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ABSTRACT. We give an altemative and direct approach to the Choquet integral
representability of a comonotonically additive, bounded, monotone functional $I$

defined on the space of all continuous, real-valued functions on a locally compact
space $X$ with compact support and on the space of all continuous, real-valued
functions on $X$ vanishing at infinity. To this end, we introduce the notion of the
asymptotic translatability of the functional $I$ and reveal that this simple notion is
equivalent to the Choquet integral representability of $I$ with respect to a monotone
measure on $X$ with appropriate regularity.

1. INTRODUCTION

This is an announcement of the forthcoming paper [10]. Most of functionals,
appeared in popular mathematical models for uncertainty and partial ignorance, are
monotone, real-valued functionals defined on a vector sublattice of the space $B(X)$ of
all bounded, real-valued functions on a non-empty set $X$ with additional properties
such as the superadditivity, the $n$-monotonicity, the comonotonic additivity, the
translation invariance (or the constant additivity), and others. See, for instance,
coherent lower previsions in Walley’s behavioral approach to decision making and
probability [22], exact cooperative games and expected utility without additivity by
Schmeidler [18, 20] and Gilboa [6], coherent risk measures by Artzner et al. [1], and
exact functionals by $MaaB[11]$ and $n$-exact functionals by G. de Cooman et al. [4].
In those studies, it is important to clarify under what conditions a given functional
$I$ defined on a given vector sublattice $\mathcal{F}$ of $B(X)$ can be represented as

$I(f)=( C)\int_{X}fd\mu, f\in \mathcal{F},$
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using the Choquet integral with respect to a monotone measure on $X$ with appro-
priate regularity. This type of problem is often called the Choquet integml repre-
sentability of a functional.

In this paper, we discuss the Choquet integral representability of comonotonically
additive, monotone functionals. Schmeidler [19] already obtained such a represen-
tation in the case that $I$ is defined on the space $B(X, \Sigma)$ of all bounded, real-valued
functions on a non-empty set $X$ that is measurable with respect to a field $\Sigma$ of
subsets of $X$ . Murofushi et al. [12] and R\’ebill\’e [17] extended it to the case that $I$

is not necessarily monotone. see also [2]. When $X$ is a Hausdorff space and $I$ is a
functional on the space $C_{b}(X)$ of all bounded, continuous, real-valued functions on
$X$ , some Choquet integral representations of $I$ can be deduced from Zhou [24] and
Cerreia-Vioglio et al. [2].

However, these results do not cover the case of functionals defined on the space
$C_{00}(X)$ of all continuous, real-valued functions on a locally compact space $X$ with
compact support and the space $C_{0}(X)$ of all continuous, real-valued functions on
$X$ vanishing at infinity, since these spaces do not contain the constant functions
on $X$ unless $X$ is compact. In fact, there is a comonotonically additive, bounded,
monotone functional on $C_{00}(\mathbb{R})$ , any of whose extension to a larger space cannot be
represented as the Choquet integral; see Remark 4 further on.

The preceding detailed study of the Choquet integral representability of a func-
tional $I$ on the space $K$ $:=C_{00}(X)$ was published in a series of papers by Narukawa
et al. [13, 14, 15]. In particular, in $[15]$ they introduced the notion of the $\epsilon-$

symmetry and the $M$-uniform continuity to show that every comonotonically ad-
ditive, bounded, monotone functional $I$ having these properties can be represented
by the Choquet integral with respect to a finite monotone measure on $X$ . This has
been accomplished by extending the domain space $K$ to the larger vector lattice $K^{*}$

and by extending the functional $I$ to the functional $I^{*}$ on $K^{*}$ in well-defined ways.
In this paper, we will adopt an alternative and direct approach to this issue.

Firstly, we give an improvement of [21, Theorem 3.7] and its extension to the space
$C_{0}(X)$ using the Greco theorem [7], which is the most general Daniell-Stone type
integral representation theorem for functionals on function spaces. Next, we will
introduce the notion of the asymptotic translatability of a functional $I$ on $C_{00}(X)$

and on $C_{0}(X)$ and show that this simple notion is equivalent to the Choquet integral
representability of $I$ with respect to a monotone measure on $X$ with appropriate
regularity.
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2. NOTATION AND PRELIMINARIES

Let $X$ be a non-empty set and $2^{X}$ denote the family of all subsets of $X$ . For each
$A\subset X,$

