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1 Description of the model

For any $\lambda\geq 1$ , let $Q_{t}^{\lambda},$ $V_{t}^{\lambda},$ $P_{t}^{\lambda}\in R^{d}$ denote the position, the velocity and the
momentum of a particle, respectively. We assume that the velocity $V_{t}^{\lambda}$ is given by
$V_{t}^{\lambda}=\vec{\sqrt{1+|P_{t}^{\lambda}|^{2}}}P^{\lambda}$ , i. e., we assume that the system is relativistic, and for the sake of

simplicity, we wrote the speed of light as 1. Moreover, we assume that the motion
of the particle is given by the following stochastic differential equation:

$\{\begin{array}{l}dQ_{t}^{\lambda}=^{P^{\lambda}}dt\vec{\sqrt{1+|P_{t}^{\lambda}|^{2}}}dP_{t}^{\lambda}=\sigma(Q_{t}^{\lambda})dB_{t}-\gamma_{\vec{\sqrt{1+|P_{t}^{\lambda}|^{2}}}}^{P^{\lambda}}dt-\lambda\nabla U(Q_{t}^{\lambda})dt,(Q_{0}^{\lambda}, P_{0}^{\lambda})=(q_{0},p_{0}) .\end{array}$ (1.1)

Here $\gamma>0$ is a constant. We will take the limit $\lambdaarrow\infty$ later. Our system (1.1) can
be considered as a decayed and randomized system with Hamiltonian

$H(q,p)=\sqrt{1+p^{2}}+\lambda U(q)$ .

We assume that $\sigma\in C^{\infty}(R^{d}, R^{d\cross d})$ is bounded and $t\sigma\sigma$ is uniformly elliptic,
where $t$ means the tranpose of a matrix.

As for the potential function $U$ , we assume that $U\in C_{0}^{\infty}(R^{d};R)$ is spherical
symmetric and satisfies the following conditions: There exist constants $r_{2}>r_{1}>0$

such that $U(x)=0$ if $|x|\geq r_{2},$ $U(x)>0$ if $|x|<r_{1}$ , and $U(x)<0$ if $|x|\in$

$(r_{1}, r_{2})$ . Let $h$ be the real-valued function such that $U(x)=h(|x|)$ . In addition,

we assume that there exists a constant $\epsilon_{0}\in(0, r_{1}/2\wedge(r_{2}-r_{1})/2)$ and a function
$k\in C_{0}^{\infty}(R^{d};R)$ such that $\Vert k\Vert_{\infty}\leq 1$ and $|h’(|x|)|=h’(|x|)k(x)$ if $x\in A$ , where
$A:=\{x\in R^{d}|||x|-r_{1}|\leq\epsilon_{0} or |x|\geq r_{2}-\epsilon_{0}\}.$
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We also assume that $U(q_{0})=0$ , i. e., we assume that the particle starts from a
position that is far enough from the origin such that the initial potential is $0.$

We are interested in the behavior of the particle described by (1.1) when $\lambdaarrow\infty.$

[2] considered a similar question for the non-relative model, in the case where $U$ gives
a reflecting force, precisely, in the case where there exist constants $r,$ $\epsilon>0$ such that
$U(q)=0$ when $|q|>r$ and $U(q)>0$ when $|q|\in(r-\epsilon, r)$ , and got a limit process
given as a diffusion process reflecting at $|Q_{t}|=r$ . In contrast, in our model, $U$ gives
an absorbing force as soon as the particle enters $|Q_{t}|<r_{2}$ , which means that when
$\lambdaarrow\infty,$ $P_{t}$ becomes infinity in an instant. (This constitutes the main difficulty in
the treatment of our model).

As in the relation between [2] and [3], this problem is also closely related to
the problem of “mechanical models of Brownian motions” with absorbing resulting-
interactions. Our limit $\lambdaarrow\infty$ in this study corresponds to the fact that the mass
$m$ of the environmental gas particles converges to $0$ in that problem (see [4] for
details).

