Kenichi Morita

Graduate School of Engineering, Hiroshima University morita.rcomp@gmail.com

1 Introduction

A multi-head finite automaton is a classical model for language recognition, and has relatively high recognition capability (see [1] for the survey). In [6], a reversible twoway multi-head finite automaton is introduced, and it is conjectured that a deterministic two-way multi-head finite automaton can be simulated by a reversible one with the same number of heads. Here, we show it by giving a concrete conversion method. The technique employed here is based on the method of Lange et al. [2] where a computation tree of a deterministic space-bounded Turing machine is traversed by a reversible one using the same amount of space. But, our method is much simpler and does not assume a simulated automaton always halts, and hence the converted reversible automaton traverses a computation graph that may not be a tree. This method can be applied to a general class of deterministic Turing machines. We also show that reversible MFAs can be easily implemented by a rotary element, a kind of a reversible logic element.

2 A two-way multi-head finite automaton

Definition 1 A two-way multi-head finite automaton (MFA) consists of a finite-state control, a finite number of heads that can move in two directions, and a read-only input tape (Fig. 1). An MFA with k heads is denoted by MFA(k). It is formally defined by

$$M = (Q, \Sigma, k, \delta, \rhd, \lhd, q_0, A, R),$$

where Q is a nonempty finite set of states, Σ is a nonempty finite set of input symbols, $k (\in \{1, 2, ...\})$ is a number of heads, \triangleright and \triangleleft are left and right endmarkers, respectively, which are not elements of Σ (i.e., $\{\triangleright, \triangleleft\} \cap \Sigma = \emptyset$), $q_0 (\in Q)$ is the initial state, $A (\subset Q)$ is

Figure 1: A two-way multi-head finite automaton (MFA).

a set of accepting states, and $R (\subseteq Q)$ is a set of rejecting states such that $A \cap R = \emptyset$. δ is a subset of $(Q \times ((\Sigma \cup \{ \rhd, \triangleleft \})^k \cup \{-1, 0, +1\}^k) \times Q)$ that determines the transition relation on M's configurations (defined below). Note that -1, 0, and +1 stand for left-shift, no-shift, and right-shift of each head, respectively. In what follows, we also use - and + instead of -1 and +1 for simplicity. Each element $r = [p, \mathbf{x}, q] \in \delta$ is called a rule (in the triple form) of M, where $\mathbf{x} = [s_1, \ldots, s_k] \in (\Sigma \cup \{ \rhd, \triangleleft \})^k$ or $\mathbf{x} = [d_1, \ldots, d_k] \in \{-1, 0, +1\}^k$. A rule of the form $[p, [s_1, \ldots, s_k], q]$ is called a read-rule, and means if M is in the state p and reads symbols $[s_1, \ldots, s_k]$ by its k heads, then enter the state q. A rule of the form $[p, [d_1, \ldots, d_k], q]$ is called a shift-rule, and means if M is in the state p then shift the heads to the directions $[d_1, \ldots, d_k]$ and enter the state q.

Suppose a word of the form $\triangleright w \triangleleft \in (\{\triangleright\} \Sigma^* \{\triangleleft\})$ is given to M. For any $q \in Q$ and for any $\mathbf{h} \in \{0, \ldots, |w| + 1\}^k$, a triple $[\triangleright w \triangleleft, q, \mathbf{h}]$ is called a *configuration* of Mon w. We now define a function $s_w : \{0, \ldots, |w| + 1\}^k \rightarrow (\Sigma \cup \{\triangleright, \triangleleft\})^k$ as follows. If $\triangleright w \triangleleft = a_0 a_1 \cdots a_n a_{n+1}$ (hence $a_0 = \triangleright, a_{n+1} = \triangleleft$, and $w = a_1 \cdots a_n \in \Sigma^*$), and $\mathbf{h} = [h_1, \ldots, h_k] \in \{0, \ldots, |w| + 1\}^k$, then $s_w(\mathbf{h}) = [a_{h_1}, \ldots, a_{h_k}]$. The function s_w gives a k-tuple of symbols in $\triangleright w \triangleleft$ read by the k heads of M at the position \mathbf{h} . The transition relation $\mid_{\overline{M}}$ between a pair of configurations is defined as follows.

