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1 Introduction

This is ajoint project with Yuan Lou (Ohio State University), Wei.-Ming Ni (Univer-
sity of Minnesota and East China Normal University) concerning mathematical analysis,
and Masaharu Nagayama (Hokkaido University), Tatsuki Mori (Ryukoku University)
concerning numerical computation.

In an attempt to model segregation phenomena in population dynamics, Shigesada,
Kawasaki and Teramoto [7] in 1979 incorporated the inter-competition system. In par-
ticular, the following system was proposed

$[Matrix]$ (1.1)

where $\Omega$ is a bounded domain $R^{N}(N\geq 1)$ with smooth boundary $\partial\Omega$ . Here $u$ and $v$

represent the densities of two competing species. The constants $a_{j},$ $b_{j},$ $c_{j}$ and $d_{j}(j=1,2)$

are all positive, where $a_{1},$ $a_{2}$ denote the intrinsic growth rates of these two species,
$b_{1}$ and $c_{2}$ account for intra-specific competitions while $b_{2},$ $c_{1}$ account for inter-specific
competitions, and $d_{1},$ $d_{2}$ are their diffusion rates. The constants $\rho_{11},$ $\rho_{22}$ represent intra-
specific population pressures, also known as self-diffusion rates, and $\rho_{12},$ $\rho_{21}$ are the
coefficients of inter-specific population pressures, also known as cross-diffusion rates.

For convenience, we set $A$ $:=a_{1}/a_{2},$ $B$ $:=b_{1}/b_{2},$ $C$ $:=c_{1}/c_{2}$ . If $B<C$ , we call it
the strong competition case and $B>C$ the weak competition case.

If $\rho_{11}=\rho_{12}=\rho_{21}=\rho_{22}=0$ , then (1.1) is the classical Lotka-Volterra competition
diffusion system with Neumann boundary condition

$[Matrix]$ (1.2)
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It is well known that in the “weak competition” case, i.e.

$B>A>C,$

the constant steady state $(u_{*}, v_{*})=(ac-acba-b_{2}ab_{1^{C}2}-b_{2}c_{1},b_{1}c_{2}-b_{2}c_{1}$ is globally asymptotically sta-
ble regardless of the diffusion rates $d_{1}$ and $d_{2}$ . This implies, in particular, that no
nonconstant steady state can exist for any diffusion rates $d_{1},$ $d_{2}.$

On the other hand, it seems not entirely reasonable to add just diffusions to models
in population dynamics, since individuals do not move around completely randomly. In
particular, while modeling segregation phenomena for two competing species one must
take into account the cross-diffusion pressures

$\{\begin{array}{ll}u_{t}=\Delta[(d_{1}+\rho_{12}v)u]+u(a_{1}-b_{1}u-c_{1}v) , in \Omega\cross(O, \infty) ,v_{t}=\Delta[(d_{2}+\rho_{21}u)v]+v(a_{2}-b_{2}u-c_{2}v) , in \Omega\cross(O, \infty) ,\underline{\partial u}=\underline{\partial v}=0, on\partial\Omega\cross(0, \infty) ,\partial n \partial n u(x, O)=u_{0}(x), v(x, 0)=v_{0}(x) , in \Omega.\end{array}$ (1.3)

Mimura and his collaborators started mathematical analysis around 1980 (see, e.g.
Mimura [4] $)$ . Considerable work has been done concerning the global existence of solu-
tions to systems (1.3) under various hypotheses. $A$ priori estimates are crucial to obtain
the global existence. As for recent progress including stationary problems, see Ni [5], Ni
[6], Yagi[9] and Yamada [10].

2 Limiting equation

We first focus on the effect of cross-diffusion on steady states. To illustrate the
significance of cross-diffusions, we again go to the weak competition case (i.e. $B>A>$
$C)$ since in this case (1.3) has no nonconstant steady states if both $\rho_{12}=\rho_{21}=0$ . Lou-
Ni [1],[2] show that, indeed, if one of the two cross-diffusion rates, say $\rho_{12}$ , is large, then
(1.3) will have nonconstant steady states provided that $d_{2}$ belongs to a proper range.
On the other hand, if both $\rho_{12}$ and $\rho_{21}$ are small, then (1.3) will have no nonconstant
steady states under the condition $B>A>C$ . This shows the cross-diffusion does seem
to help create patterns.