$\chi_{A}$ denotes the characteristic function of A. $\mathbb{R}$ and $\mathbb{R}^{+}$ denote the set of
all real numbers and the set of all nonnegative real numbers, respectively. Also, $\overline{\mathbb{R}}$

and $\overline{\mathbb{R}}^{+}$ denote the set of all extended real numbers and the set of all nonnegative
extended real numbers, respectively. $\mathbb{N}$ denotes the set of all natural numbers. For
any functions $f,$ $g:Xarrow\overline{\mathbb{R}}$, let $f\vee g$ $:= \max(f, g),$ $f\wedge g$ $:= \min(f, g),$ $f^{+}:=f\vee 0,$

$f^{-};=(-f)\vee 0,$ $|f|$ $:=f\vee(-f)$ , and $\Vert f\Vert_{\infty}$ $:= \sup_{x\in X}|f(x)|.$

We say that a set function $\mu$ : $2^{X}arrow\overline{\mathbb{R}}^{+}$ is a monotone measure on $X$ if $\mu(\emptyset)=0$

and $\mu(A)\leq\mu(B)$ whenever $A\subset B$ . When $\mu$ is finite, that is, $\mu(X)<\infty$ , the
conjugate $\overline{\mu}$ of $\mu$ is defined by $\overline{\mu}(A)$ $:=\mu(X)-\mu(A^{c})$ for each $A\subset X$ , where $A^{c}$

denotes the complement of the set $A.$

For any function $f$ : $Xarrow\overline{\mathbb{R}}$, the decreasing distribution function $t\in \mathbb{R}\mapsto\mu(\{f>$

$t\})$ is Lebesgue measurable. Thus, the following formalization is well-defined; see [3]
and [19].

Definition 1. Let $\mu$ be a monotone measure on $X$ . The Choquet integral of a
nonnegative function $f$ : $Xarrow\overline{\mathbb{R}}^{+}$ with respect to $\mu$ is defined by

$( C)\int_{X}fd\mu:=\int_{0}^{\infty}\mu(\{f>t\})dt,$

where the integral on the right-hand side is the usual Lebesgue integral.
When $\mu(X)<\infty$ , the Choquet integral of a function $f$ : $Xarrow\overline{\mathbb{R}}$ with respect to

$\mu$ is defined by

$( C)\int_{X}fd\mu:=(C)\int_{X}f^{+}d\mu-(C)\int_{X}f^{-}d\overline{\mu}$

whenever the Choquet integrals on the right-hand side are not both $\infty.$

Remark 1. For any monotone measure $\mu$ on $X$ and any function $f$ : $Xarrow\overline{\mathbb{R}}$ , the
decreasing distribution function $t\in \mathbb{R}\mapsto\mu(\{f\geq t\})$ is also Lebesgue measurable,
and the function $\mu(\{f>t\})$ in the above definition may be replaced with the
function $\mu(\{f\geq t\})$ , since $\mu(\{f\geq t\})\geq\mu(\{f>t\})\geq\mu(f\geq t+\epsilon\})$ for every $\epsilon>0$

and $0\leq t<\infty$ . This fact will be used implicitly in this paper.

See [5], [16], and [23] for more information on monotone measures and Choquet
integrals.

For readers’ convenience, we introduce the Greco theorem [7, Proposition 2.2],
which is the most general Choquet integral representation theorem for comono-
tonically additive, monotone, extended real-valued functionals; see also [5, Theo-
rem 13.2]. Recall that two functions $f,$ $g$ : $Xarrow\overline{\mathbb{R}}$ are comonotonic and they are
written by $f\sim g$ if, for every $x,$ $x’\in X,$ $f(x)<f(x’)$ implies $g(x)\leq g(x’)$ .
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Definition 2. Let $\mathcal{F}$ be a non-empty family of functions $f$ : $Xarrow\overline{\mathbb{R}}$ with pointwise
ordering. Let $I:\mathcal{F}arrow\overline{\mathbb{R}}$ be a functional.

(1) $I$ is said to be monotone if $I(f)\leq I(g)$ whenever $f,$ $g\in \mathcal{F}$ and $f\leq g.$

(2) $I$ is said to be comonotonically additive if $I(f+g)=I(f)+I(g)$ whenever
$f,$ $g,$ $f+g\in \mathcal{F}$ and $f\sim g.$

(3) $I$ is said to be bounded if there is a constant $M>0$ such that $|I(f)|\leq$

$M\Vert f\Vert_{\infty}$ for all $f\in \mathcal{F}.$

Theorem 1 (The Greco theorem). Let $\mathcal{F}^{+}$ be a non-empty family of nonnegative

functions $f:X arrow\frac{\mathfrak{l}}{\mathbb{R}^{l}}$ Assume that $\mathcal{F}^{+}$ satisfies
(i) if $f\in \mathcal{F}^{+}$ and $c\in \mathbb{R}^{+}$ , then $cf,$ $f\wedge c,$ $f-f\wedge c=(f-c)^{+}\in \mathcal{F}^{+}$ . In

particular, $0\in \mathcal{F}^{+}.$

Assume that $I$ : $\mathcal{F}^{+}arrow\overline{\mathbb{R}}$ is a comonotonically additive, monotone functional
satisfying