 $[\triangleright w \triangleleft, q, \mathbf{h}] \models_{\overline{M}} [\triangleright w \triangleleft, q', \mathbf{h}']$

iff $([q, s_w(\mathbf{h}), q'] \in \delta \land \mathbf{h}' = \mathbf{h}) \lor \exists \mathbf{d} \in \{-1, 0, +1\}^k ([q, \mathbf{d}, q'] \in \delta \land \mathbf{h}' = \mathbf{h} + \mathbf{d})$ The reflexive and transitive closure of the relation \vdash_M is denoted by \vdash_M^* .

Definition 2 Let $M = (Q, \Sigma, k, \delta, \triangleright, \triangleleft, q_0, A, R)$ be an MFA. M is called deterministic iff the following condition holds.

 $\forall r_1 = [p, \mathbf{x}, q] \in \delta, \ \forall r_2 = [p', \mathbf{x}', q'] \in \delta$

 $((r_1 \neq r_2 \land p = p') \Rightarrow (\mathbf{x} \notin \{-1, 0, +1\}^k \land \mathbf{x}' \notin \{-1, 0, +1\}^k \land \mathbf{x} \neq \mathbf{x}'))$

It means that for any two distinct rules r_1 and r_2 in δ , if p = p' then they are both read-rules and the k-tuples of symbols \mathbf{x} and \mathbf{x}' are different.

M is called reversible iff the following condition holds.

 $\forall r_1 = [p, \mathbf{x}, q] \in \delta, \ \forall r_2 = [p', \mathbf{x}', q'] \in \delta$

 $((r_1 \neq r_2 \land q = q') \Rightarrow (\mathbf{x} \notin \{-1, 0, +1\}^k \land \mathbf{x'} \notin \{-1, 0, +1\}^k \land \mathbf{x} \neq \mathbf{x'}))$

It means that for any two distinct rules r_1 and r_2 in δ , if q = q' then they are both read-rules and the k-tuples of symbols \mathbf{x} and \mathbf{x}' are different.

We denote a deterministic MFA (or MFA(k)) by DMFA (or DMFA(k)), and a reversible and deterministic MFA (or MFA(k)) by RDMFA (or RDMFA(k)).

Definition 3 Let $M = (Q, \Sigma, k, \delta, \triangleright, \triangleleft, q_0, A, R)$ be an MFA. We say an input word $w \in \Sigma^*$ is accepted by M, if $[\triangleright w \triangleleft, q_0, 0] \models_M^* [\triangleright w \triangleleft, q, h]$ for some $q \in A$ and $h \in \{0, \ldots, |w| + 1\}^k$, where $\mathbf{0} = [0, \ldots, 0] \in \{0\}^k$. The configurations $[\triangleright w \triangleleft, q_0, \mathbf{0}]$ and $[\triangleright w \triangleleft, q, h]$ such that $q \in A$ are called an initial configuration and an accepting configuration, respectively. The language accepted by M is the set of all words accepted by M, and is denoted by L(M), i.e.,

 $L(M) = \{ w \mid \exists q \in A, \exists \mathbf{h} \in \{0, \dots, |w| + 1\}^k ([\triangleright w \triangleleft, q_0, \mathbf{0}] \mid_{\overline{M}}^* [\triangleright w \triangleleft, q, \mathbf{h}]) \}.$

Lemma 1 [6] Let $M = (Q, \Sigma, k, \delta, \triangleright, \triangleleft, q_0, A, R)$ be an RDMFA. If the initial state of M does not appear as the third component of any rule, then M eventually halts for any input $w \in \Sigma^*$.

3 Converting a DMFA(k) into an RDMFA(k)

We show that for any given DMFA(k) M we can construct an RDMFA(k) M^{\dagger} that simulates M. Here, we make M^{\dagger} so that it traverses a computation graph from the node that corresponds to the initial configuration. Note that, if M halts on an input w, then the computation graph becomes a finite tree. But, if it loops, then the graph is not a tree. We shall see that both cases are managed properly.

