Review on Capacity of Gaussian Channel with or without Feedback

Kenjiro Yanagi（Yamaguchi University）

1 Probability Measure on Banach Space

Let X be a real separable Banach space and X^{*} be its dual space．Let $\mathcal{B}(X)$ be Borel σ－field of X ．For finite dimensional subspace F of X^{*} we define the cylinder set C based on F as follows

$$
C=\left\{x \in X ;\left(\left\langle x, f_{1}\right\rangle,\left\langle x, f_{2}\right\rangle, \ldots,\left\langle x, f_{n}\right\rangle\right) \in D\right\} .
$$

where $n \geq 1,\left\{f_{1}, f_{2}, \ldots, f_{n}\right\} \subset F, D \in \mathcal{B}\left(\mathbb{R}^{n}\right)$ ．We denote all of cylinder sets based on F by \mathcal{C}_{F} ．Then we put

$$
\mathcal{C}\left(X, X^{*}\right)=\bigcup\left\{\mathcal{C}_{F} ; F \text { is finite dimensional subspaces of } X^{*}\right\} .
$$

It is easy to show that $\mathcal{C}\left(X, X^{*}\right)$ is a fileld．Let $\overline{\mathcal{C}}\left(X, X^{*}\right)$ be the σ－field generated by $\mathcal{C}\left(X, X^{*}\right)$ ．Then $\overline{\mathcal{C}}\left(X, X^{*}\right)=\mathcal{B}(X)$ ．If μ is a probability measure on $(X, \mathcal{B}(X))$ satisfying $\int_{X}\|x\|^{2} d \mu(x)<\infty$ ，then there exist a vector $m \in X$ and an operator $R: X^{*} \rightarrow X$ such that

$$
\begin{gathered}
\left\langle m, x^{*}\right\rangle=\int_{X}\left\langle x, x^{*}\right\rangle d \mu(x) \\
\left\langle R x^{*}, y^{*}\right\rangle=\int_{X}\left\langle x-m, x^{*}\right\rangle\left\langle x-m, y^{*}\right\rangle d \mu(x)
\end{gathered}
$$

for any $x^{*} \in X^{*}, y^{*} \in Y^{*}$ ．m is a mean vector of μ and R is a covariance operator of μ which is a bounded linear operator．We remark that R is symmetric in the following sence．

$$
\left\langle R x^{*}, y^{*}\right\rangle=\left\langle R y^{*}, x^{*}\right\rangle, \text { for any } x^{*}, y^{*} \in X^{*} .
$$

And also R is positive in the following sence．

$$
\left\langle R x^{*}, x^{*}\right\rangle \geq 0, \text { for any } x^{*} \in X^{*}
$$

When $\mu_{f}=\mu \circ f^{-1}$ is a Gaussian measure on \mathbb{R} for any $f \in X^{*}$, we call μ a Gaussian measure on ($X, \mathcal{B}(X)$). For any $f \in X^{*}$, the characteristic function $\bar{\mu}(f)$ is represented by

$$
\begin{equation*}
\bar{\mu}(f)=\exp \left\{i\langle m, f\rangle-\frac{1}{2}\langle R f, f\rangle\right\} \tag{1.1}
\end{equation*}
$$

where $m \in X$ is mean vector of μ and $R: X^{*} \rightarrow X$ is covariance operator of μ. Conversely when the characteristic function of a probability measure μ on $(X, \mathcal{B}(X))$ is given by (1.1), μ is Gaussian measure whose mean vector is $m \in X$ and covariance operaor is $R: X^{*} \rightarrow X$. Then we can represent $\mu=[m, R]$ as Gaussian measure with mean vector μ and covariance operator R.

2 Reproducing Kernel Hilbert Space and Mutual Information

For any symmetric positive operator $R: X^{*} \rightarrow X$, there exists a Hilbertian subspace $H(\subset X)$ and a continuous embedding $j: H \rightarrow X$ such that $R=j j^{*} . \quad H$ is isomorphic to the reproducing kernel Hilbert space (RKHS) $\mathcal{H}\left(k_{R}\right)$ which is defined by positive definite kernel k_{R} satisfying $k_{R}\left(x^{*}, y^{*}\right)=\left\langle R x^{*}, y^{*}\right\rangle$. Then we call H itself a reproducing kernel Hilber space. Now we can define mutual information as follows. Let X, Y be real Banach spaces. Let μ_{X}, μ_{Y} be probability measures on $(X, \mathcal{B}(X)),(Y, \mathcal{B}(Y))$, respectively, and let $\mu_{X Y}$ be joint probability measure on $(X \times Y, \mathcal{B}(X) \times \mathcal{B}(Y))$ with marginal distributions μ_{X}, μ_{Y}, respectively. That is

$$
\begin{array}{ll}
\mu_{X}(A)=\mu_{X Y}(A \times Y), & A \in \mathcal{B}(X) \\
\mu_{Y}(B)=\mu_{X Y}(X \times B), & B \in \mathcal{B}(Y)
\end{array}
$$