2 Idea

Recall that we are interested in the limit behavior of the particle evolving according
to (1.1) when $\lambdaarrow\infty.$

First notice that although $P_{t}$ , instead of $V_{t}$ , is the one that seems to be more
natural to be considered, it is hopeless to have $P_{t}^{\lambda}$ to converge as $\lambdaarrow\infty$ or to track
the behavior of it directly: when $\lambdaarrow\infty,$ $P_{t}^{\lambda}$ , although keeps finite in the domain
$U(Q_{t})=0$ , actually diverges to $\infty$ in the domain $U(Q_{t})\neq 0$ . However, although
$P_{t}^{\lambda}$ might diverge to $\infty$ as $\lambdaarrow\infty$ , we have that $V_{t}^{\lambda}$ is always bounded by 1, and
whenever $|P_{t}^{\lambda}|<\infty$ , we always have that $P_{t}^{\lambda}=\vec{\sqrt{1-|V_{t}^{\lambda}|^{2}}}V^{\lambda}$ . Also, it is $V_{t}$ instead of $P_{t}$

that gives us the velocity of the particle. Therefore, we use $(Q_{t}, V_{t})$ to describe the
behavior of a particle.

We can prove that $\{$ the distribution of $\{(Q_{t}^{\lambda}, V_{t}^{\lambda})\}_{t};\lambda\geq 1\}$ is tight, which makes
it prospective that the mentioned distribution converges as $\lambdaarrow\infty$ . But how to
describe the limit process?

In order to explain the main difficulty of this problem, let us first make some
observation about the behavior of the particle when $\lambdaarrow\infty$ , under the assumption
of the desired convergence. First of all, notice that in the limit $\lambdaarrow\infty$ , by looking
at the total energy of the particle, we find easily that the particle keeps in the
domain $|Q_{t}|\geq r_{1}$ . Also, the behavior of the particle in the area $|Q_{t}|>r_{2}$ is
trivial: in this domain, we have $U(Q_{t})=0$ , so the particle evolves according to the
diffusion process without the term $-\lambda\nabla U(Q_{t})dt$ , so after taking $\lambdaarrow\infty$ , we still
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have the same diffusion. This gives us a “diffusion phase” When $|Q_{t}|\in(r_{1}, r_{2})$ , the
term $-\lambda\nabla U(Q_{t})dt$ gives us a very strong “absorbing” force when $\lambdaarrow\infty$ , which
is parallel to $Q_{t}$ , hence $P_{t}$ becomes very large (and parallel to $Q_{t}$ ) in a very short
time, therefore, heuristically $V_{t}$ should be $\pm\frac{Q_{t}}{|Q_{t}|}$ in the area $|Q_{t}|\in(r_{1}, r_{2})$ . This gives
us our second phase: the “uniform motion phase” Therefore, it is not difficult to
see heuristically that our limit process should be a combination of two phases: a
diffusion phase $($ for $|Q_{t}|>r_{2})$ and a uniform motion phase $(for |Q_{t}|\in(r_{1}, r_{2}))$ .

The problem is, how does the particle evolve when it reaches the boundary
$|Q_{t}|=r_{2}$? Precisely, notice that in the limit, when the particle crosses $|Q_{t}|=r_{2},$

since the value of $|P_{t}|$ jumps between $\infty$ and a finite value as we just mentioned, we
have that $|V_{t}|$ also jumps between 1 and a number that is strictly less than 1. So $V_{t}$

is not continuous either.
There is no problem when the particle reaches the boundary from the diffusion

phase: Since $Q_{t}$ is continuous with respect to $t$ , the particle simply enters the uniform
motion phase with initial condition $V_{t}=- \frac{Q_{t}}{|Q\ell|}$ . However, the answer is not so clear
when the particle reaches the boundary from the uniform motion phase: we have
to determine whether it stays in the uniform motion phase by taking $V_{t}=- \frac{Q_{t}}{|Q_{t}|}$ or
re-enters the diffusion phase; and in the latter case, what is the new initial velocity
$V_{t}$ of the particle? So we have to answer the question “what is the value of $V_{t}$ (or
$P_{t})$ at this moment”? Notice that aejust mentioned, when $\lambdaarrow\infty,$ $|P_{t}|$ becomes $\infty$

in the domain $|Q_{t}|\in(r_{1}, r_{2})$ , so it is hopeless to track $P_{t}$ (or $V_{t}$ ) directly.

Let us explain the idea of our solution to this problem in the rest of this section.
First notice that the norm $|V_{t}|$ of the velocity for $|Q_{t}|>r_{2}$ could be determined in
the following way: Let

$H_{t}^{\lambda}:= \sqrt{1+|P_{t}^{\lambda}|^{2}}+\lambda U(Q_{t}^{\lambda})=\frac{1}{\sqrt{1-|V_{t}^{\lambda}|^{2}}}+\lambda U(Q_{t}^{\lambda})$.

