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ON FUNDAMENTAL SOLUTIONS FOR FRACTIONAL
DIFFUSION EQUATIONS WITH DIVERGENCE FREE
DRIFT

HiJIIZRR (WP K%%) [Yasunori Maekawa (Kobe University)]

1. INTRODUCTION

In this article we are concerned with the following non-local diffusion
equations in the presence of a given divergence free drift term:

(1.1) 80+ Ax(t)0+v-VO=0, V-v=0, t>0, zeR%

where d > 2 is the dimension, o € (0,2) is a constant, and Ag(t) is the
fractional diffusion operator which is formally defined by

(1.2) (Ax(t)f)(z) = lim (f(z) = f(W)K(t, z,y) dy.

jz—y|>€

We assume that there are o € (0,2) and Cy > 0 such that
(1.3) K(t,z,y) = K(t,y, ) for a.e. (t,z,y) € (0,00) x R? x RY,

(1.4)  sup / |z — y|?K(t,z,y)dy < CoM?*™®  for M € (0,00),
lz—y|<M

t>0,zeR4

: d+o -1
(L5) _jinf o=y K (b 2,9) > Gy
In (1.4) and (1.5), ‘sup’ and ‘inf’ are interpreted as ‘ess.sup’ and ‘ess.inf’,
respectively. We note that the operator Ax(t) with the index a € (0,2)
is a natural generalization of the usual fractional Laplacian (—A)*/2; in
that case the kernel K(t,x,y) is given by Cyq|z — y|~%~*, where Cy, is a
positive constant. The aim of this article is to give a complement result of
the author’s work [25] with H. Miura (Osaka Univ.) about the pointwise
upper bound for fundamental solutions to (1.1).

When there is no drift term (i.e., v = 0) the equation (1.1) appears in the
theory of Dirichlet forms of jump type as a special case, and it has been in-
vestigated mainly from the probabilistic viewpoint; see [9, 21, 22, 5, 1, 3, 4].
On the other hand in recent years the case with the drift term has also
attracted much attention especially in the field of fluid mechanics, mathe-
matical finance, biology, and so on. Among of them, the two-dimensional
dissipative surface quasi-geostrophic equations (QG) for the active scalar
in the geophysical fluid introduced by [13] are extensively studied in the
last decade; see, e.g., [11, 10, 12, 20, 16, 7, 19]. The equations (QG) are



nonlinear equations of the form (1.1) where the velocity in the drift term is
related by v = (— R0, R10) via the Riesz transform R;.

In [6, 18] they considered fundamental solutions to (1.1) when a € (1,2)
and v belongs to a suitable Kato class but without assuming the divergence
free condition V-v = 0. They proved the existence of fundamental solutions
and showed pointwise estimates. However, there seems to be still few works
on fundamental solutions for o € (0, 1]. In such cases the drift term formally
becomes the leading term and is no longer regarded as a simple perturbation
of the diffusion term. Moreover, for applications to nonlinear problems it
is important to study the linear problem of the form (1.1) under weak
assumption for v beyond the Kato class. In such situations the interplay
between the diffusion term and the drift term makes problems more subtle
and the divergence free structure for the velocity plays a crucial role.

Motivated by these background, [24, 25] studied the fundamental solu-
tions to (1.1) for all range of o € (0,2). To state their results let us recall
the definition of the Campanato spaces:

(1.6) LPARY) = {f € L} (RY) |
Illessms = sup (B [ 1f@) = § fiPda)? < o0},

Here the supremum is taken over all balls B = Bg(z) (the ball with radius
R > 0 centered at z € RY), the value f gf is the average in B defined by
f5f =1|B|™ [5 f(z)dz, and || || z»» becomes a seminorm. It is easy to see
that the continuous embedding holds.

A—d

LPMRY) < LHH(RT) if p>1 and p= e +d.

In the case of A < d, the function in £P? is uniformly locally integrable,
and £P* is identified by the Morrey space LP* modulo constant. Moreover,
it is known that the following embeddings hold.

_pd_

Li*(RY) < LPPRY) f0<A<d,
LPMNRY) = BMO(RY) if A=d,
LPARY) = CFRY  ifd<A<d+p.