If we asume

$$
\int_{X}\|x\|^{2} d \mu_{X}(x)<\infty, \quad \int_{Y}\|y\|^{2} d \mu_{Y}(y)<\infty
$$

then there exists $m=\left(m_{1}, m_{2}\right) \in X \times Y$ such that for any $\left(x^{*}, y^{*}\right) \in X^{*} \times Y^{*}$

$$
\left\langle\left(m_{1}, m_{2}\right),\left(x^{*}, y^{*}\right)\right\rangle=\int_{X \times Y}\left\langle(x, y),\left(x^{*}, y^{*}\right)\right\rangle d \mu_{X Y}(x, y)
$$

where m_{1}, m_{2} are mean vectors of μ_{X}, μ_{Y}, respectively, and there exists \mathcal{R} such that

$$
\mathcal{R}=\left(\begin{array}{ll}
R_{11} & R_{12} \\
R_{21} & R_{22}
\end{array}\right): X^{*} \times Y^{*} \rightarrow X \times Y
$$

satisfies the following relation: for any $\left(x^{*}, y^{*}\right),\left(z^{*}, w^{*}\right) \in X^{*} \times Y^{*}$

$$
\begin{aligned}
& \left\langle\left(\begin{array}{ll}
R_{11} & R_{12} \\
R_{21} & R_{22}
\end{array}\right)\binom{x^{*}}{y^{*}},\binom{z^{*}}{w^{*}}\right\rangle= \\
& \int_{X \times Y}\left\langle(x, y)-\left(m_{1}, m_{2}\right),\left(x^{*}, y^{*}\right)\right\rangle\left\langle(x, y)-\left(m_{1}, m_{2}\right),\left(z^{*}, w^{*}\right)\right\rangle d \mu_{X Y}(x, y)
\end{aligned}
$$

where $R_{11}: X^{*} \rightarrow X$ is covariance operator of $\mu_{X}, R_{22}: Y^{*} \rightarrow Y$ is covariance operator of μ_{Y}, and $R_{12}=R_{21}^{*}: Y^{*} \rightarrow X$ is cross covariance operator defined by

$$
\left\langle R_{12} y^{*}, x^{*}\right\rangle=\int_{X \times Y}\left\langle x-m_{1}, x^{*}\right\rangle\left\langle y-m_{2}, y^{*}\right\rangle d \mu_{X Y}(x, y)
$$

for any $\left(x^{*}, y^{*}\right) \in Y^{*} \times X^{*}$.
When we put $\mu_{X Y}=\left[(0,0),\left(\begin{array}{ll}R_{11} & R_{12} \\ R_{21} & R_{22}\end{array}\right)\right]$, we obtain $\mu_{X}=\left[0, R_{X}\right], \mu_{Y}=\left[0, R_{Y}\right]$. And there exist RKHSs $H_{X} \subset X$ of $R_{X}, H_{Y} \subset Y$ of R_{Y} with continuous embeddings $j_{X}: H_{X} \rightarrow X . j_{Y}: H_{Y} \rightarrow Y$ satisfying $R_{X}=j_{X} j_{X}^{*}, R_{Y}=j_{Y} j_{Y}^{*}$, respectively. Furthermore if we assume RKHS H_{X} is dense in X and RKHS H_{Y} is dense in Y, then there exist $V_{X Y}: H_{Y} \rightarrow H_{X}$ such that

$$
R_{X Y}=j_{X} V_{X Y} j_{Y}^{*}, \quad\left\|V_{X Y}\right\| \leq 1
$$

Then the following theorem holds.
Theorem $2.1 \mu_{X Y} \sim \mu_{X} \otimes \mu_{Y}$ if and only if $V_{X Y}$ is Hilbert-Schmidt operatorsatisfying $\left\|V_{X Y}\right\|<1$.

Next we define mutual information of $\mu_{X Y}$ in the following. We put
$\mathcal{F}=\left\{\left(\left\{A_{j}\right\},\left\{B_{j}\right\}\right) ;\left\{A_{j}\right\}\right.$ is finite measurable partitions of X with $\mu_{X}\left(A_{j}\right)>0$ and $\left\{B_{j}\right\}$ is finite measurable partitions of Y with $\left.\mu_{Y}\left(B_{j}\right)>0\right\}$.
Then

$$
I\left(\mu_{X Y}\right)=\sup \sum_{i, j} \mu_{X Y}\left(A_{i} \times B_{j}\right) \log \frac{\mu_{X Y}\left(A_{i} \times B_{j}\right)}{\mu_{X}\left(A_{i}\right) \mu_{Y}\left(B_{j}\right)}
$$

where the supremum is taken by all $\left(\left\{A_{i}\right\},\left\{B_{j}\right\}\right) \in \mathcal{F}$.
It is easy to show that if $\mu_{X Y} \ll \mu_{X} \otimes \mu_{Y}$, then