Theorem 1 For any DMFA(k) $M = (Q, \Sigma, k, \delta, \triangleright, \triangleleft, q_0, A, R)$, we can construct an RDMFA(k) $M^{\dagger} = (Q^{\dagger}, \Sigma, k, \delta^{\dagger}, \triangleright, \triangleleft, q_0, \{\hat{q}_0^1\}, \{q_0^1\})$ that satisfies the following.

$$\begin{array}{lll} \forall w \in \varSigma^* \ (w \in L(M) \ \Rightarrow \ [\rhd w \lhd, q_0, \mathbf{0}] \ |\frac{*}{M^{\dagger}} \ [\rhd w \lhd, \hat{q}_0^1, \mathbf{0}]) \\ \forall w \in \varSigma^* \ (w \notin L(M) \ \Rightarrow \ [\rhd w \lhd, q_0, \mathbf{0}] \ |\frac{*}{M^{\dagger}} \ [\rhd w \lhd, q_0^1, \mathbf{0}]) \end{array}$$

Proof outline. We first define the computation graph $G_{M,w} = (V, E)$ of M with an input $w \in \Sigma^*$ as follows. Let C be the set of all configurations of M with w, i.e., $C = \{[\triangleright w \triangleleft, q, \mathbf{h}] \mid q \in Q \land \mathbf{h} \in \{0, \ldots, |w| + 1\}^k\}$. The set $V(\subset C)$ of nodes is the smallest set that contains the initial configuration $[\triangleright w \triangleleft, q_0, \mathbf{0}]$, and satisfies the following condition: $\forall c_1, c_2 \in C((c_1 \in V \land (c_1 \mid_M c_2 \lor c_2 \mid_M c_1)) \Rightarrow c_2 \in V)$. The set E of directed edges is: $E = \{(c_1, c_2) \mid c_1, c_2 \in V \land c_1 \mid_M c_2\}$. Apparently $G_{M,w}$ is a finite connected graph. Since M is deterministic, outdegree of each node in V is either 0 or 1, where a node of outdegree 0 corresponds to a halting configuration. It is easy to see there is at most one node of outdegree 0 in $G_{M,w}$, and if there is one, then $G_{M,w}$ is a tree (Fig. 2 (a)). On the other hand, if there is no node of outdegree 0, then the graph represents the computation of M having a loop, and thus it is not a tree (Fig. 2 (b)).

Here we assume M performs read and shift operations alternately. Hence, Q is written as $Q = Q_{\text{read}} \cup Q_{\text{shift}}$ for some Q_{read} and Q_{shift} such that $Q_{\text{read}} \cap Q_{\text{shift}} = \emptyset$, and δ satisfies the following condition:

$$\forall \ [p, \mathbf{x}, q] \in \delta \ (\mathbf{x} \in (\Sigma \cup \{\triangleright, \triangleleft\})^k \Rightarrow p \in Q_{\text{read}} \land q \in Q_{\text{shift}}) \land$$

$$\forall \ [p, \mathbf{x}, q] \in \delta \ (\mathbf{x} \in \{-, 0, +\}^k \Rightarrow p \in Q_{\text{shift}} \land q \in Q_{\text{read}}).$$

We define the following five functions.

$$\begin{aligned} \operatorname{prev-read}(q) &= \{[p, \mathbf{d}] \mid p \in Q_{\operatorname{shift}} \wedge \mathbf{d} \in \{-, 0, +\}^k \wedge [p, \mathbf{d}, q] \in \delta \} \\ \operatorname{prev-shift}(q, \mathbf{s}) &= \{p \mid p \in Q_{\operatorname{read}} \wedge [p, \mathbf{s}, q] \in \delta \} \\ \operatorname{deg}_{\mathbf{r}}(q) &= |\operatorname{prev-read}(q)| \\ \operatorname{deg}_{\mathbf{s}}(q, \mathbf{s}) &= |\operatorname{prev-shift}(q, \mathbf{s})| \\ \operatorname{deg}_{\max}(q) &= \begin{cases} \operatorname{deg}_{\mathbf{r}}(q) & \text{if } q \in Q_{\operatorname{read}} \\ \max\{\operatorname{deg}_{\mathbf{s}}(q, \mathbf{s}) \mid \mathbf{s} \in (\Sigma \cup \{\triangleright, \triangleleft\})^k\} & \text{if } q \in Q_{\operatorname{shift}} \end{cases} \end{aligned}$$