See, e.g., [17, 28]. Here LE (R?) is the weak L” space and C#(R%), 3 € (0,1],
is the homogeneous Holder space of the order g, i.e.,

CPRY = (f € ORY | |flles = sup L@ —SWI

oo}.
z,ycRd lSL' - ylﬂ
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Next we introduce the Morrey type spaces of £P*-valued functions:
LP(0, 00; L2%(RY)) = {f € L} (0, 00; L22(RY)) |
t 1
17 0 amesoagusy = 5up sup (6= 9) [ (1) s d7)? < o0},
t>0 0<s<t s
For a € (0,2) we impose the following conditions on v.

(C) There are A € [2d/a— d,2d/a + d) and q € (1, 00] such that
(i)if Ae [Ed d,d] then
(0,00

HLSARY)D N L

2.2
ve Lhaa foc (0,003 (Lyoo(R%))7),

(ii) if X e (d, % +d) then

v E L1’2+a_ﬁ(07 o0, (E%’A(Rd>)d) N LlOC(O’OO;( lOC(Rd)) )

For simplicity of notations we set

when X € [2 — d, d],

vl 2,2-3 2d
@7 lllx, = Lre oot e
B v “L1 b+3- 21 (000 B when A € (d, %d + dJ.
Note that the norm || - || x, is invariant under the scaling
(1.8) oz(z,t) = A* (A%, ).

This scaling is natural in the following sense: If 6(¢,z) is a solution to
(1.1) then the rescaled function 8(\%t, A\z) satisfies (1.1) with the veloc-
ity vy, instead of v. Heuristically, in order to ensure a smoothing effect
by the diffusion term it is essential to assume that v belongs to a scale-
invariant function space; see, e.g., [8, 7, 19, 27, 29]. The space X covers
the following classes as special cases: L*°(0, 00; (BMO(R%))4) for o = 1;
L=(0, 00; (C'=*(R%))?) for o € (0,1). Moreover it also allows a singularity
at some to > 0:|t — to|2ataaw(t) € L®(0, 00; (LE*(RY))4). One of the
advantages to use the Campanato spaces (1.6) is that they contain certain
homogeneous functions. This fact is important for the study of the self-
similar solutions in some nonlinear problems. Another advantage is that in
the case of A > d they contain growing functions at spatial infinity. Except
some special cases, e.g., the fractional Ornstein-Uhlenbeck operators, such
velocity fields seem not to be studied.

In [24, 25] the fundamental solutions associated with (1.1), denoted by
Pxo(t,z;s,y), are studied in details. Because of the weak regularity of K
and v the definition of the fundamental solutions have to be given through
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the weak formulation; see [24, 25] for details. As for the existence and
regularity of fundamental solutions, we have the following

Theorem 1.1 ([24]). Suppose that (1.3) - (1.5) and (C) hold. Then there
exists a fundamental solution Py ,(t, z;s,y) for (1.1) satisfying the following
properties.

/ Py o(t,2;8,y)dz = / Py o(t,z;s,y)dy =1,
Rd R4
0 < Po(t,z;8,y) < C(t —s)7%,

Pro(t,z;8,y) = / Pgo(t,2; T, 2) Pk (T, 2; 8, y) dz, t>17>82>0,
Rd

Ci(lz1 — ol + 31 — y2/?)

(t—s)e '
Here the positive constant C' depends only on d, «, and Cy, the positive
constants C1, ¢, B depend only on d, a, Cp, A, and ||v||x, .

|Pro(t, 7138, 1) — Pro(t, To; 8,92)| <

Remark 1.1. We also have the Holder continuity of Pk, (t,z;s,y) with
respect to the time variables; see [24].

In [25] the pointwise upper bound of Pk ,(t,;s,y) is established.
Theorem 1.2 ([25]). Under the assumptions of Theorem 1.1 we have
(1.9)

PK,U(ta TI; S, y) < Cg(t — 5)“% (]_ + (liL‘ — y|

— OF[U](t’ S, T, y))+)_d_a

(t—s)=
+ Ca(t —s)"% (1+ M)""‘,
(t—s)a
where
(1.10) Fv](t,s,z,y) == sup |/ ]l v(r)dr|.
s<r<t s Blz—yl(w)

Here C, depend only on d and a, C3 depends only on d, o, and ||v||x,,
and C > 1 is some absolute constant. Moreover, if in addition K(t,z,y)
satisfies the stronger condition

(111) C(;llx - yl_d—a < K(t’ z, y) < CO'SU - yl_d_a,
then we can take C3 =0 in (1.9).