In the strong competition case, i.e. $B<A<C$ , even the situation of steady states
solutions of (1.2) becomes more interesting. Cross-diffusion still have similar effects in
help creating nontrivial patterns of (1.3).
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The following two theorem are due to Lou-Ni [1], [2].

Theorem 2.1 $([2J)$ Suppose for simplicity that $\rho_{21}=0$ . Suppose further that $B\neq A\neq$

$C,$ $n\leq 3$ and $\frac{a_{2}}{d_{2}}\neq\lambda_{k}$ for any $k\geq 1$ , where $\lambda_{k}$ is the $kth$ eigenvalue of $-\triangle$ on $\Omega$

with zero Neumann boundary data. Let $(u_{j}, v_{j})$ be a nonconstant steady state solution
of (1.3) with $\rho_{12}=\rho_{12,j}$ . Then by passing to a subsequence if necessary, either (i) of
(ii) holds as $\rho_{12,j}arrow\infty$ :

(i) $(u_{j}, \frac{\rho_{12,j}}{d_{1}}v_{j})arrow(u, v)$ uniformly, $u>0,$ $v>0$ , and

$\{\begin{array}{ll}d_{1}\Delta[(1+v)u]+u(a_{1}-b_{1}u)=0 in \Omega,d_{2}\triangle v+v(a_{2}-b_{2}u)=0 in \Omega,\frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=0 on\partial\Omega.\end{array}$

(ii) $(u_{j}, v_{j}) arrow(\frac{\tau}{v}, v)$ uniformly, $\tau$ is a positive constant, $v>0$ , and

$\{\begin{array}{l}\int_{\Omega}\frac{\tau}{v}(a_{1}-b_{1}\frac{\tau}{v}-c_{1}v)dx=0,d_{2}\triangle v+v(a_{2}-c_{2}v)-b_{2}\tau=0 in \Omega,\frac{\partial v}{\partial n}=0, on\partial\Omega.\end{array}$ (2.1)

Their proofs of obtaining the above limiting equations are quite hard and lengthy.
The most important step in the proof is to obtain a priori bounds on steady states of
(1.3) that are independent of $\rho_{12}.$

It seems from numerical computations that solutions of the case (i) is not directly
related with stable solutions of the original equation with sufficiently large $\rho_{12}$ . However,
we observe numerically that solutions of the case (ii) is closely related with the original
equation with sufficiently large $\rho_{12}.$

Thus, we will concentrate on the case (ii). Now, we consider the 1-dimensional case
with $\Omega=(0,1)$ . The limiting equation becomes as follows:

$\{\begin{array}{l}\int_{0}^{1}\frac{1}{v}(a_{1}-b_{1}\frac{\tau}{v})dx-c_{1}=0,d_{2}v_{xx}+v(a_{2}-b_{2}\frac{\tau}{v}-c_{2}v)=0, in(O, l),v_{x}(0)=v_{x}(1)=0,v>0, in (0,1) .\end{array}$ (2.2)
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3 Structure and stability in 1-dimensional case
Due to the scaling and reflection properties of solutions to autonomous ordinary

differential equations, all solutions to the (2.2) are obtained by several reflections and a
suitable re-scaling from solutions of the following system:

$\{\begin{array}{l}\int_{0}^{1}\frac{1}{v}(a_{1}-b_{1^{\frac{\tau}{v}}})dx-c_{1}=0,d_{2}v_{xx}+v(a_{2}-b_{2}\frac{\tau}{v}-c_{2}v)=0 in (0,1) ,v_{x}(0)=v_{x}(1)=0,v>0, and v_{x}>0, in(O, l).\end{array}$ (3.1)

Now, we will discuss about the structure of stationary solutions and their stability.
This system (3.1) consists of a nonlinear elliptic equation and an integral constraint.

As far as existence and non-existence in one dimensional domain are concemed, Lou-
Ni-Yotsutani [3] obtained nearly complete knowledge. They also obtained the precise
qualitative behavior of solutions to this limiting system as the diffusion rate varies.

