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We consider a class of historical superprocesses in the Dynkin sense, which is closely
related to an another class of superprocesses (i.e., measure-valued branching Markov
processes) associated with stable random measure. Our main concern has been the
extinction property of superprocesses, and in this article we study, in particular,
finite time extinction of the historical superprocesses associated with stable random
measure. Since the key result is about the compact support property of super-
processes in question, our emphasis is especially placed on the compact support
equivalent statement and the compact support property for those superprocesses ‘
related to stable random measure.
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1. Historical Superprocess

The superprocesses with branching rate functional form a class of measure-valued
branching Markov processes. We write (u, f) = [ fdu for measure pu. For simplicity,
Mp = Mp(R?) is the space of finite measures on R%. Define a second order elliptic dif-
ferential operator L = %V +aV +b-V, and a = (a;;) is positive definite and assume
that a;j, b € CY¢ = CL¢(R?). Here the space C'¢ is the totality of all Holder contin-
uous functions with index ¢ (0 < € < 1), having continuous first order derivatives. =
= {{,Il,4,s > 0,a € R%} is a corresponding L-diffusion. The transition probability of
the L-diffusion is allowed to possess its density, which is denoted by p(¢,z,y). Moreover,
CAF stands for continuous additive functional. When we write Cj as the set of bounded
continuous functions on R%, then C; is the set of positive members in Cj. The symbol
C = C(R;,R?) denotes the space of continuous paths on R% with uniform convergence
topology. To each w € C and ¢t > 0, we write w* € C as the stopped path of w. We
denote by C' the totality of all these paths stopped at time t. To every w € C we as-
sociate the corresponding stopped path trajectory w defined by w; = w® for t > 0. Let
K be a positive CAF of £&. X = {f(,]f”s,u, s >0, u € Mp(C®)} is said to be a Dynkin’s
historical superprocess [13,4] if X = {X,} is a time-inhomogeneous Markov process with



state X, € Mp(C?), t > s, with transition Laplace functional
B, e~ Xe0) — e~ost) - 0<s<t, pe Mp(C®), o€ CF(C), (1)

where the function v is uniquely determined by the log-Laplace type equation

¢
s w,0(&) = v(s, ws) + ﬁs,ws/ v(r,&)K(dr), 0<s<t, w,€eC" (2)

2. Superprocess Related to Random Measure

Suppose that p > d, and let ¢,(z) = (1+|z|?)P/2 be the reference function. C = C(R¢%)
denotes the space of continuous functions on R?, and define C, = {f € C : |f| < C}- ¢,,
3C; > 0}. We denote by M, = M,(R?) the set of non-negative measures y on RY
satisfying (u, ¢p) = [ ¢p(@)p(dz) < co. It is called the space of p-tempered measures.
When {&;,II,,} is an L-diffusion, then we define the continuous additive functional K, of
& by K, = (n,0.(&))dr for n € M,. For some g > 0, we write K € K [14] if a continuous
additive functional K is in the Dynkin class with index g. Then X" = {X};t > 0} is
said to be a measure-valued diffusion with branching rate functional K, if for the initial
measure i € Mg, X" satisfies the Laplace functional of the form P§7u6‘<X7 #) = = (W(s)
(p € Cf), where the function v > 0 is uniquely determined by I, ,0(&) = v(s,a) +
Hsyaf:UQ(r,fr)K,,(dr), (0 < s <taé€RY. Assume that d =1 and 0 < v < 1. Let
A = A(dz) be the Lebesgue measure on R, and let (v, P) be the stable random measure
on R with Laplace functional

—togEesp {~ [ plonian} = [@ns, vecy. 3)

Note that P-a.a w realization, y(w) lies in M, as far as the condition p > v~! is satisfied.
We consider a positive CAF K, of £ for P-a.a. w. So that, thanks to Dynkin’s general
formalism for superprocess with branching rate functional, there exists an (L, K., p)-
superprocess X7 when we adopt a p-tempered measure y for CAF K, instead of 7, as far
as K, = K,(w;dr) may lie in the class K9.

THEOREM 1. Let K, € K9. For p € Mg with compact support, there exists an
(L, K, p)-superprocess {X7,P] ,, s > 0} with branching rate functional K.,.