Notice that when $|Q_{t}^{\lambda}|>r_{2}$ , we have that $U(Q_{t}^{\lambda})=0$ , hence $H_{t}^{\lambda}= \frac{1}{\sqrt{1-|V_{t}^{\lambda}|^{2}}},$

equivalently, $|V_{t}^{\lambda}|=\sqrt{1-\frac{1}{|H_{t}^{\lambda}|^{2}}}$. Therefore, in order to determine the value of $|V_{t}^{\lambda}|,$

it suffices to find the value of $H_{t}^{\lambda}$ . On the other hand, by Ito’s formula and (1.1),
we get that $H_{t}^{\lambda}$ satisfies a stochastic differential equation which does not include $\lambda$

explicitly, precisely, it satisfies

$dH_{t}^{\lambda}=A_{1}^{h}(Q_{t}^{\lambda}, V_{t}^{\lambda})dB_{t}+A_{2}^{h}(Q_{t}^{\lambda}, V_{t}^{\lambda})dt$

with some proper $A_{1}^{h}(q, v)$ and $A_{2}^{h}(q, v)$ (see Section 3 for their precise expressions).
Therefore, after taking the limit $\lambdaarrow\infty$ , we still have that $H_{t}$ satisfies the same
equation, i. e., $H_{t}$ is continuous and tractable.
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Now, with $|V_{t}|$ known, we need to determine the direction of $V_{t}$ . This problem is
solved based on the following observation. Notice that our main difficulty that $P_{t}$ is
possibly infinity, caused by the $term-\lambda\nabla U(Q_{t}^{\lambda})dt$ of (1.1), occurs only in the $Q_{t^{-}}$

direction. Therefore, the component of $P_{t}$ that is perpendicular to $Q_{t}$ should also be
tractable $(i.e.$ , finite, continuous and could be expressed by a stochastic differential
equation). Precisely, for any $a,$ $b\in R^{d}$ with $a\neq 0$ , let $\pi_{a}b$ and $\pi_{a}^{\perp}b$ denote the
components of $b$ that are parallel to $a$ and perpendicular to $a$ , respectively, i. e.,

$\pi_{a}b=\frac{b\cdot a}{|a|^{2}}a, \pi_{a}^{\perp}b=b-\frac{b\cdot a}{|a|^{2}}a.$

We define
$R_{t}^{\lambda}:=\pi_{Q_{t}^{\lambda}}^{\perp}P_{t}^{\lambda}.$

Then $R_{t}$ is tractable (see Section 3 for details).
$(Q_{t}, H_{t}, R_{t})$ determines the behavior of the particle when it arrives the boundary

$|Q_{t}|=r_{2}$ in the following way: in the diffusion phase, we have that $|\pi_{Q_{t}^{\lambda}}P_{t}^{\lambda}|^{2}=$

$|P_{t}^{\lambda}|^{2}-|R_{t}^{\lambda}|^{2}=|H_{t}^{\lambda}|^{2}-1-|R_{t}^{\lambda}|^{2}$, i. e., $\pi_{Q_{t}^{\lambda}}P_{t}^{\lambda}$ is determined by $(Q_{t}^{\lambda}, H_{t}^{\lambda}, R_{t}^{\lambda})$ up
to $\pm 1$ . Especially, in the moment that the particle re-enters the diffusion domain
$|Q_{t}^{\lambda}|>r_{2}$ from the uniform motion domain $|Q_{t}^{\lambda}|\in(r_{1}, r_{2})$ , we must have that

$\pi_{Q_{t}^{\lambda}}P_{t}^{\lambda}$ has the same direction as $Q_{t}^{\lambda}$ , so $P_{t}^{\lambda}$ and $V_{t}^{\lambda}$ are uniquely determined by
$(Q_{t}^{\lambda}, H_{t}^{\lambda}, R_{t}^{\lambda})$ . See Section 3 for the precise expression. This fact keeps tme when
$\lambdaarrow\infty$ . Moreover, we can prove that the sufficient and necessary condition for the
particle to re-enter the diffusion phase is that this precise expression is well-defined.
Since as mentioned, $H_{t}$ and $R_{t}$ are continuous and tractable even after $\lambdaarrow\infty$ , this
enables us to determine $V_{t}$ for $|Q_{t}|=r_{2}$ after taking limit $\lambdaarrow\infty.$