Their basic approach is to convert the problem of solving the system to a problem
of solving its “representation” in a different parameter space. This is first done without
the integral constraint, and then they use the integral constraint to find the “solution
curve” in the new parameter space. This tums out to be a powerful method as it gives
fairly precise information about the solutions.

We have recently made clear the remained delicate parts due to the exphcit repre-
sentation by elliptic functions.

We summarized the structure of solutions of (3.1). We concentrate on the case

$B<C$ (strong competition case).

The following two theorem are due to [3].

Theorem 3.1 (Existence) Suppose that $B<C$ . If

$\max\{0, \frac{B+C-2A}{C-B}\}\frac{a_{2}}{\pi^{2}}<d_{2}<\frac{a_{2}}{\pi^{2}},$

then there exists a solution $(v(x), \tau)$ of (3.1).

Theorem 3.2 (Nonexistence) Suppose that $B<C.$

(i) If $d_{2} \geq\frac{a_{2}}{\pi^{2}}$ , then there exists no solution of (3.1).
(iii) If $A<B$ , there exists no solution of (3.1).

(iii) If $B \leq A<\frac{B+C}{2}$ , then there exists a $d_{2}^{*}=d_{2}^{*}(A, B, C, a_{2})>0$ such that
there exists no solution of (3.1) for $d_{2}\in(0, d_{2}^{*}].$
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We see that the above theorem is sharp by the following theorems. The existence
region depending on the the ratio $C/B$ . The situation drastically changes at $C/B=7/3.$

Theorem 3.3 Suppose that $B<C\leq 7B/3$ . (3.1) has a solution $(v(x), \tau)$ if and only

if $d_{2}$ satisfies
$\max\{0, \frac{B+C-2A}{C-B}\}\frac{a_{2}}{\pi^{2}}<d_{2}<\frac{a_{2}}{\pi^{2}}.$

Moreover, the solution is unique.

Figure 3.1: Case $B<C\leq 7B/3$

Theorem 3.4 Suppose that $7B/3<C.$ $(3.1)$ has the unique solution $(v(x), \tau)$ if

$\max\{0, \frac{B+C-2A}{C-B}\}\frac{a_{2}}{\pi^{2}}<d_{2}<\frac{a_{2}}{\pi^{2}}.$

Moreover, there exists the only one connected non-empty open set $D$ with

$D\subset\{(A, d_{2})$ : $B<A< \frac{B+C}{2},$ $0<d_{2}< \{\frac{B+C-2A}{C-B}\}\frac{a_{2}}{\pi^{2}}\}$

such that (3.1) has exactly two solutions $(v(x), \tau)$ if and only if $d_{2}\in D.$

Figure 3.2: Case $7B/3<C$
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The following theorems in [3] give the shape of solutions to (3.1) as $d_{2}\uparrow a_{2}/\pi^{2}.$

Theorem 3.5 (Shape of solutions as $d_{2}\uparrow a_{2}/\pi^{2}$ ) Suppose that $B<C.$

Let $(v(x, d_{2}), \mathcal{T}(d_{2}))$ be solutions of (3.1). If $A\geq B$ , then

$v(x;d_{2})arrow 0,$ $\frac{v(x;d_{2})-v(0;d_{2})}{v(1;d_{2})-v(0;d_{2})}arrow\frac{1-\cos(\pi x)}{2},$

$\frac{\tau(d_{2})}{v(x;d_{2})}arrow\frac{a_{2}}{b_{2}}\cdot\frac{1}{1-\sqrt{1-\frac{B}{A}}\cos(\pi x)}$

uniformly on $[0,1]$ as $d_{2}\uparrow a_{2}/\pi^{2}.$

Figure 3.3: $u$ as $d_{2}\uparrow a_{2}/\pi^{2}$ Figure 3.4: $v$ as $d_{2}\uparrow a_{2}/\pi^{2}$

The following theorems in [3] give the shape of solutions to (3.1) as $d_{2}\downarrow 0.$ $A$ new
number $(B+3C)/4$ appears. The shape is drastically change at $A=(B+3C)/4$