(ii) $I(0)=0,$

(iii) $\sup_{a>0}I(f-f\wedge a)=I(f)$ for every $f\in \mathcal{F}^{+}$ , and
(iv) $\sup_{b>0}I(f\wedge b)=I(f)$ for every $f\in \mathcal{F}^{+}.$

For each $A\subset X$ , define the set functions $\alpha,$
$\beta$ : $2^{X} arrow\frac{1}{\mathbb{R}^{I}}$ by

$\alpha(A):=\sup\{I(f):f\in \mathcal{F}^{+}, f\leq\chi_{A}\},$

$\beta(A):=\inf\{I(f):f\in \mathcal{F}^{+}, \chi_{A}\leq f\},$

where let $inf\emptyset$ $:=\infty.$

(1) The set functions $\alpha$ and $\beta$ are monotone measures on $X$ with $\alpha\leq\beta.$

(2) For any monotone measure $\lambda$ on $X$ , the following two conditions are equiv-
alent:
(a) $\alpha\leq\lambda\leq\beta.$

(b) $I(f)=( C)\int_{X}fd\lambda$ for every $f\in \mathcal{F}^{+}.$

Remark 2. Every comonotonically additive, monotone functional $I$ : $\mathcal{F}^{+}arrow\overline{\mathbb{R}}$

satisfying assumptions (i) and (ii) of Theorem 1 is nonnegative, that is, $I(f)\geq 0$

for every $f\in \mathcal{F}^{+}$ , and it is positively homogeneous, that is, $I(cf)=cI(f)$ for every
$f\in \mathcal{F}^{+}$ and $c\in \mathbb{R}^{+}$ . See, for instance, [5, page 159] and [13, Proposition 4.2].

3. THE CHOQUET INTEGRAL REPRESENTABILITY ON $C_{00}^{+}(X)$

In this section, firstly we give an alternative proof of [21, Theorem 3.7] and its
improvement using the Greco theorem.

From this point forwards, let $X$ be a locally compact Hausdorff space. $C_{00}(X)$

denotes the space of all continuous, real-valued functions on $X$ with compact support
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and $C_{0}(X)$ denotes the space of all continuous, real-valued functions on $X$ vanishing
at infinity. $C_{00}^{+}(X)$ and $C_{0}^{+}(X)$ denote the positive cone of $C_{00}(X)$ and the positive
cone of $C_{0}(X)$ , respectively. For any function $f$ on $X,$ $S(f)$ denotes the support of
$f$ , which is defined by the closure of $\{f\neq 0\}.$

A bounded set in $X$ is a set that is contained in a compact subset of $X.$ $A$

subset $A$ of $X$ is said to be $G_{\delta}$ if there is a sequence $\{G_{n}\}_{n\in \mathbb{N}}$ of open sets such
that $A= \bigcap_{n=1}^{\infty}G_{n}$ . The class of all $G_{\delta}$ sets is closed under the formulation of finite
unions and countable intersections. If $f\in C_{0}(X)$ and $c>0$ , then the set $\{|f|\geq c\}$

is compact $G_{\delta}$ . If $X$ is metrizable, then every closed subset of $X$ is $G_{\delta}.$ $A$ subset
$A$ of $X$ is said to be $K_{\sigma}$ if there is a sequence $\{K_{n}\}_{n\in \mathbb{N}}$ of compact sets such that
$A= \bigcup_{n=1}^{\infty}K_{n}$ . The class of all $K_{\sigma}$ sets is closed under the formulation of countable
unions and finite intersections. If $f\in C_{0}(X)$ and $c\geq 0$ , then the set $\{|f|>c\}$ is
open $K_{\sigma}$ and it is bounded if $c>0.$ $X$ is said to be $\sigma$-compact if it is $K_{\sigma}$ . If $X$ is
$\sigma$-compact and metrizable, then every open subset of $X$ is $K_{\sigma}$ . The complement of
every $G_{\delta}$ subset of a $\sigma$-compact space is $K_{\sigma}.$

For any compact $K$ and any open $G$ with $K\subset G$ , there is $f\in C_{00}(X)$ such
that $\chi_{K}\leq f\leq\chi_{G}$ . Thus, for every open subset $G$ of $X$ , there is an increasing net
$\{f_{\tau}\}_{\tau\in\Gamma}$ of functions in $C_{00}(X)$ such that $0\leq f_{\tau}\leq 1$ for all $\tau\in\Gamma$ and $f_{\tau}\uparrow\chi_{G}.$