Note that when d = 1,a =1 and b =0, X7 is called a stable catalytic SBM, and that
this was initially constructed and investigated by Dawson-Fleischmann-Mueller [2].

Proof. Let £ € N and I(k) = (—k, k) C R, and define E, = U%_,{n} x I(n). When 7,
is the first hitting time of £ starting at = to the boundary +n, then the Markov process
Y¢ in E, is defined by Y = ({n}, &) for 0 < t < 7, and it dies out at time ¢t = 7,.
While, the new measure v,({n} x (a,b)) is given by v(I(n) N (a,b)) for n < ¢, and forms
a random measure on E,. By using this measure, we define K., as

KolV6,) = [ Aual¥)etan @
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with the local time A;,(Y¢) for the process Y;. Then se shall write X! its resulting
(L, K,,, u)-superprocess. For an arbitrarily chosen u € Mg(R), the initial measure Xg for
X? is provided by

X{nyxB)=w(Bn{n-1,n)U(-n,1-n]}) for n>1. (5)

Notice that the law equivalence £(X™ | E,) = £(X*) holds for any pair (¢,m) such that
m > £. This means that the sequence {P)?(’f}g of laws for X* becomes a consistent family
of probability measures, so that its projective limit may generate the probability law of
an M (E,,)-valued process X°°. This allows us to possess an increasing sequence {Z4(B)}
of Mp(I(£))-valued processes. The log-Laplace function

£
u'(t,z) = —log Es, [exp{—(Z,0)}] = —log Es, [ [ e~*&inb<(D)) (6)

n=1

for the process Z{ satisfies Hg’x[ga(Yf)] = uf(t,z) + I, f; u?(r, Y, K, (dr), where
(YZ, Hﬁ,a) is a L-diffusion which just corresponds to the L-diffusion equation with Dirichlet
boundary conditions on I(¢). Moreover, we observe

E,[Z;(B)) = (u, 15 - 15, 1(¥})) =/I(Z)/pe(t,w,y)ls(x)dyu(dw)- (7)

On this account, the limit procedure X;(dz) := lim,_, Zf(dz) defines the Mp(R)-valued
process with initial measure p. =

3. Historical Superprocess Related to Random Measure

We shall show below the existence of the corresponding historical superprocess in
the Dynkin sense. Let K, be a positive CAF of £ lying in the Dynkin class K9. The
historical superprocess X? = {X“’,I@’;“, s > 0, p € Mp(C®)} in the Dynkin sense is a
time-inhomogeneous Markov process with state X; € Mp(Ct), t > s, with transition

Laplace functional
By, exp {~ (X7, )} = e, 0<s <t,pe Mp(C?), and 9 € CH(C),  (8)

where the function v is uniquely determined by the log-Laplace type equation

t

My, 0(€) = v(s, ws) + My, [ v2(r, VK, (wydr), 0<s<t w,eC’. (9)
The above process can be reformulated as follows. We shall adopt some notation and
terminology from [12]. Let (E:, B;) be a measurable space that describes the state space
of the underlying process £ at time t (which can usually be imbedded isomorphically
into a compact metrizable space C), and E be the global state space given by the set of
pairs t € R; and z € E;. The symbol B(E) denotes the o-algebra in E, generated by
functions f : E — R. Note that E(I) = {(r,z) :r€ I,z € E.} € B(E) for every interval
I. The sample space W is a set of paths (or trajectories) &(w) = w, for each w € W.
Furthermore, F(I) is the o-algebra generated by &(w) for ¢t € I. Let w(I) denote the
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restriction of w € W to I, and W(I) be the image of W under this mapping. Moreover,
E = (¢ct, Fe(I), Mr<r) = (€(~=00,t], Fa(I), Mya(-coy]) is the historical process for ¢
= (&, F(I),11,,). Under those circumstances, we can get the historical superprocess in
question.