$$
I\left(\mu_{X Y}\right)=\int_{X \times Y} \log \frac{d \mu_{X Y}}{d \mu_{X} \otimes \mu_{Y}}(x, y) d \mu_{X Y}(x, y)
$$

and if otherwise, we put $I\left(\mu_{X Y}\right)=\infty$.
We introduce several properties without proofs in order to state the exact representation of mutual information. Let X be real separable Banach space and $\mu_{X}=\left[0, R_{X}\right], H_{X}$ be RKHS of R_{X}. Let $L_{X} \equiv \overline{X^{*}} \|^{\mu_{2} X}$ be the completion by norm of $L_{2}\left(X, \mathcal{B}(X), \mu_{X}\right)$. Then L_{X} is a Hilbert space with the inner product

$$
\langle f, g\rangle_{L_{X}}=\int_{X}\langle x, f\rangle\langle x, g\rangle d \mu_{X}(x)
$$

For any embedding $j_{X}: H_{X} \rightarrow H_{X}$, there exists an unitary operator $U_{X}: L_{X} \rightarrow H_{X}$ such that $U_{X} f=j_{X}^{*} f, f \in X^{*}$.
We give the followingimportant properties of Radon-Nykodym derivatives.

Lemma 2.1 (Pan [17]) Let X be a real separable Banach space and let $\mu_{X}=$ $\left[0, R_{X}\right], \mu_{Y}=\left[m, R_{Y}\right]$. Then $\mu_{X} \sim \mu_{Y}$ if and only if the following (1), (2), (3) are satisfied.
(1) $H_{X}=H_{Y}$,
(2) $m \in H_{X}$,
(3) $J J^{*}-I_{X}$: Hilbert Schmidt operator,
where H_{X}, H_{Y} are RKHS of R_{X}, R_{Y}, respectively, $J: H_{Y} \rightarrow H_{X}$ is continuous injection and $I_{X}: H_{X} \rightarrow H_{X}$ is an identity operator.
And When (1), (2), (3) hold, we assume $\left\{\lambda_{n}\right\}$ is eigenvalues $(\neq 1)$ of $J J^{*},\left\{v_{n}\right\}$ is normalized eigenvectors with respect to $\left\{\lambda_{n}\right\}$. Then

$$
\begin{aligned}
\frac{d \mu_{Y}}{d \mu_{X}}(x)= & \exp \left\{U_{X}^{-1}\left[\left(J J^{*}\right)^{-1 / 2} m\right](x)-\frac{1}{2}<m,\left(J J^{*}\right)^{-1} m>_{H_{X}}\right. \\
& \left.-\frac{1}{2} \sum_{n=1}^{\infty}\left[\left(U_{X}^{-1} v_{n}\right)^{2}(x)\left(\frac{1}{\lambda_{n}}-1\right)+\log \lambda_{n}\right]\right\},
\end{aligned}
$$

where $U_{X}: L_{X} \rightarrow H_{X}$ is an unitary operator.
And when at least one of (1), (2), (3) does not hold, $\mu_{X} \perp \mu_{Y}$.
Lemma 2.2 Let $R_{X}: X^{*} \rightarrow X, R_{Y}: Y^{*} \rightarrow Y$ and

$$
\mathcal{R}_{X \otimes Y} \equiv\left(\begin{array}{cc}
R_{X} & 0 \\
0 & R_{Y}
\end{array}\right)
$$

Then $\mathcal{R}_{X \otimes Y}: X^{*} \times Y^{*} \rightarrow X \times Y$ is symmetric, positive. And let $H_{X}, H_{Y}, H_{X \otimes Y}$ be RKHS of $R_{X}, R_{Y}, \mathcal{R}_{X \otimes Y}$, respectively. Then $H_{X \otimes Y} \cong H_{X} \times H_{Y}$.

We obtain the exact representation of mutual information.
Theorem 2.2 If $\mu_{X Y} \sim \mu_{X} \otimes \mu_{Y}$, then $I\left(\mu_{X Y}\right)<\infty$ and

$$
I\left(\mu_{X Y}\right)=-\frac{1}{2} \sum_{n=1}^{\infty} \log \left(1-\gamma_{n}\right)
$$

where $\left\{\gamma_{n}\right\}$ are eigenvalues of $V_{X Y}^{*} V_{X Y}$.

3 Gaussian Channel

We define Gaussian channel without feedback as follows.
Let X be a real separable Banach space representing input space, Y be a real separable Banach space representing output space, respectively. We assume that $\lambda: X \times \mathcal{B}(Y) \rightarrow[0,1]$ satisfies the following (1), (2).
(1) For any $x \in X, \lambda(x, \cdot)=\lambda_{x}$ is Gaussian measure on ($Y, \mathcal{B}(Y)$).
(2) For any $B \in \mathcal{B}(Y), \lambda(\cdot, B)$ is Borel measurable function on $(X, \mathcal{B}(X))$.