By contrast, for every compact subset $K$ of $X$ , there is a decreasing net $\{f_{\tau}\}_{\tau\in\Gamma}$

of functions in $C_{00}(X)$ such that $0\leq f_{\tau}\leq 1$ for all $\tau\in\Gamma$ and $f_{\tau}\downarrow\chi_{K}$ . When $G$

is open $K_{\sigma}$ and $K$ is compact $G_{\delta}$ , in the above statement, the net $\{f_{\tau}\}_{\tau\in\Gamma}$ may be
replaced with a sequence $\{f_{n}\}_{n\in \mathbb{N}}.$

The following regularity properties give a tool to approximate general sets by more
tractable sets such as open and compact sets. They are still important in monotone
measure theory.

Definition 3. Let $\mu$ be a monotone measure on $X.$

(1) $\mu$ is said to be outer regular $($respectively, outer $K_{\sigma}$ regular) if, for every
subset $A$ of $X,$ $\mu(A)=\inf\{\mu(G)$ : $A\subset G,$ $G$ is open$\}$ $($ respectively, $\mu(A)=$

$\inf\{\mu(H)$ : $A\subset H,$ $H$ is open $K_{\sigma}\})$ .
(2) $\mu$ is said to be quasi outer regular $($ respectively, quasi outer $K_{\sigma}$ regular) if,

for every compact subset $K$ of $X,$ $\mu(K)=\inf\{\mu(G)$ : $K\subset G,$ $G$ is open $\}$

$($ respectively, $for$ every compact $G_{\delta}$ subset $L of X, \mu(L)=\inf\{\mu(H)$ : $L\subset$

$H,$ $H$ is open $K_{\sigma}$ } $)$ .
(3) $\mu$ is said to be inner regular $($respectively, inner $G_{\delta}$ regular) if, for every

subset $A$ of $X,$ $\mu(A)=\sup${ $\mu(K)$ : $K\subset A,$ $K$ is compact} (respectively,
$\mu(A)=\sup${ $\mu(L)$ : $L\subset A,$ $L$ is compact $G_{\delta}$ } $)$ .
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(4) $\mu$ is said to be quasi inner regular $($ respectively, quasi inner $G_{\delta}$ regular) if,
for every open subset $G$ of $X,$ $\mu(G)=\sup${ $\mu(K)$ : $K\subset G,$ $K$ is compact}
$($ respectively, $for$ every $open K_{\sigma}$ subset $H of X, \mu(H)=\sup\{\mu(L)$ : $L\subset$

$H,$ $L$ is compact $G_{\delta}$ } $)$ .

Every outer $K_{\sigma}$ regular $($respectively, inner $G_{\delta}$ regular) monotone measure on $X$

is outer regular (respectively, inner regular). By contrast, every quasi outer regular
(respectively, quasi inner regular) monotone measure on $X$ is quasi outer $K_{\sigma}$ regular
$($ respectively, quasi inner $G_{\delta}$ regular) .

For later use we collect some basic properties of the regularity of monotone mea-
sures on locally compact spaces.

Proposition 1. Let $\mu$ be a monotone measure on $X.$

(1) $\mu$ is quasi outer regular if and only if $\mu(K)=\inf_{\tau\in\Gamma}\mu(K_{\tau})$ whenever $\{K_{\tau}\}_{\tau\in\Gamma}$

is a decreasing net of compact sets and $K= \bigcap_{\tau\in\Gamma}K_{\tau}.$

(2) $\mu$ is quasi inner regular if and only if $\mu(G)=\sup_{\tau\in\Gamma}\mu(G_{\tau})$ whenever $\{G_{\tau}\}_{\tau\in\Gamma}$

is an increasing net of open sets and $G= \bigcup_{\tau\in\Gamma}G_{\tau}.$

(3) $\mu$ is quasi outer $K_{\sigma}$ regular if and only if $\mu(L)=\inf_{n\in N}\mu(L_{n})$ whenever
$\{L_{n}\}_{n\in \mathbb{N}}$ is a decreasing sequence of compact $G_{\delta}$ sets and $L= \bigcap_{n\in N}L_{n}.$

(4) $\mu$ is quasi inner $G_{\delta}$ regular if and only if $\mu(H)=\sup_{n\in \mathbb{N}}\mu(H_{n})$ whenever
$\{H_{n}\}_{n\in \mathbb{N}}$ is an increasing sequence of open $K_{\sigma}$ sets and $H= \bigcup_{n\in N}H_{n}.$

A nonnegative, real-valued function $f$ on $X$ is said to be lower semicontinuous if
the set $\{f>r\}$ is open for every $r\geq 0$ and it is said to be upper semicontinuous
if the set $\{f\geq r\}$ is closed for every $r\geq 0$ . Thus, $f$ is upper semicontinuous and
vanishing at infinity if and only if the set $\{f\geq r\}$ is compact for every $r>0.$

By Proposition 1, the first assertion of the following proposition can be proved in
the same way as [8, Theorem 7]. Other assertions can also be proved in a similar
fashion.