Assume M is in the configuration $[\triangleright w \triangleleft, q, \mathbf{h}]$. If q is a read-state (shift-state, respectively), then $\deg_r(q)$ ($\deg_s(q, s_w(\mathbf{h}))$) denotes the total number of previous configurations of $[\triangleright w \triangleleft, q, \mathbf{h}]$, and each element $[p, \mathbf{d}] \in \operatorname{prev-read}(q)$ ($p \in \operatorname{prev-shift}(q, s_w(\mathbf{h}))$) gives a previous state and a shift direction (a previous state). We further assume that the set Q and, of course, the set $\{-1, 0, +1\}$ are totally ordered, and thus the elements of the sets $\operatorname{prev-read}(q)$ and $\operatorname{prev-shift}(q, s)$ are sorted based on these orders. So, in the following, we denote $\operatorname{prev-read}(q)$ and $\operatorname{prev-shift}(q, s)$ by the ordered lists as below.

$$prev-read(q) = [[p_1, \mathbf{d}_1], \dots, [p_{\deg_r(q)}, \mathbf{d}_{\deg_r(q)}]]$$

prev-shift(q, s) = [p_1, \dots, p_{\deg_s(q,s)}]

We now construct an RDMFA(k) M^{\dagger} that simulates the DMFA(k) M by traversing $G_{M,w}$ for a given w. First, Q^{\dagger} is as below.

$$Q^{\dagger} = \{q, \hat{q} \mid q \in Q\} \cup \{q^{j}, \hat{q}^{j} \mid q \in Q \land j \in (\{1\} \cup \{1, \dots, \deg_{\max}(q)\})\}$$

$$\delta^{\dagger} \text{ is given as below, where } \mathbf{S} = (\Sigma \cup \{\triangleright, \lhd\})^{k}.$$