We call a triple $[X, \lambda, Y]$ Gaussian channel. When an input source μ_{X} is given, we can define corresponding output source μ_{Y} and compound source $\mu_{X Y}$ as follows. For any $B \in \mathcal{B}(Y)$

$$
\mu_{Y}(B)=\int_{X} \lambda(x, B) d \mu_{X}(x)
$$

For any $C \in \mathcal{B}(X) \times \mathcal{B}(Y)$

$$
\mu_{X Y}(C)=\int_{X} \lambda\left(x, C_{x}\right) d \mu_{X}(x)
$$

where $C_{x}=\{y \in Y ;(x, y) \in X \times Y\}$.
Capacity of Gaussian channel is defined as the supremum of mutual information $I\left(\mu_{X Y}\right)$ under appropriate constraint on input sources. We put $X=Y$ and $\lambda(x, B)=$ $\mu_{Z}(B-x), \mu_{Z}=\left[0, R_{Z}\right]$ for the simplicity. When the constraint is given by

$$
\int_{X}\|x\|_{Z}^{2} d \mu_{X}(x) \leq P
$$

it is called matched Gaussian channel. The capacity is well known to be $P / 2$. On the other hand when the constraint is given by

$$
\int_{X}\|x\|_{W}^{2} m u_{X}(x) \leq P
$$

where μ_{W} is different from μ_{Z}, it is called mismatched Gaussian channel. The capacity is given by Baker [4] in the case of X and Y are the same real separable Hilbert space H. Yanagi [21] considered the case of channel distribution $\lambda_{x}=\left[0, R_{x}\right]$ and showed this channel corresponds to the change of density operator ρ after the measurement.

4 Discere Time Gaussian Chennal with Feedback

The model of discrete time Gaussian channel with feedback is defined as follows.

$$
Y_{n}=S_{n}+Z_{n}, \quad n=1,2, \ldots
$$

where $Z=\left\{Z_{n} ; n=1,2, \ldots\right\}$ is nondegenerate zeno mean Gaussian process representing noise, $S=\left\{S_{n} ; n=1,2, \ldots\right\}$ is stocastic process representing input signal and $Y=\left\{Y_{n} ; n=1,2, \ldots\right\}$ is stocastic process representing output signal. The input signal S_{n} at time n can be represented by some function of message W and output signal $Y_{1}, Y_{2}, \ldots, Y_{n-1}$ The error probability for code word $x^{n}\left(W, Y^{n-1}\right), W \in\left\{1,2, \ldots, 2^{n R}\right\}$ with rate R and length n and the decoding function $g_{n}: \mathbb{R}^{n} \rightarrow\left\{1,2, \ldots, 2^{n R}\right\}$ is defined by

$$
\operatorname{Pe} e^{(n)}=\operatorname{Pr}\left\{g_{n}\left(Y^{n}\right) \neq W ; Y^{n}=x^{n}\left(W, Y^{n-1}\right)+Z^{n}\right\}
$$

where W is uniform distribution which is independent with the noise $Z^{n}=\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)$. The input signals is assumed average power constraint. That is

$$
\frac{1}{n} \sum_{i=1}^{n} E\left[S_{i}^{2}\right] \leq P
$$

The feedback is causal. That is $S_{i}(i=1,2, \ldots, n)$ is dependent with $Z_{1}, Z_{2}, \ldots, Z_{i-1}$. In the nonfeedback case $S_{i}(i=1,2, \ldots, n)$ is independent with $Z^{n}=\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)$. Since the input signals can be assumed Gaussian, we can represent as follows.

$$
C_{n, F B}(P)=\max \frac{1}{2 n} \log \frac{\left|R_{X}^{(n)}+R_{Z}^{(n)}\right|}{\left|R_{Z}^{(n)}\right|},
$$

where $|\cdot|$ is determinant and the maximum is taken under strictly lower triangle matrix B and nonnegative symmetric matrix $R_{X}^{(n)}$ satisfying

$$
\operatorname{Tr}\left[(I+B) R_{X}^{(n)}(I+B)^{t}+B R_{Z}^{(n)} B^{t}\right] \leq n P
$$

The nonfeedback capacity is given by the condition $B=0$. The feedback capacity can be represented by the differnt form.

$$
C_{n, F B}(P)=\max \frac{1}{2 n} \log \frac{\left|R_{S+Z}^{(n)}\right|}{\left|R_{Z}^{(n)}\right|}
$$

where the maximum is taken under nonnegative symmetric matrix $R_{S}^{(n)}$.
Cover and Pombra [9] obtained the following.
Proposition 4.1 (Cover and Pombra [9]) For any $\epsilon>0$ there exists $2^{n\left(C_{n, F B}(P)-\epsilon\right)}$ cord words with lblock ength n such that $P e^{(n)} \rightarrow 0$ for $n \rightarrow \infty$. Conversely For any $\epsilon>0$ and any $2^{n\left(C_{n, F B}(P)+\epsilon\right)}$ code words with block length $n, P e^{(n)} \rightarrow 0(n \rightarrow \infty)$ does not hold.
$C_{n}(P)$ is given exactly.