Proposition 2. Let $\mu$ be a finite monotone measure on $X.$

(1) $\mu$ is quasi inner regular if and only if it holds that $\lim_{\tau\in\Gamma}(C)\int_{X}f_{\tau}d\mu=$

$\sup_{\tau\in\Gamma}(C)\int_{X}f_{\tau}d\mu=(C)\int_{X}fd\mu$ whenever a uniformly bounded, increasing
net $\{f_{\tau}\}_{\tau\in\Gamma}$ of lower semicontinuous, nonnegative, real-valued functions on
$X$ converges pointwise to such a function $f$ on $X.$

(2) $\mu$ is quasi outer regular if and only if it holds that $\lim_{\tau\in\Gamma}(C)\int_{X}f_{\tau}d\mu=$

$\inf_{\tau\in\Gamma}(C)\int_{X}f_{\tau}d\mu=(C)\int_{X}fd\mu$ whenever a uniformly bounded, decreasing
net $\{f_{\tau}\}_{\tau\in\Gamma}$ of upper semicontinuous, nonnegative, real-valued functions on
$X$ vanishing at infinity converges pointwise to such a function $f$ on $X.$
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(3) $\mu$ is quasi inner $G_{\delta}$ regular if and only if it holds that $\lim_{narrow\infty}(C)\int_{X}f_{n}d\mu=$

$\sup_{n\in \mathbb{N}}(C)\int_{X}f_{n}d\mu=(C)\int_{X}fd\mu$ whenever a uniformly bounded, increasing
sequence $\{f_{n}\}_{n\in \mathbb{N}}$ of lower semicontinuous, nonnegative, real-valued functions
on $X$ converges pointwise to such a function $f$ on $X.$

(4) $\mu$ is quasi outer $K_{\sigma}$ regular if and only if it holds that $\lim_{narrow\infty}(C)\int_{X}f_{n}d\mu=$

$\inf_{n\in \mathbb{N}}(C)\int_{X}f_{n}d\mu=(C)\int_{X}fd\mu$ whenever a uniformly bounded, decreasing
sequence $\{f_{n}\}_{n\in \mathbb{N}}$ of upper semicontinuous, nonnegative, real-valued func-
tions on $X$ vanishing at infinity converges pointwise to such a function $f$ on
X.

The following theorem is an improvement of [21, Theorem 3.7] and [9, Theorem 2].
It has essentially been derived from the Greco theorem.

Theorem 2. Let $I$ : $C_{00}^{+}(X)arrow \mathbb{R}$ be a comonotonically additive, monotone func-
tional. For each $A\subset X$ , define the set functions $\alpha,$

$\beta,$
$\gamma$ : $2^{X}arrow\overline{\mathbb{R}}^{+}$ by

$\alpha(A):=\sup\{I(f):f\in C_{00}^{+}(X), f\leq\chi_{A}\},$

$\beta(A) :=\inf\{I(f) : f\in C_{00}^{+}(X), \chi_{A}\leq f\},$

$\gamma(A) :=\sup\{I(f) : f\in C_{00}^{+}(X), 0\leq f\leq 1, S(f)\subset A\},$

where let $inf\emptyset$ $:=\infty$ , and define their regularizations $\alpha^{*},$ $\beta^{*},$ $\gamma^{*},$ $\alpha^{**},$ $\beta^{**},$ $\gamma^{**}:2^{X}arrow$

$\overline{\mathbb{R}}^{+}$ by

$\alpha^{*}(A)$ $:= \inf\{\alpha(G)$ : $A\subset G,$ $G$ is open$\},$

$\beta^{*}(A)$ $:= \sup$ { $\beta(K)$ : $K\subset A,$ $K$ is compact},
$\gamma^{*}(A)$ $:= \inf\{\gamma(G)$ : $A\subset G,$ $G$ is open$\},$

$\alpha^{**}(A)$ $:= \inf\{\alpha(H)$ : $A\subset H,$ $H$ is open $K_{\sigma}\},$

$\beta^{**}(A)$ $:= \sup$ { $\beta(L)$ : $L\subset A,$ $L$ is compact $G_{\delta}$ },
$\gamma^{**}(A)$ $:= \inf\{\gamma(H)$ : $A\subset H,$ $H$ is open $K_{\sigma}\}.$