$$\begin{split} \delta^{\dagger} &= \ \delta_{1} \cup \dots \cup \delta_{6} \cup \hat{\delta}_{1} \cup \dots \cup \hat{\delta}_{5} \cup \delta_{a} \cup \delta_{r} \\ \delta_{1} &= \left\{ \begin{bmatrix} p_{1}, \mathbf{d}_{1}, q^{2} \end{bmatrix}, \dots, \begin{bmatrix} p_{\deg_{r}(q)-1}, \mathbf{d}_{\deg_{r}(q)-1}, q^{\deg_{r}(q)} \end{bmatrix}, \begin{bmatrix} p_{\deg_{r}(q)}, \mathbf{d}_{\deg_{r}(q)}, q \end{bmatrix} \right| \\ q \in Q_{\operatorname{read}} \wedge \deg_{r}(q) \geq 1 \wedge \operatorname{prev-read}(q) &= \begin{bmatrix} [p_{1}, \mathbf{d}_{1}], \dots, [p_{\deg_{r}(q)}, \mathbf{d}_{\deg_{r}(q)}] \end{bmatrix} \right\} \\ \delta_{2} &= \left\{ \begin{bmatrix} p_{1}, \mathbf{s}, q^{2} \end{bmatrix}, \dots, \begin{bmatrix} p_{\deg_{s}(q,\mathbf{s})-1}, \mathbf{s}, q^{\deg_{s}(q,\mathbf{s})} \end{bmatrix}, \begin{bmatrix} p_{\deg_{s}(q,\mathbf{s})}, \mathbf{s}, q \end{bmatrix} \right| \\ q \in Q_{\operatorname{shift}} \wedge \mathbf{s} \in \mathbf{S} \wedge \deg_{\mathbf{s}}(q, \mathbf{s}) \geq 1 \wedge \operatorname{prev-shift}(q, \mathbf{s}) &= \begin{bmatrix} p_{1}, \dots, p_{\deg_{s}(q,\mathbf{s})} \end{bmatrix} \right\} \\ \delta_{3} &= \left\{ \begin{bmatrix} q^{1}, -\mathbf{d}_{1}, p_{1}^{1} \end{bmatrix}, \dots, \begin{bmatrix} q^{\deg_{r}(q)}, -\mathbf{d}_{\deg_{r}(q)}, p_{\deg_{r}(q)}^{1} \end{bmatrix} \right| \\ q \in Q_{\operatorname{read}} \wedge \deg_{r}(q) \geq 1 \wedge \operatorname{prev-read}(q) &= \begin{bmatrix} [p_{1}, \mathbf{d}_{1}], \dots, \begin{bmatrix} p_{\deg_{r}(q)}, \mathbf{d}_{\deg_{r}(q)} \end{bmatrix} \end{bmatrix} \right\} \\ \delta_{4} &= \left\{ \begin{bmatrix} q^{1}, \mathbf{s}, p_{1}^{1} \end{bmatrix}, \dots, \begin{bmatrix} q^{\deg_{s}(q,\mathbf{s})}, \mathbf{s}, p_{\deg_{s}(q,\mathbf{s})}^{1} \end{bmatrix} \right| \\ q \in Q_{\operatorname{shift}} \wedge \mathbf{s} \in \mathbf{S} \wedge \deg_{\mathbf{s}}(q, \mathbf{s}) \geq 1 \wedge \operatorname{prev-shift}(q, \mathbf{s}) &= \begin{bmatrix} p_{1}, \dots, p_{\deg_{s}(q,\mathbf{s})} \end{bmatrix} \right\} \\ \delta_{5} &= \left\{ \begin{bmatrix} q^{1}, \mathbf{s}, q \end{bmatrix} \mid q \in Q_{\operatorname{shift}} - (A \cup R) \wedge \mathbf{s} \in \mathbf{S} \wedge \deg_{\mathbf{s}}(q, \mathbf{s}) = 0 \right\} \\ \hat{\delta}_{i} &= \left\{ \begin{bmatrix} p, \mathbf{s}, q^{1} \end{bmatrix} \mid q \in Q_{\operatorname{read}} - \left\{ q_{0} \right\} \wedge \mathbf{s} \in \mathbf{S} \wedge \neg \exists p \left(\begin{bmatrix} q, \mathbf{s}, p \end{bmatrix} \in \delta \right) \right\} \\ \delta_{a} &= \left\{ \begin{bmatrix} q, 0, q^{1} \end{bmatrix} \mid q \in A \right\} \\ \delta_{r} &= \left\{ \begin{bmatrix} q, 0, q^{1} \end{bmatrix} \mid q \in R \right\} \end{aligned}$$

The set of states Q^{\dagger} has four types of states. They are of the forms q, \hat{q}, q^{j} and \hat{q}^{j} . The states without a superscript (i.e., q and \hat{q}) are for forward computation, while those with a superscript (i.e., q^{j} and \hat{q}^{j}) are for backward computation. Note that Q^{\dagger} contains q^{1} and \hat{q}^{1} even if deg_{max}(q) = 0. The states with "^" (i.e., \hat{q} and \hat{q}^{j}) are the ones indicating that an accepting configuration was found in the process of traverse, while those without "^" (i.e., q and q^{j}) are for indicating no accepting configuration has been found so far.