Proposition 4.2 (Gallager [10])

$$
C_{n}(P)=\frac{1}{2 n} \sum_{i=1}^{k} \log \frac{n P+r_{1}+\cdots+r_{k}}{k r_{i}}
$$

where $0<r_{1} \leq r_{2} \leq \cdots \leq r_{n}$ are eigenvalues of $R_{Z}^{(n)}, k(\leq n)$ isthe largest integer satisfying $n P+r_{1}+r_{2}+\cdots+r_{k}>k r_{k}$.

4.1 Necessary and sufficient condition for increase of feedback capacity

We give the following definition for $R_{Z}^{(n)}$.
Definition 4.1 (Yanagi [23]) Let $R_{Z}^{(n)}=\left\{z_{i j}\right\}$ and $L_{k}=\left\{\ell(\neq k) ; z_{k \ell} \neq 0\right\}$. Then
(a) $R_{Z}^{(n)}$ is called white if $L_{k}=\emptyset$ for any k.
(b) $R_{Z}^{(n)}$ is called completely non-white if $L_{k} \neq \emptyset$ for any k.
(c) $R_{Z}^{(n)}$ is blockwise white if there exists k, ℓ such that $L_{k}=\emptyset$ and $L_{\ell} \neq \emptyset$.

We denote by \tilde{R}_{Z} the submatrix of $R_{Z}^{(n)}$ generated by k with $L_{k} \neq \emptyset$.

Theorem 4.1 (Ihara and Yanagi [12], Yanagi [23]) The following (1), (2) and (3) hold.
(1) If $R_{Z}^{(n)}$ is white, then $C_{n}(P)=C_{n, F B}(P)$ for any $P>0$.
(2) If $R_{Z}^{(n)}$ is completely non-white, then $C_{n}(P)<C_{n, F B}(P)$ for any $P>0$.
(3) If $R_{Z}^{(n)}$ is blockwise white, then we have two cases in the following. Let r_{m} is the minimum eigenvalue of \tilde{R}_{Z} and $n P_{0}=m r_{m}-\left(r_{1}+r_{2}+\cdots+r_{m}\right)$.
(a) If $P>P_{0}$, then $C_{n}(P)<C_{n, F B}(P)$.
(b) If $P \leq P_{0}$, then $C_{n}(P)=C_{n, F B}(P)$.

4.2 Upper bound of $C_{n, F B}(P)$

Since we can't obtain the exact value of $C_{n, F_{B}}(P)$ generally, the upper bound of $C_{n, F B}(P)$ is important. The following theorem has a kind of beautiful exprssion.

Theorem 4.2 (Cover and Pombra [9])

$$
C_{n, F B}(P) \leq \min \left\{2 C_{n}(P), C_{n}(P)+\frac{1}{2} \log 2\right\}
$$

Proof. We use R_{S}, R_{Z}, \cdots for a simplification of $R_{S}^{(n)}, R_{Z}^{(n)}, \cdots$. We obtain the following relation by using properties of covariance matrices.

$$
\begin{equation*}
\frac{1}{2} R_{S+Z}+\frac{1}{2} R_{S-Z}=R_{S}+R_{Z} \tag{4.1}
\end{equation*}
$$

By operator concavity of $\log x$

$$
\frac{1}{2} \log R_{S+Z}+\frac{1}{2} \log R_{S-Z} \leq \log \left\{\frac{1}{2} R_{S+Z}+\frac{1}{2} R_{S-Z}\right\}=\log \left\{R_{S}+R_{Z}\right\}
$$

We take Tr and get

$$
\frac{1}{2} \log \left|R_{S+Z}\right|+\frac{1}{2} \log \left|R_{S-Z}\right| \leq \log \left|R_{S}+R_{Z}\right|
$$

Then

$$
\frac{1}{2} \frac{1}{2 n} \log \frac{\left|R_{S+Z}\right|}{\left|R_{Z}\right|}+\frac{1}{2} \frac{1}{2 n} \log \frac{\left|R_{S-Z}\right|}{\left|R_{Z}\right|} \leq \frac{1}{2 n} \log \frac{\left|R_{S}+R_{Z}\right|}{\left|R_{Z}\right|} .
$$

Now since

$$
\frac{1}{2 n} \log \frac{\left|R_{S-Z}\right|}{\left|R_{Z}\right|} \geq 0
$$

we have

$$
\frac{1}{2} \frac{1}{2 n} \log \frac{\left|R_{S+Z}\right|}{\left|R_{Z}\right|} \leq \frac{1}{2 n} \log \frac{\left|R_{S}+R_{Z}\right|}{\left|R_{Z}\right|}
$$