Theorem 3.6 (Shape of solutions as $d_{2}arrow 0$ for $A< \frac{B+3C}{4}$ ) Suppose that $B\neq C$ . Let
$(v(x, d_{2}), \tau(d_{2}))$ be solutions of (3.1). If $A< \frac{B+3C}{4}$ and $B<C$ , then

$v( O;d_{2})arrow 2\cdot\frac{a_{2}}{c_{2}}\cdot\frac{\frac{B+3C}{4}-A}{C-B},$ $v(x;d_{2}) arrow\frac{a_{2}}{c_{2}}\cdot\frac{A-B}{C-B}$ for $x>0,$

$\frac{\tau(d_{2})}{v(0;d_{2})}arrow\frac{a_{2}}{2c_{2}}\cdot\frac{C-A}{C-B}\cdot\frac{A-B}{\frac{B+3C}{4}-A},$ $\frac{\tau(d_{2})}{v(x;d_{2})}arrow\frac{a_{2}}{b_{2}}\cdot\frac{C-A}{C-B}$ for $x>0,$

as $d_{2}\downarrow 0.$

Figure 3.5: $u$ for $A\leq(B+3C)/4$ Figure 3.6: $v$ for $A\leq(B+3C)/4$
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Theorem 3.7 (Shape of solutions as $d_{2}arrow 0$ for $A \geq\frac{B+3C}{4}$ ) Suppose that $B\neq C$ . Let
$(v(x, d_{2}), \tau(d_{2}))$ be solutions of (3.1). If $B<C$ and $A \geq\frac{B+3C}{4}$ , then

$v(0;d_{2})arrow 0,$ $v(x;d_{2}) arrow\frac{3a_{2}}{4c_{2}}$ for $x>0,$

$\frac{\tau(d_{2})}{v(0;d_{2})}arrow\infty,$ $\frac{\tau(d_{2})}{v(x;d_{2})}arrow\frac{a_{2}}{4c_{2}}$ for $x>0$ , as $d_{2}arrow 0.$

Figure 3.7: $u$ for $(B+3C)/4<A$ Figure 3.8: $v$ for $(B+3C)/4<A$

4 Stability in one-dimensional problem

Let us consider the stability of stationary solutions, and multi-dimensional solutions
with their stability.

Time dependent limiting equation is as follow. Unknown functions are $\tau(t),$ $v(x, t)$ ,
and

$\{\begin{array}{l}\frac{d}{dt}(\int_{\Omega}\frac{\tau}{v}dx)=\int_{\Omega}\frac{\tau}{v}(a_{1}-b_{1}\frac{\tau}{v}-c_{1}v)dx,\frac{\partial v}{\partial t}=d_{2}\triangle v+v(a_{2}-c_{2}v)-b_{2}\tau in \Omega,\frac{\partial v}{\partial n}=0 on\partial\Omega.\end{array}$

We suspect from a lot of numerical computation that the equation is a nice approxi-
mation of the original time dependent problem with sufficiently large $r$ $:=\rho_{12}/d_{1}$ . For
instance, for $r=700,000$ , it is not easy to distinguish each other.

The following Figure 4.1 shows numerical results for

$d_{1}=1, d_{2}=*, r=700,000$

$a_{2}=*, b2=1, c2=2.$

$a_{2}=1, b2=1, c2=1.$

We note that $C<7B/3,$ $(B+C)/2=1.5$ and $(B+3C)/4=1.75$ , since $B=1$ and
$C=2.$
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Figure 4.1: Stability and instability

Wu[8] gave a proof of instability for
$d_{2}$ sufficiently small with $(B+C)/2<A<(B+4C)/4$

in one-dimensional case. Recently, she have also given a proof of stability for
$d_{2}(<a_{2}/\pi^{2})$ sufficiently close to $a_{2}/\pi^{2}$ with $(B+C)/2<A<(B+4C)/4$

in one-dimensional case.

5 Multi-dimensional problem

We have done various numerical computations for the case $\Omega$ is rectangles in 2-
dimensional space. It seems that the structure of stable stationary solutions is essentially
very similar to 1-dimensional case, though there are much varieties of shape of solutions
in 2-dimensional case than in one-dimensional case.