Remark 1.2. For the endpoint case A = 2d/a+d in (C), the estimate (1.9)
holds if ||v]| x,,,., , OF |t—s] is sufficiently small. We note that £24/2d/a+d(Rd)
coincides with Lip(R?), the space of all Lipschitz functions. For simplicity
we do not deal with this endpoint case A = 2d/a + d in this article.
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Remark 1.3. We note that the extra assumptions v € LY (0, oo; (LL .(R%))4)
orv € L] (0,00; (L (R4))?) in (C) is used only to guarantee the existence
of the fundamental solution in [24]. It is weaker than the assumption v € X

in view of the scaling.

Because of the weak regularity of K and v the uniqueness of weak solu-
tions to (1.1) seems to be unknown so far, especially in the case a € (0, 1].
In this sense even the semigroup property of Pk ,(t,.z;s,y) in Theorem
1.1 is not trivial, and we are forced to perform a careful limiting proce-
dure to establish it; cf. [24]. Theorem 1.2 shows that if (1.11) holds then
the fundamental solution Pk ,(t,z;s,y) is bounded by the modification of
C(t — s) (1 + |z — y|(t — s)~/*)~%*, which means that P ,(t,z;s,y)
possesses the similar decay estimate for the fractional heat equations

(1.12) 00 + (—A)26 = 0, t>0, z€R

The modification F[v] in (1.9) represents the transport effect by the drift
term. Since £P* includes some growing functions, the term F[v] is not
necessarily bounded in space variables. More precisely, from the condition
(C) one can see that F[v] grows no faster than linearly, thus (1.9) shows
that the fundamental solution decays with order —d — « when |z — y]| is
large. On the other hand, in the case of a € [1,2) if we assume v €
LMYe(0, 00; (L*(R%))4) and (1.11), then it is easy to see from Theorem 1.2
that Pk (¢, z;s,y) is bounded by a constant multiple of the fundamental
solution to (1.12).

After the pioneering work of [26, 2], there are a lot of results on the
pointwise upper bounds for the fundamental solutions of the second order
parabolic equations. In particular, for the drift diffusion equation (1.1) with
a = 2, the Gaussian upper bounds are obtained in [27, 8] under the scale-
invariant assumptions; see also [30, 23] for recent related works. On the
other hand, the fundamental solution for a < 2 is expected to decay only
with polynomial order: In the case v = 0 a standard Fourier analysis shows
that the fundamental solution satisfies the estimate (1.9) with C3 = 0. If
v is regarded as a simple perturbation of the diffusion term, it is possible
to obtain the same upper bound as well. However, under our assumptions
for v (and «), the perturbation argument is no longer applicable to handle
with our problem. To overcome the difficulty the articles (24, 25] applied
the idea of Carlen-Kusuoka-Stroock [9], where they derived pointwise upper
bounds for the fundamental solution for certain non-local diffusion equations
without the drift term based on Davies’ method [15]. The key idea to
take the transport effect into account is the introduction of a trajectory
determined by a local average of v. This idea is motivated by the work of
[7, 19], where the authors studied the regularity of the weak solution of the
equation (QG). Another ingredient of the proof is the use of the logarithmic



Sobolev inequality of the fractional order recently proved in [14], which plays
a crucial role to estimate the diffusion term.

The natural question here is that whether or not we may take C3 = 0 in
(1.9) without assuming the extra condition (1.11). The aim of this article
is to give an affirmative answer to this question. That is, our main result is

Theorem 1.3. Under the assumptions of Theorem 1.1 the upper bound
(1.9) is valid with C3 = 0.

In [25] the Dirichlet form £} (see Section 2.3) is divided into the singular
part and the regular part. But if we use Lemma 3.1 below such decompo-
sition is in fact not necessary, which leads to (1.9) with C5 = 0 for general
case. In this article we establish only the a priori estimate. For detailed
approximation and limiting procedures the reader is referred to [25].

2. PRELIMINARIES

2.1. Logarithmic Sobolev Inequality. The logarithmic Sobolev inequal-
ity with fractional order is stated as follows.

Lemma 2.1 ([14]). Let f be a function in H*(R?) and 8 > 0 be any positive
number. Then

2 |fI
(/lf] log',f||%2dx+(d+log

of'(§)
(%)

d o
+ o 10B)IfI) < SHll(-2)2 11

holds.