THOREM 2. Let = be a historical process, K, = K. (w) be its CAF associated to stable
random measure y with properties:
(a) For everyq > 0,7 <tandz € E,, ﬁr,x(gr)equ(“"(”)) < 00. (b) For every ty < t, there
exists a positive constant C such that ﬁ,,,x(g,)fq(w; (r,t)) < C holds forr € [to,t), z € E,.
Put ¢t(z, 2) = b*(2)2* = 1 x 2%. Then there exists a Markov process M” = (M}, G(I), P
on the space Mg, = Mp(C') of all finite measures on (W, F¢,) = (W, F*(—o0, t]) with
the universal completion F2. of o-algebra, such that for everyt € Ry and p € For

P exp{—(M], )} =e ™) 0<r<t, pe Mg, (10)

where v"(w¢,) = v(r, w(—00,7]) is a progressive function determined uniquely by the equa-
tions

t
V' (Z<r) + Tra(cr) / ¥ (€cor V' (Eco)) Ky (Wi ds) = Irpcnp(€r) for r<t (11)

V' (2gr) =0 for r>t.

Proof. As stated in Theorem 2, set ¢ = 9*(z, 2) as special branching mechanism. The
historical superprocess M = (M, G(I), P},) with parameters (£, K, 1) can be obtained
from the superprocess X7 with the almost same parameters (2, K,,1) by the direct
construction. First of all we define the finite-dimensional distributions of the random
measure My as fig¢y...¢, (A1 X Ag X -+ X Ap) = M ({w(t)) € A, w(ty) € Ag, ..., w(t,) €
Ap}) for time partition A = {t;} with ¢; <ty < --- <t, < tand 4 € By, Ay € B,
..., Ap € B;,. Actually, this y,..;, determines uniquely the probability distribution on
B(E;, x --- x Ey,). To this end we replace X;' by its restriction X;’l (= X [ A1) to A4
and run the superprocess during the time interval [t, to] starting from X’g Moreover we
can proceed analogously until getting a Z € M, and then take Z(E;) as the value for
Qfﬂ/ﬁ exp{—(8Y;, f)} = e~ (®) where m, is the Poisson random measure on (£, B(E))
with intensity u, (n,v) = fE v(r,z)n(dr,dz), 8 > 0, and Y; is a counting measure. Then
we construct a measure M on M, by applying the Kolmogorov extension theorem to
the family {f,..., }. Indeed, if {y,..+, } satisfies the consistency condition:

“tl'--tk_1tk+1'"tn (A1 X+ X Ak-—l X Ak X Ak+1 X e X An) (12)

= l’l’tl“'tk—ltktk+1"'tn(A1 X oo X Ak—l X Etk X Ak+1 X oo X An)

for k=1,2,...,n and Ax € By, (k=1,2,...,n), where the symbol V means exclusion
of the number or item crowned with V from the set N = {1,2,...,n}, then the Kol-
mogorov extension theorem guarantees that there exists a unique probability measure
P on (2, B(2)) such that the finite-dimensional distribution of M € M, is equal to
{112,..4, }- Here €2 is given by Q0 = (M) = {w]w(-) : [0, 00) — M.} As a matter of



fact, the historical superprocess can be obtained from a branching particle system by the
limit procedure applied to the special process J = {);}. In fact, as a function of ¢, ),
is a measure-valued process in functional spaces W, = W(—o0, t], called historical path
space. Moreover, note that the complete picture of a branching particle system is given
by the random tree composed of the paths of all particles. The construction of ), goes
almost similarly as in [13], hence omitted. In this way, as a function of ¢, an integer-valued
measure YV; on W, is constructed as a measure-valued process in functional space W,
Lastly some comments on progressivity of transition probablity should be mentinoed. In-
deed, a natural question is to ask whether that kind of progressivity for the underlying
Markov process £ = {¢} implies an anlogous condition for the historical process =. Here
the condition in question is as follows: “The transition probabilities are progressive, i.e.
the function f*(z) = l{cyyll;.(€n € B) is progressive for every u € Ry and B € B,.”
Note that the above condition is satisfied even for the historical process = as far as it may
be valid for the underlying process . (i

4. Compact Support Property

Let supp(u) be the closed support of a measure 1 € Mp(R), and let Gsupp(X) be
the global support of a measure-valued process X;(dz), which is defined as the closure of
the union of supp(X;) for all ¢ > 0. We consider the following boundary value problem
(BVP)

Ly(z) = vZ(x)j% for z¢€ ;0 = (a, b) (13)
The solution is a continuous convex function on the interval Iy = [a,b], and for every

z,h € R satisfying a < h < z 4+ h < b, we have

v(z+h) =v(h) +v'(h+0)z + 2 /:Jrh ds /hs v (t)y(dt). (14)

THEOREM 3. Assume that supp(X,) C I C I(£).
(a) There exist sequences {an}n, {Bn}n such that a, >0, o, /00, By > 0, and B, / oo,
satisfying that for eachn € N, the BVP (13) has a unique solution v(z, o, 8) with a = ay,
and 3 = [3,.