By maximizing under the condition $\operatorname{Tr}\left[R_{S}\right] \leq n P$

$$
C_{n, F B}(P) \leq 2 C_{n}(P)
$$

By (4.1)

$$
R_{S+Z} \leq 2\left(R_{S}+R_{Z}\right)
$$

Then

$$
\frac{1}{2 n} \log \frac{\left|R_{S+Z}\right|}{\left|R_{Z}\right|} \leq \frac{1}{2 n} \log \frac{\left|R_{S}+R_{Z}\right|}{\left|R_{Z}\right|}+\frac{1}{2} \log 2 .
$$

By maximizing under the condition $\operatorname{Tr}\left[R_{S}\right] \leq n P$

$$
C_{n, F B}(P) \leq C_{n}(P)+\frac{1}{2} \log 2 .
$$

4.3 Cover's conjecture

Cover gave the following conjecture.
Conjecture 4.1 (Cover [8])

$$
C_{n}(P) \leq C_{n, F B}(P) \leq C_{n}(2 P)
$$

We remark the following.

Proposition 4.3 (Chen and Yanagi [5])

$$
C_{n}(2 P) \leq \min \left\{2 C_{n}(P), C_{n}(P)+\frac{1}{2} \log 2\right\} .
$$

Then if we can prove Conjecture 4.1 , we obtain Theorem 4.2 as its colrollary.
On the other hand we proved conjecture for $n=2$. But conjecture is not solved in the case of $n \geq 3$ still now.

Theorem 4.3 (Chen and Yanagi [5])

$$
C_{2}(P) \leq C_{2, F B}(P) \leq C_{2}(2 P)
$$

4.4 Concavity of $C_{n, F B}(\cdot)$

Concavity of non-feedback capacity $C_{n}(\cdot)$ is clear, but concavity of feedback capacity $C_{n, F B}(\cdot)$ is also given.

Theorem 4.4 (Chen and Yanagi [7], Yanagi, Chen and Yu [26]) For any $P, Q \geq$ 0 and any for $\alpha, \beta \geq 0(\alpha+\beta=1)$

$$
C_{n, F B}(\alpha P+\beta Q) \geq \alpha C_{n, F B}(P)+\beta C_{n, F B}(Q)
$$

5 Mixed Gaussian channel with feedback

Let Z_{1}, Z_{2} be Gaussian processes with mean 0 and covariance operator $R_{Z_{1}}^{(n)}, R_{Z_{2}}^{(n)}$, respectively. Let \tilde{Z} be Gaussian process with mean 0 and covariance operator

$$
R_{\tilde{Z}}^{(n)}=\alpha R_{Z_{1}}^{(n)}+\beta R_{Z_{2}}^{(n)},
$$

where $\alpha, \beta \geq 0(\alpha+\beta=1)$. We define the mixed Gaussian channel by additive Gaussian channel with \tilde{Z} as noise. $C_{n, \tilde{\tilde{Z}}}(P)$ is called capacity of mixed Gaussian channel without feedback. And $C_{n, F B, \tilde{Z}}(P)$ is called capacity of mixed Gaussian channel with feedback. Now we gave concavity of $C_{n, \tilde{Z}}(P)$ in the following sence.
Theorem 5.1 (Yanagi, Chen and Yu [26], Yanagi, Yu and Chao [27]) For any $P>0$

$$
C_{n, \tilde{Z}}(P) \leq \alpha C_{n, Z_{1}}(P)+\beta C_{n, Z_{2}}(P)
$$

Theorem 5.2 (Yanagi, Chen and Yu [26], Yanagi, Yu and Chao [27]) For any $P>0$ there exit $P_{1}, P_{2} \geq 0\left(P=\alpha P_{1}+\beta P_{2}\right)$ such that

$$
C_{n, F B, \tilde{Z}}(P) \leq \alpha C_{n, F B, Z_{1}}\left(P_{1}\right)+\beta C_{n, F B, Z_{2}}\left(P_{2}\right) .
$$

The proof is given by the operator convexity of $\log \left(1+t^{-1}\right)$ essencially. But the following conjecture is not solved still now.
Conjecture 5.1 For $P>0$

$$
C_{n, F B, \tilde{Z}}(P) \leq \alpha C_{n, F B, Z_{1}}(P)+\beta C_{n, F B, Z_{2}}(P) .
$$

Conjecture is partially solved under some condition.
Theorem 5.3 (Yanagi, Yu and Chao [27]) If one of the following conditions is satisfied, the corollay holds.
(a) $R_{Z_{1}}^{(n-1)}=R_{Z_{2}}^{(n-1)}$.
(b) $R_{\tilde{Z}}$ is white.