2.2. Estimates for the Trajectory. Next we recall some lemmas for the
estimate of the drift term.

Lemma 2.2 ([24, Lemma 2.2]). Let f € LY*(R?) for some u € [0,d + 1].
Let 1,22 € R and Ry > Ry > 0. Then

@1 | ][Bm(mf - fBR2(m2)fl

CllfllcrnRE™ if 0<p<d,
- R
<! Cllfllon(logle+ 2222 10g Bty it uyg,
Ro Ry
Cllfllcrw (21 — 22/~ + RETY) if d<p<d+1.

Here C depends only on d and pu.

The trajectory generated by the local average of the vector field u is
defined as the solution to the ODE

d

etiz, R) = ]l u(t), 0<t<to,
dt Br(e+6u(t;2,R))
EU(O, T, R) = 0’

(2.2)
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where £ € R? and R > 0. Then we have
Lemma 2.3 ([25, Lemma 2.4]). Let &,(t;z, R) be the solution to (2.2) with

R > t)/®. Assume that u satisfies (C) for X € [d,2d/a+d). If A > d then
29 fatton B < C(Rlul,+ sup | [ f | tr)an),
R\Z

0<t<to
and if A = d then
(2.4)
ltoi o, ) < C(Rluly 1+ og )+ swp | [ f umard),
0<t<to BR(LZ:
Here C' depends only on d, o, p. Moreover, the same estimate (2.3) also
holds for the case A = 2d/o + d provided ||ul|x, is sufficiently small.

2.3. Estimates for the bilinear form. We denote by 8}(? and &y the
bilinear forms

£0(9) =5 | 1Alble Ktz dady,  [fe) = fo) - o),

R2d
8v(t)(f,g> =—-< f,’l)(t) ' Vg >i=— R f(a:)v(t,x) : Vg(x) diE,

Let Lipy(R?) be the class of compactly-supported Lipschitz functions. For
U € Lip([0, c0) x R?) with ¥(¢,-) € Lipy(R%), we set

(2.5) L) (t,z) = e 2¥@AT(e¥ e?)(t,2),

(2.6) A(Y) = max{|[P(¥)fizs, IT(=P)llzes ),

where I'(f, g) is the function defined by

27) M(f9)to) = [ INlale o) Kt o) dy
Rd

The following coercive-type estimate, established by [9], represents the
diffusion effect for the Dirichlet form £ }?

Lemma 2.4 ([9, Theorem 3.9]). Let ¥ € Lip([0,00) x R%) with ¥(t,-) €
Lipy(R%). Letr € [1,00). Then for f € C(RY) with f > 0 it follows that

28)  ERE ) > 2605, £5) — CrA@) -
Here C is a numerical constant.

In fact, [9] considered the case when the kernel K and ¥ are independent
of t. The dependence on ¢t however does not change any arguments to obtain
(2.8). On the other hand, the divergence free condition for v with the
integral by parts immediately yields the following identity for the bilinear
form &,).
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Lemma 2.5. Let ¥ € Lipy(R?). Forr € [1,00) it follows that
29 @ et) = [ F@ ) Vi) ds,

3. POINTWISE UPPER BOUNDS

In this section we will prove Theorem 1.3. In most parts of the proof we
follow the argument in [25].

Fix L >0, R> 0, t, > 0, and zq, yo € R% Let 1 be the function defined
by

(3.1) P(x) = L(R - |z — o|)+.

Set £(t; 9, R) € R? be the solution to (2.2) with R > 0 and u(t,z) =
v(to — t,x), 0 < t < to. If we put £(¢;z0) = &(to — t; 20, R) then £(2;20)
solves the ODE

d
Séts) = f o), 0<t<ty,
(3.2) dt Br(zo+£(t;20))
§(t0; .’L'()) = 0.
We also set

Then it is easy to see
(3.4) ||¥|lz~ < LR, Lip(¥(t)) <L, supp ¥(t)= Br(zo+ £(t;z0)).
The next lemma for A(¥) corresponds with [25, Lemma 3.7].

Lemma 3.1. Let ¥ be the function defined by (3.3). Then

(3.5) A(T) < Ce3RR,

Here C depends only on d, a, and Cy.