The set of rules δ_1 (δ_2 , respectively) is for simulating forward computation of M in $G_{M,w}$ for M's shift-states (read-states). δ_3 (δ_4 , respectively) is for simulating backward computation of M in $G_{M,w}$ for M's read-states (shift-states). δ_5 is for turning the direction of computation from backward to forward in $G_{M,w}$ for shift-states. $\hat{\delta}_i$ ($i = 1, \ldots, 5$) is the set of rules for the states of the form \hat{q} , and is identical to δ_i except that each state has "^". δ_6 is for turning the direction of computation from forward to backward in $G_{M,w}$ for halting configurations with a read-state. δ_a (δ_r , respectively) is for turning the direction of computation from forward to backward for accepting (rejecting) states. Each rule in δ_a makes M^{\dagger} change the state from a one without "^" to the corresponding one with "^". We can verify that M^{\dagger} is deterministic and reversible by a careful inspection of δ^{\dagger} .

 M^{\dagger} simulates M as follows. First, consider the case $G_{M,w}$ is a tree. If an input w is given, M^{\dagger} traverses $G_{M,w}$ by the depth-first search (Fig. 2 (a)). Note that the search starts not from the root of the tree but from the leaf node $[\triangleright w \triangleleft, q_0, 0]$. Since each node of $G_{M,w}$ is identified by the configuration of M of the form $[\triangleright w \triangleleft, q, \mathbf{h}]$, it is easy for M^{\dagger} to keep it by the configuration of M^{\dagger} . But, if $[\triangleright w \triangleleft, q, \mathbf{h}]$ is a non-leaf node, it may be visited deg_{max}(q) + 1 times (i.e., the number of its child nodes plus 1) in the process of depth-first search, and thus M^{\dagger} should keep this information in the finite state control. To do so, M^{\dagger} uses deg_{max}(q) + 1 states $q^1, \ldots, q^{\deg_{\max}(q)}$, and q for each state q of M. Here, the states $q^1, \ldots, q^{\deg_{\max}(q)}$ are used for visiting its child nodes, and q is used for visiting its parent node. In other words, the states with a superscript are for going downward in the tree (i.e., a backward simulation of M), and the state without a superscript is for going

upward in the tree (i.e., a forward simulation). At a leaf node $[\triangleright w \triangleleft, q, \mathbf{h}]$, which satisfies $\deg_s(q, s_w(\mathbf{h})) = 0, M^{\dagger}$ turns the direction of computing by the rule $[q^1, s_w(\mathbf{h}), q] \in \delta_5$.

If M^{\dagger} enters an accepting state of M, say q_{a} , which is the root of the tree while traversing the tree, then M^{\dagger} goes to the state \hat{q}_{a} , and continues the depth-first search. After that, M^{\dagger} uses the states of the form \hat{q} and \hat{q}^{j} indicating that the input w should be accepted. M^{\dagger} will eventually reach the initial configuration of M by its configuration $[\triangleright w \triangleleft, \hat{q}_{0}^{1}, \mathbf{0}]$. Thus, M^{\dagger} halts and accepts the input. Note that we can assume there is no rule of the form $[q_{0}, \mathbf{s}, q]$ such that $\mathbf{s} \notin \{\triangleright\}^{k}$ in δ , because the initial configuration of Mis $[\triangleright w \triangleleft, q_{0}, \mathbf{0}]$. Therefore, M^{\dagger} never reaches a configuration $[\triangleright w \triangleleft, q_{0}, \mathbf{h}]$ of M such that $\mathbf{h} \neq \mathbf{0}$. If M^{\dagger} enters a halting state of M other than the accepting states, then it continues the depth-first search without entering a state of the form \hat{q} . Also in this case, M^{\dagger} will finally reach the initial configuration of M by its configuration $[\triangleright w \triangleleft, q_{0}^{1}, \mathbf{0}]$. Thus, M^{\dagger} halts and rejects the input.