(1) The set functions $\alpha,$
$\beta_{f}\gamma,$ $\alpha^{*},$ $\beta^{*},$ $\gamma^{*},$ $\alpha^{**},$ $\beta^{**}$ , and $\gamma^{**}$ are monotone mea-

sures on $X.$

(2) For any monotone $mea\mathcal{S}ure\lambda$ on $X$ , the following two conditions are equiv-
alent:
(a) $\alpha\leq\lambda\leq\beta.$

(b) $I(f)=( C)\int_{X}fd\lambda$ for every $f\in C_{00}^{+}(X)$ .
(3) $\gamma^{*}(K)=\gamma^{**}(K)=\beta(K)<\infty$ for every compact subset $K$ of $X.$

(4) The defined monotone measures are compamble, that is, $\alpha=\gamma\leq\beta^{**}\leq\beta^{*}\leq$

$\alpha^{*}=\gamma^{*}\leq\gamma^{**}=\alpha^{**}\leq\beta$, so that any of them is a representing measure of
I.
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(5) $\beta^{*}(G)=\beta^{**}(G)=\alpha(G)$ for every open subset $G$ of $X.$

(6) $\alpha^{*}$ is quasi inner regular and outer regular.
(7) $\beta^{*}$ is inner regular and quasi outer regular.
(8) $\alpha^{**}$ is quasi inner $G_{\delta}$ regular and outer $K_{\sigma}$ regular.
(9) $\beta^{**}$ is inner $G_{\delta}$ regular and quasi outer $K_{\sigma}$ regular.

(10) $\beta(X)<\infty$ if and only if $X$ is compact.
(11) $\alpha(X)<\infty$ if and only if I is bounded.
(12) $\alpha(X)=\gamma(X)=\beta^{**}(X)=\beta^{*}(X)=\alpha^{*}(X)=\gamma^{*}(X)$ .
(13) Assume that $X$ is $\sigma$ -compact. Then $\alpha(X)=\alpha^{**}(X)=\gamma^{**}(X)$ .
(14) Let $\lambda$ be a monotone measure on X. Let $I(f)$ $:=( C)\int_{X}fd\lambda$ for every $f\in$

$C_{00}^{+}(X)$ . Then I is comonotonically additive and monotone. Moreover, the
following conditions are equivalent:
(a) $I$ is real-valued.
(b) $\lambda(\{f>0\})<\infty$ for every $f\in C_{00}^{+}(X)$ .

4. THE CHOQUET INTEGRAL REPRESENTABILITY ON $C_{00}(X)$

In this section, we formalize a Choquet integral representation theorem for comono
tonically additive functionals defined on the entire space $C_{00}(X)$ .

Lemma 1. For any $f\in C_{0}(X)$ and any constant $c>0$ with $|f|\leq c$ , there is an
increasing net $\{g_{\tau}\}_{\tau\in\Gamma}$ offunctions in $C_{0}(X)$ such that $0\leq g_{\tau}\leq c$ and $g_{\tau}\pm f\geq 0$ for
all $\tau\in\Gamma$ and that $g_{\tau}\uparrow c$ . If $f\in C_{00}(X)$ , then the net $\{g_{\tau}\}_{\tau\in\Gamma}$ can be chosen from
$C_{00}(X)$ . When $X$ is $\sigma$-compact, the net $\{g_{\tau}\}_{\tau\in\Gamma}$ may be replaced with a sequence
$\{g_{n}\}_{n\in \mathbb{N}}.$

The property given in the next proposition is called the asymptotic translatability
of the Choquet integral. It is important for formalizing Choquet integral represen-
tation theorems for functionals defined on the entire space $C_{00}(X)$ and $C_{0}(X)$ .

Proposition 3. Let $\mu$ be a quasi inner regular, finite monotone measure on $X.$

For any $f\in C_{0}(X)$ , any increasing net $\{g_{\tau}\}_{\tau\in\Gamma}$ of functions in $C_{0}(X)$ , and any
constant $c>0$ , if $0\leq g_{\tau}\leq c$ and $f+g_{\tau}\geq 0$ for all $\tau\in\Gamma$ and if $g_{\tau}\uparrow c$ , then
$\lim_{\tau\in\Gamma}(C)\int_{X}(f+g_{\tau})d\mu=(C)\int_{X}fd\mu+\lim_{\tau\in\Gamma}(C)\int_{X}g_{\tau}d\mu.$

Theorem 3. Let $I:C_{00}(X)arrow \mathbb{R}$ be a comonotonically additive, bounded, monotone
functional. Assume that I has the asymptotic translatability, that is, for any $f\in$