Figure 5.1: $2D$ global
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Now, we will state some mathematical results. We prepare notations. Let

$\lambda_{0}=0<\lambda_{1}\leq\lambda_{2}\leq\cdots$

$\varphi_{0}=$ const. $,$

$\varphi_{1},$ $\varphi_{2},$
$\cdots$

be eigen values and corresponding eigen functions $of-\triangle$ in $\Omega\subset R^{N}$ with Neumann
boundary.

Theorem 5.1 Suppose that $N\leq 3$ and $\lambda_{1}$ be a simple eigen values with an eigen

function $\varphi_{1}$ . Then, there exists exactly two positive non-constant solutions $(v_{-}, \tau_{-})$ and
$(v_{+}, \tau_{+})$ of (2.1) for $d_{2}$ sufficiently close to $a_{2}/\lambda_{1}$ with $d_{2}<a_{2}/\lambda_{1}$

Moreover,

$\tauarrow 0,$

$\frac{\tau_{\pm}(d_{2})}{v_{\pm}(x;d_{2})}arrow\frac{a_{2}}{b_{2}}\cdot\frac{1}{1+\mu\pm\varphi_{1}(x)}$

as $d_{2}\uparrow a_{2}/\lambda_{1}$ , where $\mu_{-},$ $\mu+(\mu_{-}<0<\mu_{+})$ are solutions of

$\frac{\int_{\Omega}(1+\mu\varphi_{1}(x))^{-2}dx}{\int_{\Omega}(1+\mu\varphi_{1}(x))^{-1}dx}=\frac{A}{B}.$

Remark. The set $\{(v_{-}, \tau_{-}), (v_{+}, \tau_{+})\}$ is uniquely determined though there is a freedom
to pick up $\varphi_{1}$ . The condition $N\leq 3$ comes from Harnack’s inequality in our proof.

Remark. For $N=1,$ $\Omega=(0,1)$ , it is easy to see that

$\lambda_{1}=\pi^{2}, \varphi_{1}(x)=\cos\pi x, \frac{1}{1-\mu^{2}}=\frac{A}{B}, \mu\pm=\pm\sqrt{1-\frac{B}{A}}.$

Remark. For $N=2,$ $\Omega=(0,1)\cross(0, \ell)$ with $0<\ell<1$ , it is easy to see that

$\lambda_{1}=\pi^{2}, \varphi_{1}(x, y)=\cos\pi x, \frac{1}{1-\mu^{2}}=\frac{A}{B}, \mu\pm=\pm\sqrt{1-\frac{B}{A}}.$

Theorem 5.2 Suppose that $N\leq 3$ and $\lambda_{1}$ be a simple eigen values. Then, $(v_{-}, \tau_{-})$

and $(v_{+}, \tau_{+})$ defined by Theorem 5.1 are asymptotically stable for $d_{2}$ sufficiently close to
$a_{2}/\lambda_{1}$ with $d_{2}<a_{2}/\lambda_{1}.$

The following general lemma plays crucial role to prove Theorems 5.1 and 5.2.

Lemma 5.3 Suppose that $N\geq 1$ and $\varphi_{1}$ be eigen values corresponding to $\lambda_{1}$ . Let $g(\mu)$

be defined by
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$g( \mu);=\frac{\int_{\Omega}(1+\mu\varphi_{1}(x))^{-2}dx}{\int_{\Omega}(1+\mu\varphi_{1}(x))^{-1}dx}$

$for \mu\in(-1/\max_{\overline{\Omega}}\varphi_{1}, -1/\min_{\overline{\Omega}}\varphi_{1})$ . Then

$\frac{dg(\mu)}{d\mu}=\{\begin{array}{ll}+ for \mu>0,0 for\mu=0,- for \mu<0.\end{array}$

Moreover, for $N\leq 4,$

$\{\begin{array}{l}g(\mu)arrow\infty as \mu\uparrow\mu_{+},g(\mu)arrow\infty as \mu\downarrow\mu_{-}.\end{array}$
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