Second, consider the case $G_{M,w}$ is not a tree (Fig. 2 (b)). In this case, since there is no accepting configuration in $G_{M,w}$, M^{\dagger} never enters an accepting state of M no matter how M^{\dagger} visits the nodes of $G_{M,w}$. Thus, M^{\dagger} uses only the states without "^". From δ^{\dagger} we can see q_0^1 is the only halting state without "^". By Lemma 1, M^{\dagger} must halt with the configuration $[\triangleright w \triangleleft, q_0^1, \mathbf{0}]$, and rejects the input. By above, we have the theorem. \Box

Figure 2: Examples of computation graphs $G_{M,w}$ of a DMFA(k) M. Each node represents a configuration of M, though only a state of the finite-state control is written in a circle. Thick arrows are the edges of $G_{M,w}$. The node labeled by q_0 represents the initial configuration of M. An RDMFA(k) M^{\dagger} traverses these graphs along thin arrows using its configurations. (a) This is a case M halts in an accepting state q_a . Here, the state transition of M^{\dagger} in the traversal of the tree is as follows: $q_0 \rightarrow q_2 \rightarrow q_6^3 \rightarrow q_3^1 \rightarrow q_3 \rightarrow q_6 \rightarrow q_a^2 \rightarrow q_7^1 \rightarrow q_4^1 \rightarrow q_4 \rightarrow q_7^2 \rightarrow q_5^1 \rightarrow q_5 \rightarrow q_7 \rightarrow q_a \rightarrow \hat{q}_a^1 \rightarrow \hat{q}_6^1 \rightarrow \hat{q}_1^1 \rightarrow \hat{q}_6^2 \rightarrow \hat{q}_2^1 \rightarrow \hat{q}_0^1$. (b) This is a case M loops forever. Here, M^{\dagger} traverses the graph as follows: $q_0 \rightarrow q_2^2 \rightarrow q_3^1 \rightarrow q_1^1 \rightarrow q_1 \rightarrow q_3^2 \rightarrow q_6^1 \rightarrow q_2^1 \rightarrow q_0^1$.

4 Applying the method to Turing machines

It has been shown by Lange et al. [2] that DSPACE(S(n)) = RDSPACE(S(n)) holds for any space function S(n). However, by applying the method of the previous section, we can convert a deterministic Turing machine to a reversible one very easily. By this, we can obtain a slightly stronger result by a much simpler method. (Here, we omit its proof.)

Figure 3: A two-tape Turing machine.

Definition 4 A two-tape Turing machine (TM) consists of a finite-state control with two heads, a read-only input tape, and a storage tape (Fig. 3). It is defined by

$$T = (Q, \Sigma, \Gamma, \delta, \rhd, \lhd, q_0, \#, A, R),$$

where Q is a nonempty finite set of states, Σ and Γ are nonempty finite sets of input symbols and storage tape symbols. \triangleright and \triangleleft are left and right endmarkers such that $\{\triangleright, \triangleleft\} \cap (\varSigma \cup \Gamma) = \emptyset$, where only \triangleright is used for the storage tape. $q_0 (\in Q)$ is the initial state, $\#(\not\in \Gamma)$ is a blank symbol of the storage tape, $A(\subset Q)$ and $R(\subset Q)$ are sets of accepting and rejecting states such that $A \cap R = \emptyset$. δ is a subset of $(Q \times (((\Sigma \cup$ $\{\triangleright, \triangleleft\}) \times (\Gamma \cup \{\triangleright, \#\})^2) \cup \{-1, 0, +1\}^2) \times Q$ that determines the transition relation on T's configurations. Each element $r = [p, x, y, q] \in \delta$ is called a rule (in the quadruple form) of T, where $(x, y) = (s_1, [s_2, s_3]) \in ((\Sigma \cup \{ \triangleright, \triangleleft \}) \times (\Gamma \cup \{ \triangleright, \# \})^2)$ or (x, y) = $(d_1, d_2) \in \{-1, 0, +1\}^2$. A rule of the form $[p, s_1, [s_2, s_3], q]$ is called a read-write-rule, and means if T is in the state p and reads an input symbol s_1 and a storage tape symbol s_2 , then rewrites s_2 to s_3 and enters the state q. A rule of the form $[p, d_1, d_2, q]$ is called a shift-rule, and means if T is in the state p then shift the two heads to the directions d_1 and d_2 , and enter the state q. Determinism and reversibility of T are defined similarly as in the case of MFAs.

