. Theoret. Comput. Sci. 395, 101-131 (2008)
[5] Morita, K.: Constructing a reversible Turing machine by a rotary element, a reversible logic element with memory. Hiroshima University Institutional Repository, http://ir.lib.hiroshima-u.ac.jp/00029224 (2010)
[6] Morita, K.: Two-way reversible multi-head finite automata. Fundamenta Informaticae 110, 241-254 (2011)