$C_{00}(X)$ , any increasing net $\{g_{\tau}\}_{\tau\in\Gamma}$ offunctions in $C_{00}(X)$ , and any constant $c>0,$

if $0\leq g_{\tau}\leq c$ and $f+g_{\tau}\geq 0$ for all $\tau\in\Gamma$ and if $g_{\tau}\uparrow c$ , then $\lim_{\tau\in\Gamma}I(f+g_{\tau})=$

$I(f)+ \lim_{\tau\in\Gamma}I(g_{\tau})$ . Then, there is a finite monotone measure $\mu$ on $X$ satisfying the
following conditions:
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(a) $I(f)=( C)\int_{X}fd\mu$ for all $f\in C_{00}(X)$ .
(b) $\mu$ is quasi inner regular.
(c) $\mu$ is outer regular.

Moreover, the finite monotone measure $\mu$ on $X$ satisfying $(a)-(c)$ is uniquely deter-
mined.

Conversely, let $\lambda$ be a finite monotone measure on $X$ satisfying (b) and let I be
defined by (a). Then, $I$ is a comonotonically additive, bounded, monotone, real-
valued functional on $C_{00}(X)$ and it has the asymptotic tmnslatability.

Remark 3. When $X$ is $\sigma$-compact, the asymptotic translatability condition in the
above theorem may be replaced with its sequential version: for any $f\in C_{00}(X)$ ,
any increasing sequence $\{g_{n}\}_{n\in \mathbb{N}}$ of functions in $C_{00}(X)$ , and any constant $c>0$ , if
$0\leq g_{n}\leq c$ and $f+g_{n}\geq 0$ for all $n\in \mathbb{N}$ and if $g_{n}\uparrow c$ , then $\lim_{narrow\infty}I(f+g_{n})=$

$I(f)+ \lim_{narrow\infty}I(g_{n})$ . In this case, if we let $\mu$
$:=\alpha^{**}$ given in Theorem 2, then $\mu$ is

a unique quasi inner $G_{\delta}$ regular, outer $K_{\sigma}$ regular, finite monotone measure on $X$

that represents $I.$

The following proposition shows that the asymptotic translatability does not fol-
low from the comonotonic additivity, the boundedness, and the monotonicity of a
functional.

Proposition 4. Let $D:=[0,1]$ . Define the set function $\lambda$ : $2^{\mathbb{R}}arrow\{0,1\}$ by

$\lambda(A):=\{^{1}$
if $D\subset A$

$0$ if $D\cap A^{c}\neq\emptyset$

for each $A\subset \mathbb{R}.$

(1) $\lambda$ is a monotone measure on $\mathbb{R}$ and its conjugate $\overline{\lambda}$ is given by

$\overline{\lambda}(A):=\{\begin{array}{ll}1 if D\cap A\neq\emptyset 0 ifA\subset D^{c}\end{array}$

for each $A\subset \mathbb{R}.$

(2) $\lambda$ is outer regular and quasi inner regular.
(3) $\overline{\lambda}$ is quasi outer regular and inner regular.

Define the functional $I:C_{0}(\mathbb{R})arrow \mathbb{R}$ by

$I(f):=( C)\int_{\mathbb{R}}f^{+}d\lambda, f\in C_{0}(\mathbb{R})$

and let $I_{0}$ be the restriction of I onto $C_{00}(X)$ .
(4) $I$ and $I_{0}$ are comonotonically additive, bounded, and monotone, but they do

not have the asymptotic tmnslatability.
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Remark 4. Proposition 4 also shows that any extension of $I_{0}$ to a larger space of

bounded functions on $\mathbb{R}$ , which contains $C_{00}(\mathbb{R})$ , cannot be represented by a quasi

inner regular, finite monotone measure on $\mathbb{R}.$

5. THE CHOQUET INTEGRAL REPRESENTABILITY ON $C_{0}(X)$

From Theorem 2 we can derive a Choquet integral representation theorem for

comonotonically additive, monotone functionals on $C_{0}^{+}(X)$ having a continuity con-
dition given by Greco.

Theorem 4. Let $I$ : $C_{0}^{+}(X)arrow \mathbb{R}$ be a comonotonically additive, monotone func-
tional satisfying $\inf_{a>0}I(f\wedge a)=0.$

For each $A\subset X$ , define the set functions $\alpha,$
$\beta,$

$\gamma$ : $2^{X} arrow\frac{1}{\mathbb{R}^{}}$ by

$\alpha(A):=\sup\{I(f):f\in C_{0}^{+}(X), f\leq\chi_{A}\},$

$\beta(A):=\inf\{I(f):f\in C_{0}^{+}(X), \chi_{A}\leq f\},$

$\gamma(A);=\sup\{I(f):f\in C_{0}^{+}(X), 0\leq f\leq 1, S(f)\subset A\},$

where let $inf\emptyset$ $:=\infty$ , and define their regularizations $\alpha^{*},$ $\beta^{*},$ $\gamma^{*},$ $\alpha^{**},$ $\beta^{**}$ , and $\gamma^{**}$

in the same way as Theorem 2.