3 Result
Let us present our result in this section.

Let $\overline{W}^{d}$

$:=C([0, \infty);R^{d})\cross D([0, \infty);R^{d})\cross C([0, \infty);R)\cross C([O, \infty);R^{d})$ , where
$D([O, \infty);R^{d})$ denotes the set of $R^{d}$-valued functions defined on $[0, \infty)$ that are
right-continuous with left limit which exists at every point. We define the metric
function dist $(\cdot, \cdot)$ on $\overline{W}^{d}$ given by

dist $(w_{1}, w_{2})$ $;=$ $\sum_{n=1}^{\infty}2^{-n}(1\wedge[\max_{t\in[0,n]}|q_{1}(t)-q_{2}(t)|+(\int_{0}^{n}|v_{1}(t)-v_{2}(t)|^{n})^{1/n}$

$+ \max|h_{1}(t)-h_{2}(t)|+\max|r_{1}(t)-r_{2}(t)|])$
$t\in[0,n] t\in[0,n]$

for any $w_{i}(\cdot)=(q_{i}(\cdot), v_{i}(\cdot), h_{i}(\cdot), r_{i}(\cdot))\in\overline{W}^{d},$ $i=1,2$ . In other words, we are
considering $\Vert$ $\Vert_{\infty}$-norm for $q,$ $h,$ $r$ and $L^{p}$-norm for $v$ until any finite time.
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Let $\mu_{\lambda}$ denote the distribution of $\{(Q_{t}^{\lambda}, V_{t}^{\lambda}, H_{t}^{\lambda}, R_{\sqrt{}}^{\lambda});t\in[O, \infty)\}$. We prove that
when $\lambdaarrow\infty,$

$\mu_{\lambda}$ converge weakly as probabilities on $\overline{W}^{d}.$

In order to present our limit process, let us first prepare some notations. For
any $q,$ $v\in R^{d}$ , let

$A_{1}^{h}(q, v) = tv\sigma(q)$ ,

$A_{2}^{h}(q, v) = - \gamma|v|^{2}+\frac{1}{2}\sqrt{1-|v|^{2}}\sum_{i,j=1}^{d}\sigma_{ij}^{2}(q)-\frac{1}{2}\sqrt{1-|v|^{2}}|^{t}\sigma(q)v|^{2},$

$A_{1}^{r}(q, v) = \sigma(q)-\frac{1}{|q|^{2}}q^{t}q\sigma(q)$ ,

$A_{2}^{r}(q, v, r) = - \gamma\sqrt{1-|v|^{2}}r-\sqrt{1-|v|^{2}}|r|^{2}\frac{q}{|q|^{2}}-\frac{(q,v)}{|q|^{2}}r,$

$A_{1}^{v}(q, v) = \sqrt{1-|v|^{2}}(\sigma(q)-v^{t}v\sigma(q))$ ,

$A_{2}^{v}(q, v) = - \gamma(1-|v|^{2})^{3/2}v-\frac{1}{2}(1-|v|^{2})(\sum_{i,j=1}^{d}\sigma_{ij}^{2}(q))v$

$+ \frac{3}{2}(1-|v|^{2})|^{t}\sigma(q)v|^{2}v-(1-|v|^{2})\sigma(q)^{t}\sigma(q)v,$

let $K_{1}(q, v)$ be the $(3d+1)\cross d$-matrix and let $K_{2}(q, v, r)$ be the $(3d+1)\cross 1$-matrix
given by the following, respectively:

$K_{1}(q, v)=(\begin{array}{l}01_{\{|q|>r_{2}\}}A_{1}^{v}(q,v)A_{1}^{h}(q,v)A_{1}^{r}(q,v)\end{array}),$ $K_{2}(q, v, r)=(\begin{array}{ll}v 1_{\{|q|>r_{2}\}}A_{2}^{v}(q v)A_{2}^{h}(q,v) A_{2}^{r}(q,v,r) \end{array})$

Finally, let $L$ be the generator

$Lf(q, v, h, r)= \frac{1}{2}\sum_{i,j=d+1}^{3d+1}(K_{1}(q, v)^{t}K_{1}(q, v))_{ij}\nabla_{i}\nabla_{j}f(q, v, h, r)+K_{2}(q, v, r)\cdot\nabla f(q, v, h, r)$ .

Here $(*)_{ij}$ stands for the $(i,j)$ -element of the matrix $*,$ $\nabla=t(\nabla_{1}, \cdots, \nabla_{3d+1})$ , and

$\nabla_{i}=\{\begin{array}{ll}\nabla_{q_{i}}, i=1, \cdots, d,\nabla_{v_{i-d}}, i=d+1, \cdots, 2d,\nabla_{h}, i=2d+1,\nabla_{r_{i-2d-1}}, i=2d+2, \cdots, 3d+1.\end{array}$

Our main result is the following.