(b) For any sequence of functions u(z, om, B,) satisfying the conditions of (a), we have

P, { Gsupp(X) C Ip } = P} {supp(X,) NI = 0,V¢t >0} (15)
b
= ILm exp {_/ u(x, anvﬁn)XO(dx)} .

Proof. Let let ¢, € C* such that ¢, /" 17 - 1 1s- According to [17], the occupation
time processes Z; = fot Z%s and X, = f(f X,ds are well defined. Let us take Xy € Mp(R)
(resp. ¢ € C*(R)) satisfying supp(Xo) C I(£) (resp. supp(v)) C I(£)) respectively. Let
§ > 0. Here we need the following lemma.



LEMMA 4. The occupation time process Zf satisfies the Laplace functional
P, lexp{—0(Z{, )} = exp{—(Xo, v*(t, 0%))} (16)
where the function v¢(t, z,0) is a solution of the following log-Laplace equation
t t
o115 , / Y(YE,)ds = v(t,z) +II§, / V2 (s, YL )K" (ds), for x € I(f). (17)
0 0

Proof of Lemma 4. It goes almost similarly as in the proof of Theorem 3.1 in [16],
hence omitted. ]

Remark 5. (a) Note that u(t,z) = 0 holds for z € I(¢)°.
(b) the solution v(t, x, §1)) satisfies the following estimate

t
vi(t, z,0v) < supH / - yp(YL,)ds < oo.
0
We may employ Lemma 4 together with the passage to limit ¢ — oo, to derive
PY, [exp {-—0 / Zf([g)ds}] = exp{—(Xo, lim ( lim vi(t, z,0¢n))) }. (18)
0 —00 N—00

For simplicity, we put lim,_,. v*(t, z,0v,) = ®(t, z,6) and lim; ., ®(¢,z,0) = ¥(z,0).

LEMMA 6. Let ¢ € C(R) having supp(@) C I(£), and take h > 0 such that 0 < h < 1.
Then we have uniformly in h

tl_lglo% {/<I>(t + h,z,0)¢(x)dx — /@(t,x,O)gb(x)dx} =0. (19)

Proof of Lemma 6. We have only to show it for positive ¢ > 0, because of the monotone

property of ®(¢, z,0) in t. When we take the above-mentioned property into consideration,
then Lemma, 4 yields to

0< lim ,ll { / Bt + h, z,0)¢(z)dz — / @(t,z@)qﬁ(z)dm}
t+h
<am t{ [T [ oot - s, [ @0, ve 0K @
b1, [(@ a0 - Bl b - s Yol
0
< Jim 20 sup { (@) [ elt. )y} =0 (20

O
LEMMA 7. Let {Tf;t > 0} be the semigroup of the killed L-diffusion process. Then the
following identity is valid, namely, for ¢ € C?,

lim -1’; / (8t + h, 7, 0) — B(t, v, 0)}o(z)de (21)

- / Lt - Do) v(z,0)da

{/ / 020135 (Vi) - @la)dods = / / hHﬁ,xwe,Y,f_s>K%(ds)¢(x)dx}.
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Proof of Lemma 7. It is due to a simple computation. In fact, the result yields
immediately from the expression (17) and the monotone convergence theorem. O

Choose ¢ € C? with supp(¢) C I(¢), and by the passage to limit A — 0 in (21), we
can derive

(U(,0), L*¢) + (0155, 8) = (72, ¥*(, 0)9). (22)