(1) The set functions $\alpha,$
$\beta,$

$\gamma,$
$\alpha^{*},$ $\beta^{*},$ $\gamma^{*},$ $\alpha^{**},$ $\beta^{**}$ , and $\gamma^{**}$ are monotone mea-

sures on $X$ and they satisfy properties (3)$-(13)$ of Theorem 2.

(2) For any monotone measure $\lambda$ on $X$ , the following two conditions are equiv-

alent:
(a) $\alpha\leq\lambda\leq\beta.$

(b) $I(f)=( C)\int_{X}fd\lambda$ for every $f\in C_{0}^{+}(X)$ .
(3) Let $\lambda$ be a monotone measure on $X$ such that $\lambda(\{f>0\})<\infty$ for ev-

$eryf\in C_{0}^{+}(X)$ . Let $I(f):=( C)\int_{X}fd\lambda$ for every $f\in C_{0}^{+}(X)$ . Then, $I$

is a comonotonically additive, monotone, real-valued functional on $C_{0}^{+}(X)$

satisfying $\inf_{a>0}I(f\wedge a)=0.$

Remark 5. There is a locally compact space $X$ and a monotone measure $\lambda$ on $X$

such that $\lambda(\{f>0\})<\infty$ for all $f\in C_{0}^{+}(X)$ but $\lambda(X)=\infty$ . An example is as
follows: Let $X$ be an uncountable set with the discrete topology. Then, $X$ is locally

compact, but it is not $\sigma$-compact. Therefore, $X\neq\{f>0\}$ for any $f\in C_{0}^{+}(X)$ . Now

define the monotone measure $\lambda$ : $2^{X}arrow\overline{\mathbb{R}}_{+}$ by $\lambda(A)=\infty$ if $A=X$ and $\lambda(A)=0$ if

$A\neq X.$

From Theorem 4 the following theorem can be proved in the same way as Theo-

rem 3.
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Theorem 5. Let $I$ : $C_{0}(X)arrow \mathbb{R}$ be a comonotonically additive, bounded, monotone
functional. Assume that I has the asymptotic tmnslatability, that is, for any $f\in$

$C_{0}(X)$ , any increasing net $\{g_{\tau}\}_{\tau\in\Gamma}$ of functions in $C_{0}(X)$ , and any constant $c>0,$

if $0\leq g_{\tau}\leq c$ and $f+g_{\tau}\geq 0$ for all $\tau\in\Gamma$ and if $g_{\mathcal{T}}\uparrow c$ , then $\lim_{\tau\in\Gamma}I(f+g_{\tau})=$

$I(f)+ \lim_{\tau\in\Gamma}I(g_{\tau})$ . Then, there is a finite monotone measure $\mu$ on $X$ satisfying the
following conditions:

(a) $I(f)=( C)\int_{X}fd\mu$ for every $f\in C_{0}(X)$ .
(b) $\mu$ is quasi inner regular.
(c) $\mu$ is outer regular.

Moreover, the finite monotone measure $\mu$ on $X$ satisfying $(a)-(c)$ is uniquely deter-
mined.

Conversely, let $\lambda$ be a finite monotone measure on $X$ satisfying (b) and let I be
defined by (a). Then, $I$ is a comonotonically additive, bounded, monotone, real-
valued functional and it has the asymptotic tmnslatability.

6. CONCLUSION

In this paper, we discussed the Choquet integral representability of a comono-
tonically additive, bounded, monotone functional $I$ on $C_{00}(X)$ and on $C_{0}(X)$ with
locally compact $X$ . We need to impose some additional conditions on the func-
tional $I$ , since there is a comonotonically additive, bounded, monotone functional
on $C_{00}(\mathbb{R})$ , any of whose extension to a larger space cannot be represented as the
Choquet integral with respect to a finite monotone measure. This seems to come
from the lack of constant functions in $C_{00}(X)$ and $C_{0}(X)$ and due to the asymmetry
of the Choquet integral. For this reason, we introduced the notion of the asymptotic
translatability and revealed that this simple notion is equivalent to the Choquet in-
tegral representability of $I$ with respect to a finite monotone measure on $X$ with
appropriate regularity.
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