THEOREM 3.1 1. There exists a unique probability measure $\mu$ on $\overline{W}^{d}$ that
satisfies the following:
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$( \mu 1)\mu(Q_{0}=q_{0}, V_{0}=\frac{p0}{\sqrt{1+|po|^{2}}}, H_{0}=\sqrt{1+|p_{0}|^{2}}, R_{0}=\pi_{q0}^{\perp}p_{0})=1.$

$(\mu 2)\mu(|Q(t)|\geq r_{1}, |V(t)|\leq 1, t\in[O, \infty))=1.$

$(\mu 3)$ For any $f\in C_{0}^{\infty}(R^{3d+1})$ with suppf $\subset\{(B(r_{2})\backslash \overline{B(r_{1})})\cup(\overline{B(r_{2})})^{C}\}\cross R^{d}\cross$

$R\cross R^{d}$ , we have that $\{f(Q_{t}, V_{t}, H_{t}, R_{t})-\int_{0}^{t}Lf(Q_{s}, V_{s}, H_{s}, R_{s})d_{\mathcal{S}};t\geq 0\}$

is a continuous martingale under $\mu.$

$(\mu 4)$ We have $\mu$-almost surely the following: For any $t\in[0, \infty),$ $|Q_{t}|\in(r_{1}, r_{2})$

implies that $V_{t}= \pm\frac{Q_{t}}{|Q_{t}|}$ and that $V_{t}=V_{t-}$ , also, $|Q_{t}|=r_{1}$ implies that
$V_{t}= \frac{Q_{t}}{|Q_{t}|}.$

$(\mu 5)$ We have $\mu$ -almost surely that for $t\in[0, \infty)$ with $|Q_{t}|=r_{2},$

(1) if $Q_{t}\cdot V_{-}<0$ , then $V_{t}=- \frac{Q_{t}}{|Q_{t}|}$ ;

(2) if $Q_{t}\cdot V_{t-}>0$ and $H_{t}<\sqrt{1+|R_{t}|^{2}}$ , then $V_{t}=- \frac{Q_{t}}{|Q_{t}|}$ ;

(3) if $Q_{t}\cdot V_{t-}>0$ and $H_{t}>\sqrt{1+|R_{t}|^{2}}$, then $V_{t}= \frac{\sqrt{H_{t}^{2}-1-|R_{t}|^{2}}Q_{t}/|Q_{\ell}|+R_{t}}{H_{t}}.$

2. In addition, we assume that $h’(r_{1})<0$ and $\lim_{aarrow r_{2}-0}\frac{h’(a)}{h(a)}=-\infty$ . Then when
$\lambdaarrow\infty,$ $\mu_{\lambda}arrow\mu$ as probability measures on $(\overline{W}^{d}, dist)$ .

We remark that under $\mu$ , we have that $Q_{t},$ $H_{t}$ and $R_{t}$ are continuous, and $V_{t}$ is
right-continuous with left limit at each $t.$

Remark 1 The elements $1_{\{|Q_{t}|>r_{2}\}}A_{i}^{v}(Q_{t}, V_{t})(i=1,2)ofK_{1}(Q_{t}, V_{t})$ and $K_{2}(Q_{t}, V_{t}, R_{t})$

are not $0$ only if $|Q_{t}|>r_{2}$ , and in this domain, we get by a simple calculation that
under $\mu$ , the following holds: (1) $|V_{t}|<1,$ (2) the distribution of $(Q_{t},V)\vec{\sqrt{1-|V_{t}|^{2}}}\iota s$

a solution of the martingale problem corresponding to $dQ_{t}=V_{t}dt,$
$d(V\infty\sqrt{1-|V_{t}|^{2}})=$

$\sigma(Q_{t})dB_{t}-\gamma V_{t}dt$, equivalently, $(Q_{t}, \frac{V_{t}}{\sqrt{1-|V_{t}|^{2}}})$ satisfies (1.1) with $\lambda=0,$ (3) $(H_{t}, R_{t})$

is actually completely determined by $Q_{t}$ and $V_{t}:H_{t}= \frac{1}{\sqrt{1-|V_{t}|^{2}}}$ and $R_{t}= \frac{1}{\sqrt{1-|V_{t}|^{2}}}\pi_{Q_{t}}^{\perp}V_{t}.$

Also, when $|Q_{t}|\in(r_{1}, r_{2})$ , we have by $(\mu 4)$ that $|V_{t}|=1$ , hence $A_{2}^{h}(Q_{t}, V_{t})=-\gamma$ and
$A_{2}^{r}(Q_{t}, V_{t}, R_{t})=- \frac{(Q_{t},V_{t})}{|Q_{t}|^{2}}R_{t}$ . Moreover, in this domain, $Q_{t}$ and $V_{t}$ are deterministic.