We also give the following conjecture.
Conjecture 5.2 For any $Z_{1}, Z_{2}, P_{1}, P_{2} \geq 0, \alpha, \beta \geq 0(\alpha+\beta=1)$,

$$
\begin{aligned}
& \alpha C_{n, F B, Z_{1}}\left(P_{1}\right)+\beta C_{n, F B, Z_{2}}\left(P_{2}\right) \\
\leq & C_{n, F B, \tilde{Z}}\left(\alpha P_{1}+\beta P_{2}\right)+\frac{1}{2 n} \log \frac{\left|R_{\tilde{\tilde{L}}}\right|}{\left|R_{Z_{1}}\right|^{\alpha}\left|R_{Z_{2}}\right|^{\beta}}
\end{aligned}
$$

6 Kim's result

Definition 6.1 $Z=\left\{Z_{i} ; i=1,2, \ldots\right\}$ is first order moving average Gaussian process if the following equivalent three conditions.
(1) $Z_{i}=\alpha U_{i-1}+U_{i}, i=1,2, \ldots$, where $U_{i} \sim N(0,1)$ is i.i.d.
(2) Spectral density function $(S D F) f(\lambda)$ is given by

$$
f(\lambda)=\frac{1}{2 \pi}\left|1+\alpha e^{-i \lambda}\right|^{2}=\frac{1}{2 \pi}\left(1+\alpha^{2}+2 \alpha \cos \lambda\right) .
$$

(3) $Z_{n}=\left(Z_{i}, \ldots, Z_{n}\right) \sim N_{n}\left(0, K_{Z}\right), n \in \mathbb{N}$, where covariance matrix K_{Z} is given by

$$
K_{Z}=\left(\begin{array}{ccccc}
1+\alpha^{2} & \alpha & 0 & \cdots & 0 \\
\alpha & 1+\alpha^{2} & \alpha & \cdots & 0 \\
0 & \alpha & 1+\alpha^{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \alpha \\
0 & 0 & 0 & \cdots & 1+\alpha^{2}
\end{array}\right)
$$

Then entropy rate of Z is given by

$$
\begin{aligned}
h(Z) & =\frac{1}{4 \pi} \int_{-\pi}^{\pi} \log \left\{4 \pi^{2} e f(\lambda)\right\} d \lambda \\
& =\frac{1}{4 \pi} \int_{-\pi}^{\pi} \log \left\{2 \pi e\left|1+\alpha e^{-i \lambda}\right|^{2}\right\} d \lambda \\
& =\frac{1}{2} \log (2 \pi e) \quad \text { if } \quad|\alpha| \leq 1 \\
& =\frac{1}{2} \log \left(2 \pi e \alpha^{2}\right) \quad \text { if }|\alpha|>1
\end{aligned}
$$

where the last term is used by the following Poisson's integral formula.

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \left|e^{i \lambda}-\alpha\right| d \lambda & =0 & & \text { if }|\alpha| \leq 1 \\
& =\log |\alpha| & & \text { if }|\alpha|>1
\end{aligned}
$$

Capacity of Gaussian channel with $M A(1)$ Gaussian noise is given by

$$
C_{Z, F B}(P)=\lim _{n \rightarrow \infty} C_{n, Z, F B}(P)
$$

Recently Kim obtained capacity of Gaussian channel with feedback for the first time.
Theorem 6.1 (Kim [15])

$$
C_{Z, F B}(P)=-\log x_{0}
$$

where x_{0} is only one positive solution of the following equation;

$$
P x^{2}=\left(1-x^{2}\right)(1-|\alpha| x)^{2} .
$$

7 Counter example of Conjecture 4.1

Kim [16] gave the counter example of Conjecture 4.1. When

$$
f_{Z}(\lambda)=\frac{1}{4 \pi}\left|1+e^{i \lambda}\right|^{2}=\frac{1+\cos \lambda}{2 \pi}
$$

input is known to be taken by

$$
f_{X}(\lambda)=\frac{1-\cos \lambda}{2 \pi}
$$

Then output is given by

$$
f_{Y}(\lambda)=f_{X}(\lambda)+f_{Z}(\lambda)=\frac{1}{\pi}
$$

Then nonfeedback capacity is given by

$$
\begin{aligned}
C_{Z}(2) & =\frac{1}{4 \pi} \int_{-\pi}^{\pi} \log \frac{f_{Y}(\lambda)}{f_{Z}(\lambda)} d \lambda \\
& =\frac{1}{4 \pi} \int_{-\pi}^{\pi} \log \frac{4}{\mid 1+e^{\left.i \lambda\right|^{2}}} d \lambda \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \frac{2}{\mid 1+e^{i \lambda \mid}} d \lambda \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log 2 d \lambda-\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \left|1+e^{i \lambda}\right| d \lambda \\
& =\frac{1}{2 \pi} 2 \pi \log 2-0 \\
& =\log 2 .
\end{aligned}
$$