Proof. From (et — 1)? < min{t%e?, 2%} for t > 0 and (3.4) we have

e o) / ¥ (2, y) K (¢, 2, y) dy = / (¥t —1)2K (t,2,y) dy
R¢ Re

< LR / |z — y[PK (¢, z,y) dy + 2¢*°F / K(t,z,y)dy.
lo—yI<R le—y(>R
It is straightforward from (1.4) to get
[ l-uPKowdy< oR
lz—y|<R

As for the second term, we have from (1.4)) and (1.5) that

/ K(t,xz,y)dy = Z/ K(t,z,y)dy < CR™°.
lz—y|>R 2kR<|z—y|<2F 1R
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This completes the proof. a

We next apply the weighted estimate for the fundamental solution Pk (¢, z; s,y)
used in [25]. Without loss of generality we may take s = 0.

Proposition 3.1. Let ¥ be the function defined by (3.3).
(i) If X € (2d/a — d, d] then
(3.6)

Prcalt, 2;0,9) < % exp (—‘Il(t, 9:)+‘I’(0,y)+C(A(\I!)t+|Iv||§AL2R%t%—%)).
(i) If X € (d,2d/a + d) then

(3.7)

Pics(t,210,9) < Ot~ exp (_w, 2)+U(0,y)+C (A(D)t+ o]l x, LRE-Fe3 3+

(M

)

Here the positive constant C' depends only on d, a, and Cy.

Proof. The argument below is almost parallel to the one used in the proof
of [25, Proposition 3.8]. Set
(3.8)

o(t,z) = ¥4 / Pro(t,z;0,9)e YOV f(y)dy, fe CPRY), f>0,
Rd

and let 7 : [0,%9) — [1,00) be a continuously differentiable function to be
specified later. By direct calculation, we have

d . o i - / -1
< P r [ 018,04z,
= 10g]10() |10 = 110117 /m log g do + 657 [ 0700 da

Then we have from Lemma 2.4, Lemma 2.5, and (1.5),

/0’”*1&9 dz

=/ 6’"891/ d$+ < e‘I’H’"“l,at(e“yH) >
Re

=—Ex(e0" 7t e7V0) — Eut) (e¥om 1, e”‘PG) + 070,V dz
Rd

< - %5,((9%, 0%) + CrA(D)||0a];- +/ 0" (0¥ —v-V¥)de
Re

(39) < — Z||(=A)F05 |2, + CrAM)||o]L, + / 6 (0,0 — v - V) dz.
R4

Here ¢y is a constant depending only on d, a, and C.
We now divide the proof by the value of A in the assumption (C) and first
consider the case A < d. By using (3.2)-(3.4) and the Gagliardo-Nirenberg
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inequality, we have

9'(6t\II—U-V\I/)dx=/ 9?(][ v—v)-Vldr
Rd Br(zo+€(t;20)) Br(zo+£(tiz0))

< L||9§H2 4 (/ ]v——][ vl% dx);_"
L2=2 " | Bp(zo+€(tizo)) Br(z0+£(t;20))

< CLR%||(—A)%65 1216
Co

’U”‘C";—d,A

o, r ad
I(=A)302]7: + CTL*R' ||v]|2 5, |16

r
2
LT

(3.10) < r.
Plugging this in (3.9), we have
[ o700z < 212020512 + A0l + L RF ol g 1

o
ComIT

,rl

Then we apply Lemma 2.1 with 8 = to get

d
logll6(t) -

r ol($) d,. xf% T 22 12
< _ﬁ(d_'_ ZI‘(g—) + a(logzo— +10g;)) + Cr(A(¥) + L*R™ ”U“C%d,x)-

Set s(t) = 1/r(t). Then we have

¢

d ’ d 8 al
SBIOM 2 < 8/ (Ca + Slog(=2)) + Z(A(W) + LRF o2,

Integrating from 0 to o, we get

fo d d to / ’
]og||0(t0)||L?(;® —IogHO(O)“LR%7 5/0 §(Cya + alogs) dt — -C;./o s'log(—s") dt
+/t09(A(qJ)+L2R-‘%Hv||2 ) dt
2d )
o S Lo

Choosing s(t) = (1 — t/to)? so that s(tp) = 0, s(0) = 1 with ¢ € (0,2/a —
A/d), we have

to d
/0 §'(Cyo + -&logs) dt = [Cyas(t) — %s(t)(logs(t) - 1)]ﬁ°=0 = —Cyq-

Moreover, the other integrals are estimated as follows:

to q¢
s

to
—/ s'log(—s')dt < —log to + C, / = Cty,
0 0



fo dt to to r dt
R N CY T RLE
to to to
= / “UHzﬁ)\dT—/ 8/8—2/ v]|2 24 , d7 dt
0 % ; t R