The opposite is also true: if a probability satisfies $(\mu 5)$ and all of the conditions
stated above, it also satisfies $(\mu 1)\sim(\mu 5)$ .

Therefore, we can “divide” our limit process as follows. Let

$L_{0}f(q,p)= \sum_{i=1}^{d}\frac{p^{i}\partial}{\sqrt{1+|p|^{2}}\partial q_{i}}f(q,p)+\frac{1}{2}\sum_{i,j=1}^{d}(\sum_{k=1}^{d}\sigma_{ik}(q)\sigma_{jk}(q))\frac{\partial^{2}}{\partial p_{i}\partial p_{j}}f(q,p)$

$- \gamma\sum_{i=1}^{d}\frac{p^{i}\partial}{\sqrt{1+|p|^{2}}\partial p_{i}}f(q,p)$ ,
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and

$L_{u}f(q, v, h, r)= \sum_{i=1}^{d}v_{i}\frac{\partial}{\partial q_{i}}f-\gamma\frac{\partial}{\partial h}f(q, v, h, r)-\sum_{i=1}^{d}\frac{(q,v)}{|q|^{2}}r_{i}\frac{\partial}{\partial r_{i}}f(q, v, h, r)$

$+ \frac{1}{2}|^{t}\sigma(q)v|^{2}\nabla_{h}^{2}f(q, v, h, r)+\frac{1}{2}\sum_{i,j=1}^{d}[(\sigma(q)-\frac{tqq\sigma(q)}{|q|^{2}})^{2}]_{i,j}\frac{\partial^{2}}{\partial r_{i}\partial r_{j}}f(q, v, h, r)$

$+ \sum_{i=1}^{d}(\sum_{j,k=1}^{d}v_{j}\sigma_{jk}(q)(\sigma_{ik}(q)-\frac{1}{|q|^{2}}q_{i}\sum_{l=1}^{d}q_{l}\sigma_{lk}(q)))\frac{\partial^{2}}{\partial h\partial r_{i}}f(q, v, h, r)$.

Then our limit process can also be described by $L_{0}$ and $L_{u}$ in the following way. Our
limit process consists of two phases, a diffusion phase and a uniform motion phase.
Precisely, it satisfies the following:

1. the particle keeps in the area $|Q_{t}|\geq r_{1}$ ;

2. when $|Q_{t}|>r_{2},$
$(Q_{t},V)\vec{\sqrt{1-|V_{t}|^{2}}}$ evolves according to the diffusion with genemtor

$L_{0}$ , and $(H_{t}, R_{t})$ are given by $H_{t}= \frac{1}{\sqrt{1-|V_{t}|^{2}}}$ and $R_{t}= \frac{1}{\sqrt{1-|V_{t}|^{2}}}\pi_{Q_{t}}^{\perp}V_{t}$ ;

3. the particle takes uniform motion in the area $|Q_{t}|\in(r_{1}, r_{2})$ with $V_{t}=V_{t-}=$

$\pm\frac{Q_{t}}{|Q_{t}|}$ and it reflects at $|Q_{t}|=r_{1}$ $($hence $(Q_{t}, V_{t})$ , the “visible” motion of the
particle, is completely deterministic in this domain), and $(Q_{t}, V_{t}, H_{t}, R_{t})$ is a
diffusion with genemtor $L_{u},$

4. finally, its behavior at the boundary $|Q_{t}|=r_{2}$ of these two phases is determined
as follows: when the particle awives $|Q_{t}|=r_{2}$ from the diffusion phase, $it$

simply enters the uniform motion phase by taking $V_{t}=- \frac{Q_{t}}{|Q_{t}|}$ ; when the particle
arrives at $|Q_{t}|=r_{2}$ from the uniform motion phase, it either keeps in the
uniform motion phase by reflecting or $re$-enters the diffusion phase, depending
on the value of $H_{t}$ and $R_{t}$ at that moment, according to $(\mu 5)$ .
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