On the other hand feedback capacity is given by

$$
C_{Z, F B}(1)=-\log x_{0},
$$

where x_{0} is only one positive solution of equation

$$
x^{2}=(1+x)(1-x)^{3} .
$$

Since $x_{0}<\frac{1}{2}$ is assumed, we have the following

$$
C_{Z, F B}(1)=-\log x_{0}>\log 2=C_{Z}(2)
$$

This is a counter example of Conjecture 4.1. And we can show that there exists $n_{0} \in \mathbb{N}$ such that

$$
C_{n_{0}, Z, F B}(1)>C_{n_{0}, Z}(2) .
$$

References

[1] N.Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., vol 68, pp 337-404, 1950.
[2] C.R.Baker, Joint measures and cross-covariance operators, Trans. Amer. Math. Soc., vol 186, pp 273-289, 1973.
[3] C.R.Baker, Capacity of the Gaussian channel without feedback, Information and Control, vol 37, pp 70-89, 1978.
[4] C.R.Baker, Capacity of mismatched Gaussian channel, IEEE Trans. Information Theory, vol IT-33, pp 802-812, 1987.
[5] H.W.Chen and K.Yanagi, On the Cover's conjecture on capacity of Gaussian channel with feedback, IEICE Trans. Fundamentals, vol E80-A, no 11, pp 22722275, 1997.
[6] H.W.Chen and K.Yanagi, Refinements of the half-bit and factor-of-two bounds for capacity in Gaussian channel with feedback, IEEE Trans. Information Theory, vol IT-45, no 1, pp 319-325, 1999.
[7] H.W.Chen and K.Yanagi, Upper bounds on the capacity of discrete-time blockwise white Gaussian channels with feedback, IEEE Trans. Information Theory, vol IT-46, no 3, pp 1125-1131, 2000.
[8] T.M.Cover and B.Gopinath, Open problems in communication and computation, Springer-Verlag, New York, 1987.
[9] T.M.Cover and S.Pombra, Gaussian feedback capacity, IEEE Trans. Information Theory, vol IT-35, no 1, pp 37-43, 1989.
[10] R.G.Gallager, Information Theory and reliable communication, John Wiley and Sons, New York, 1968.
[11] F.Hiai and K.Yanagi, Hilbert spaces and linear operators, Makino-Syoten, 1995, (in Japanese).
[12] S.Ihara and K.Yanagi, Capacity of discrete time Gaussian channel with and without feedback, II, Japan J. Appl. Math., vol 6, pp 245-258, 1989.
[13] S. Ihara, Information theory for continuous systems, World Scientific, 1993.
[14] K.Kunisawa and H.Umegaki, Progress of information theory, Iwanami-Syoten, 1965, (in Japanese).
[15] Y.H.Kim, Feedback capacity of the first-order moving average Gaussian channel, IEEE Trans. Information Theory, vol IT-52, no 7, pp 3063-3079, 2006.
[16] Y.H.Kim, A counter example to Cover's 2 P conjecture on Gaussian feedback capacity, IEEE Trans. Information Theory, vol IT-52, no 8, pp 3792-3793, 2006.
[17] Y.M.Pan, Simple proofs of equivalence conditions for measures induced by Gaussian processes, Selected Transl. Math. Stat. Prob., vol 12, pp 109-118, 1973.
[18] H.Umegaki, Conditional expectations in an operator algebra IV (entropy and information), Kodai Math. Sem. Rep., vol 14, pp 59-85, 1962.
[19] H.Umegaki, Basic of information mathematics, Science-Sya, 1993, (in Japanese).
[20] N.N.Vakhania, V.I.Tarieladze and S.A.Chobanyan, Probability distribution on Banach spaces, D.Reidel Publishing Company, 1987.
[21] K.Yanagi, Covariance operators and von Neumann's theory of measurements, Kodai Math. J., vol 5, no 3, pp 435-445, 1982.
[22] K.Yanagi, An upper bound to the capacity of discrete time Gaussian channel with feedback, Lecture Notes in Math., vol 1299, pp 565-570, 1988.
[23] K.Yanagi, Necessary and sufficient condition for capacity of the discrete time Gaussian channel to be increased by feedback, IEEE Trans. Information Theory, vol IT-38, no 6, pp1788-1791, 1992.
[24] K.Yanagi, An upper bound to the capacity of discrete time Gaussian channel with feedback, II, IEEE Trans. Information Theory, vol IT-40, no 2, pp 588-593, 1994.
[25] K.Yanagi, An upper bound to the capacity of discrete time Gaussian channel with feedback, III, Bull. Kyushu Inst. Tech., Pure and Applied Mathematics, vol 45, pp 1-8, 1998.
[26] K.Yanagi, H.W.Chen and J.W.Yu, Operator inequality and its application to capacity of Gaussian channel, Taiwanese J. Math., vol 4, no 3, pp 407-416, 2000.
[27] K.Yanagi, J.W.Yu and I.F.Chao, On some inequalities for capacity in mixed Gaussian channels with feedback, Arch. Inequalities Appl., vol 2, pp 13-24, 2004.