2_2
d

< Cllik,ts

Summing up these estimates and replacing ¢, by ¢, we obtain
(3.11)

d .
log|[6(t)]] = —10g||6(0) l: < ——log t+C(1+ A(W)t + ullf, L’R% t=73),

which proves the desired estimate .
We next consider the case d < A < 2d/a+d. By using the characterization
L24/0) = CaN(2d)=a/2 the |ast term in (3.9) can be estimated as the follows

/ 6" (0¥ —v-VU)dz
Rd

= gr ][ - v) V¥ dzx
Br(zo+£(txo)) Br(zo+£(tizo))

(312)  <RE-% sup LD =Wl oy o RE-SL)0)],.

(27
z,yeRd |T —ylza—2

Thus, arguing as the preceding case, we get
(3.13)

A

. d a o 1
log||8(t)|| L —1og]|8(0) ||z < —alog t+C(1+A(\I’)t+”U”X)\LRTA_it%_'_E— 2d ).,

This completes the proof. O

Since C' in Proposition 3.1 does not depend on ||v||x,, by taking L = 0
and letting M — 0o, we obtain

Corollary 3.1. For allt > 0, =, y € R? it follows that
(3.14) Pio(t,2;0,) < Ct .

Here C' depends only on d, a, and Cy.

Proof of Theorem 1.3. We give the proof only for the case A € (d,2d/a+d);
the other case is shown similarly. Without loss of generality, we may assume
s = 0. Fix zg, yo € R?, and o > 0. Let us take R = |z — yo| in Proposition

1
3.1. First we consider the case R < C,t§, where C, > 1 will be specified
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later. In this case we have from Corollary 3.1,

_d _d _1
Py (to, 203 0,30) < Cto = < Oty * (1 +C; Mg = R)™ @
_d _1

(3.15) < CCHet = (1+1t,*R)™4 =
Next we consider the case R > C,t§. We may assume that R > 2F[v](to, 0, o, %),
otherwise the desired estimate always holds by Corollary 3.1. Take L =
nR~'log(R*/to) for some n > 0. Then Lemma 3.1 implies A(¥)t, < C,
where C depends only on d, «, 7, and Cy. Hence, applying Proposition 3.1
and ¥(0,yo) = 0, we have
l._2_/\d+

-4 Q o
PK,v(th To; Oa yO) < Cto ¢ eXp(—\I/(to, .’Eo) + C”U”XALRT&\"_Eté"
Taking C, sufficient large depending on d, o and A, we can estimate

(M

)-

ed_a 1 A4l fo \1_A .1 R
LR2a72tg 72 = ’7(}32)" 213 IOg(E) < Ch.
for R > C,ty/*. Thus, by the definition of ¥, we get
_d

(316) PK’v(tO,Jig;O, 'y()) < Gto * exp ( - L(R - lf(to; $0)|)+)
As in the proof of [25, Proposition 3.10}, we have

R
(3.17) (R~ €t} < ~ 2

s 4(d
when R > C*té and R > 2F[v](to, 0, %o, yo). Hence, taking n = ( :a)’

we get

Pl LR

PK,v(to,.'II(); 0, y()) S Ctaa exp ( - L(R - If(to; l‘o)D+) _<_ Ct(;a exp ( — —4—)

[0

_d R
= Ct, ® exp ( — Z—log —t?) = CtoR™% .

Here C' depends only on d, «, Cy, and ||v||x,. The proof is complete. O

REFERENCES

(1] H. Abels and M. Kassmann, The Cauchy problem and the martingale problem for
integro-differential operators with non-smooth kernels. Osaka J. Math. 46 (2009)
661-683.

[2] D. G. Aronson, Non-negative solutions of linear parabolic equations. Ann. Scuola
Norm. Sup. Pisa (3) 22 (1968) 607-694.

[3] M. Barlow, R. F. Bass, Z. Q. Chen, and M. Kassmann, Non-local Dirichlet forms
and symmetric jump processes, Trans. Amer. Math. Soc. 361 (2009) 1963-1999.