Recall the distribution theory [21]. Consider the second derivative of a distribution ® on
R, and if the second derivative ®” in the distribution sense is a locally finite measure,
(it does not matter whether it is a signed or nonnegative measure, though), then the
distribution ® is a continuous function of bounded variation on every finite interval.
Moreover, if its second derivative ®” is a nonnegative measure, then it is a continuous
and convex function and its first derivative @ exists in the usual sense except possibly
at a countable set of points, and it is an increasing function having left and right limits
at every point. On this account, thanks to Schwartz’ argument, we can deduce at once
from (22) that the second distribution derivative of ¥ is a possibly signed measure and
also that the left and right limits of the first derivative v’ of v(z) = ¥(z, 0) satisfy

dv 10 10
B o) =2 / o (y)ve(dy) — 20 / 1s(u)dy + (a constant)  (23)

dz o
as far as x € I(¢). Integration of (23) again leads to (14). Applications of Chebyshev’s
inequality and the Borel-Cantelli lemma verifies

t
Py {/ Z'(a—1,a))ds > 0} =1 forany t>0, (24)
0

so that we obtain limg_,., ®(¢, a,0) = limg_o, ®(¢, b, ) = co. Therefore it follows from the
above immediately that limg_,., ¥(a,8) = limy_., ¥(b,6) = co. On the other hand, note
that the map ¢t — Z{ is right continuous. In addition to that, it is known from [1] that the
map 4 +— supp(u) is lower semicontinuous. Combining the above two results together, we
can verify that the event supp(Z¢) N I§ = 0 is measurable for any ¢ > 0. Hence, it turns
out to be that the event supp(X;) N I§ is also measurable, because the set supp(X;) N I§
=  is expressed as NG supp(Zf) N I§ = @ for any t > 0. Therefore we readily obtain

PX,{supp(Xy) N I§ =0, vt >0} (25)

= Jim B {sunp(20) 15 = 0.1 > 0) = tun 3, { [ 240445 = o}

b
= th Ghm exp{—(Xg, lI[(a 9))} = lim eXp {—/ U(.’L‘, an:ﬂn)XO(dx)} )
since we made use of right continuity in the second equality and the third equality yields
directly from (18). O

When the initial measure p has compact support, according to Theorem 3, X” has the
compact support property, with the result that the range R(X) of X" is compact. As a
corollary of Theorem 3, we can obtain immediately



THEOREM 8. If we have sup,, 4infeep, v(z, , B) = 400, then
P?{Gsupp(X) is compact} = 0. (26)

5. Finite Time Extinction

THEOREM 9. (Main Result) Suppose that p > 1/v. Let u € Mg with compact support.
Suppose that the BVP (13) has a solution u. If the integral fab u(z, a, B) Xo(dz) vanishes,
then the historical superprocess X7 with branching rate functional RZ, dies out for finite
time with pwobability one. That is to say,

P—aa. -, Iﬁ’g“(f(] =0, It>0)=1. (27)

Proof.  We want to show that lim;_, @gyu()"(z # 0) = 0, P-a.s. Moreover, we define
Ck ={w e C: |ws| < K, Vs > 0} for K > 1. Theorem 3 guarantees the compact
support property for the superprocesses. By the compact support property, we have

1}1—%0 %ggﬁg# (supp(f(]) - CK) =1, P-aaw. (28)

The goal is to show that, P-a.s., Pg,u(f(g # 0) vanishes for large t. Hence it suffices to
show that, for VK: large

tllglolpgu()zz #0 and supp(X])C Cgk) =0. (29)

By emplying the periodic extension technique v — ~¥, it suffices to show finite time
extinction of X7 with fixed periodic extension vX: i.e. lim;_ o ]f»gf; (X" # 0) =0, for
each fixed K > 1. As a matter of fact, we can show the above expression by using the
comparison of extinction probabilities [2] and also by a similar technique on finite time
extinction of catalytic branching process of [2]. There is another important key point,
i.e., decomposition of initial measures. Suppose that the initial measure has a finite
deconposition p = Y. u;. If we can show finite time extinction for each initial measure
X4 = s, then the branching property implies finite time extinction for Xg = u. Therefore
it is very useful that the stable random measure v admits a representation of sum of
discrete points. After all, we obtain lim;_,, lﬁgu(fcg #0 and supp(X;)C Ck)=0 for
a fixed sample y(w), which means that the process X7 exhibits finite time extinction.
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