Theorem 2 For any $DTMT = (Q, \Sigma, \Gamma, \delta, \rhd, \lhd, q_0, \#, A, R)$, we can construct an RDTM $T^{\dagger} = (Q^{\dagger}, \Sigma, \Gamma, \delta^{\dagger}, \triangleright, \lhd, q_0, \#, \{\hat{q}_0^1\}, \{q_0^1\})$ such that the following holds.

 $\begin{array}{ll} \forall w \in \varSigma^* & (w \in L(T) \ \Rightarrow \ [\rhd w \lhd, \rhd, q_0, 0, 0] \mid_{T^{\dagger}}^* \ [\rhd w \lhd, \rhd, \hat{q}_0^1, 0, 0] \,) \\ \forall w \in \varSigma^* & (w \notin L(T) \ \land \ T \ with \ w \ uses \ bounded \ amount \ of \ the \ storage \ tape \end{array}$ $\begin{array}{l} \Rightarrow \ [\rhd w \lhd, \rhd, q_0, 0, 0] \ | \frac{*}{T^{\dagger}} \ [\rhd w \lhd, \rhd, q_0^1, 0, 0] \) \\ \forall w \in \varSigma^* \quad (w \notin L(T) \land T \ with \ w \ uses \ unbounded \ amount \ of \ the \ storage \ tape \end{array}$

 \Rightarrow T^{\dagger} 's computation starting from $[\triangleright w \triangleleft, \triangleright, q_0, 0, 0]$ does not halt)

Furthermore, if T uses at most m squares of the storage tape on an input w, then T^{\dagger} with w also uses at most m squares in any of its configuration in its computing process.

5 Reversible logic circuits that simulate RDMFAs

It is possible to implement an RDMFA using only rotary elements as in the case of a reversible Turing machine [3, '4, 5]. A rotary element [3] is a reversible logic element with 4 input and 4 output lines, and 2 states shown in Fig. 4. In [3, 5], a construction method of a finite control unit and a tape square unit of a reversible Turing machine out of rotary elements is given. Though a similar method can also be applied for constructing an RMFA, accessing a tape square by many heads should be managed properly. Here, we show an example of the circuit without giving a detailed explanation.

Figure 4: Operation of a rotary element. The case where the directions of the bar and the coming signal are parallel (left), and the case where they are orthogonal (right).

Figure 5: A circuit composed only of rotary elements that simulates the RMFA(2) M'_{2^m} .

Consider the RDMFA(2) M_{2m} in the quadruple form that accepts $L_{2m} = \{1^n | n = 2^m \text{ for some } m \in \{0, 1, ...\}\}$, where \$\$ is used as both left and right end-markers. $M_{2m} = (\{q_0, q_1, q_2, q_3, q_4, q_5, q_a, q_r\}, \{1\}, 2, \delta_{2m}, \$, \$, q_0, \{q_a\}, \{q_r\})$

Fig. 5 shows the whole circuit of M_{2^m} for the input 1^2 . Giving a particle at the Begin port in Fig. 5, the circuit starts to simulate M_{2^m} . The particle finally comes out from the output port Accept since $1^2 \in L_{2^m}$. If an input $1^n \notin L_{2^m}$ is given, the particle will appear from the Reject port.

References

- Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata: Origins and directions. Theoret. Comput. Sci. 412, 83-96 (2011)
- [2] Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space. J. Comput. Syst. Sci. 60, 354–367 (2000)
- [3] Morita, K.: A simple reversible logic element and cellular automata for reversible computing. In: Proc. 3rd Int. Conf. on Machines, Computations, and Universality, LNCS 2055. pp. 102-113. Springer-Verlag (2001)
- [4] Morita, K.: Reversible computing and cellular automata A survey. Theoret. Comput. Sci. 395, 101–131 (2008)
- [5] Morita, K.: Constructing a reversible Turing machine by a rotary element, a reversible logic element with memory. Hiroshima University Institutional Repository, http://ir.lib.hiroshima-u.ac.jp/00029224 (2010)
- [6] Morita, K.: Two-way reversible multi-head finite automata. Fundamenta Informaticae 110, 241-254 (2011)