(4] R. F. Bass, M. Kassmann, and T. Kumagai, Symmetric jump processes: localization,
heat kernels and convergence, Ann. Inst. H. Poincaré Probab. Stat. 46 (2010) 59-71.

[5] R. F.Bass and D. A. Levin, Harnack inequalities for jump processes, Potential Anal.
17 (2002) 375-388.



[6] K. Bogdan and T. Jakubowski, Estimates of heat kernel of fractional Laplacian
perturbed by gradient operators, Commun. Math. Phys. 271 (2007) 179-198.

[7] L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion
and the quasi-geostrophic equation, Ann. of Math. (2) 171 (2010) 1903-1930.

[8] E. A. Carlen and M. Loss, Optimal smoothing and decay estimates for viscously
damped conservation laws, with applications to the 2-D Navier-Stokes equation. A
celebration of John F. Nash, Jr. Duke Math. J. 81 (1995) 135-157 (1996).

[9] E. A. Carlen, S. Kusuoka, and D. W. Stroock, Upper bounds for symmetric Markov
transition functions, Ann. Inst. H. Poincaré Probab. Stat. 23 (1987) 245-287.

[10] D. Chae and J. Lee, Global well-posedness in the super-critical dissipative quasi-
geostrophic equations, Commun. Math. Phys. 233 (2003) 297-311.

[11] P. Constantin, D. Cérdoba, and J. Wu, On the critical dissipative quasi-geostrophic
equation, Indiana Univ. Math. J. 50 (2001) 97-107.

[12] A. Cérdoba and D. Cérdoba, A maximum principle applied to quasi-geostrophic
equations, Commun. Math. Phys. 249 (2004) 511-528.

[13] P. Constantin, A. Majda, and E. Tabak, Formation of strong fronts in the 2-D
quasigeostrophic thermal active scalar, Nonlinearity 7 (1994) 1495-1533.

[14] A. Cotsiolis and N.K. Tavoularis, On logarithmic Sobolev inequalities for higher
order fractional derivatives. C. R. Math. Acad. Sci. Paris 340 (2005) 205-208.

[15] E. B. Davies, Explicit constants for Gaussian upper bounds on heat kernels. Amer.
J. Math. 109 (1987) 319-333.

(16] H. Dong and N. Pavlovié, Regularity criteria for the dissipative quasi-geostrophic
equations in Holder spaces, Commun. Math. Phys. 290 (2009) 801-812.

(17] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic
systems, Princeton University Press, Princeton, NJ, 1983.

[18] T. Jakubowski and K. Szczypkowski, Time-dependent gradient perturbations of
fractional Laplacian, J. Evol. Eq. 10 (2010) 319-339.

[19] A. Kiselev and F. Nazarov, A variation on a theme of Caffarelli and Vasseur, Zap.
Nauchn. Sem. POMI 370 (2010) 58-72.

[20] A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D
dissipative quasi-geostrophic equation, Invent. Math. 167 (2007) 445-453.

[21] T. Komatsu, Continuity estimates for solutions of parabolic equations associated
with jump type Dirichlet forms, Osaka J. Math. 25 (1988) 697-728.

[22] T. Komatsu, Uniform estimates for fundamental solutions associated with non-local
Dirichlet forms, Osaka J. Math. 32 (1995) 833-860.

[23] Y. Maekawa, A lower bound for fundamental solutions of the heat convection equa-
tions, Arch. Rational Mech. Anal., 189 (2008) 45-58.

[24] Y. Maekawa and H. Miura, On fundamental solutions for non-local diffusion equa-
tions with divergence free drift, Hokkaido university preprint series no.1014 (2012).

[25] Y. Maekawa and H. Miura, Upper bounds for fundamental solutions to non-local
diffusion equations with divergence free drift, Hokkaido university preprint series
n0.1013 (2012).

[26] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math.
80 (1958) 931-954.

[27] H. Osada, Diffusion processes with generators of generalized divergence form, J.
Math. Kyoto Univ. 27 (1987) 597-619.

[28] J. Peetre, On the theory of £LP* spaces. J. Funct. Anal. 4 (1969) 71-87.

[29] G. Seregin, L. Silvestre, V. Sverak and A. Zlatos, On Divergence-free Drifts

(preprint)

133



134

[30] Q. S. Zhang, A strong regularity result for parabolic equations. Commun. Math.
Phys. 244 (2004) 245-260.



