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Abstract

The aim of this note is to give a summary of [5]. We study Hamilton-
Jacobi-Bellman (HJB) equations of ergodic type associated with some stochas-
tic ergodic control problems. We prove that the optimal value of the stochas-
tic control problem coincides with the generalized principal eigenvalue of the
corresponding HJB equation. The results can be regarded as a nonlinear ex-
tension of the criticality theory for linear Schr\"odinger operators with decaying
potentials.

1 Introduction and Main results
In this note we consider the following minimization problem with real parameter $\beta$ :

Minimize $J_{\beta}( \xi):=\lim_{Tarrow}\sup_{\infty}\frac{1}{T}E[\int_{0}^{T}\{\frac{|\xi_{t}|^{2}}{2c(X_{t}^{\xi})}-\beta V(X_{t}^{\xi})\}dt],$

(1)
subject to $X_{t}^{\xi}=x- \int_{0}^{t}\xi_{S}ds+W_{t},$ $t\geq 0,$

where $W=(W_{t})$ is an $N$-dimensional standard Brownian motion defined on some
filtered probability space $(\Omega, \mathcal{F}, P;(\mathcal{F}_{t}))$ , and $\xi=(\xi_{t})$ stands for an $\mathbb{R}^{N}$-valued $(\mathcal{F}_{t})-$

progressively measurable process belonging to the admissible class $\mathcal{A}$ defined by

$\mathcal{A}:=\{\xi$ : $[0,$ $\infty)\cross\Omegaarrow \mathbb{R}^{N}|ess-\sup_{[0,T]\cross\Omega}|\xi_{t}|<\infty$ for all $T>0\}.$
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We assume throughout this note that $c$ and $V$ satisfy the following properties:

(Hl) $c\in C_{b}^{2}(\mathbb{R}^{N})$ and $\kappa\leq c\leq\kappa^{-1}$ in $\mathbb{R}^{N}$ for some $\kappa>0.$

(H2) $V\in C_{b}^{2}(\mathbb{R}^{N}),$ $V\geq 0$ in $\mathbb{R}^{N},$ $V\not\equiv 0$ , and $|x|^{2}V(x)arrow 0$ as $|x|arrow\infty.$

Here, $C_{b}^{2}(\mathbb{R}^{N})$ denotes the set of $C^{2}$-functions $f$ on $\mathbb{R}^{N}$ such that $f$ and its first and
second derivatives are bounded on $\mathbb{R}^{N}.$

We are interested in characterizing the optimal value $\Lambda(\beta)$ $:= \inf_{\xi\in \mathcal{A}}J_{\beta}(\xi)$ as well
as the optimal control of (1) in terms of the associated partial differential equation.
More specifically, we consider the following HJB equation of ergodic type:

$\lambda-\frac{1}{2}\Delta\phi+\frac{1}{2}c(x)|D\phi|^{2}+\beta V(x)=0$ in $\mathbb{R}^{N}$ . ( $EP$ )

The unknown of ( $EP$ ) is the pair $(\lambda, \phi)\in \mathbb{R}\cross C^{2}(\mathbb{R}^{N})$ .
We now set

$\lambda^{*}$ $:= \sup${ $\lambda|$ ( $EP$ ) has a $C^{2}$-subsolution $\phi$ }. (2)

Then the following theorem holds.

Theorem 1.1 (Theorem 2.1 of [5]). Let (Hl) and (H2) hold. Then $\lambda^{*}$ is well-defined
and finite. Moreover, ( $EP$ ) has a solution $\phi\in C^{2}(\mathbb{R}^{N})$ if and only if $\lambda\leq\lambda^{*}.$

We call $\lambda^{*}$ the generalized principal eigenvalue of ( $EP$ ). Note that the value of
$\lambda^{*}$ depends on $\beta$ . The next theorem concems qualitative properties of $\lambda^{*}(\beta)$ with
respect to $\beta.$

Theorem 1.2. Let (Hl) and (H2) hold. Let $\lambda^{*}=\lambda^{*}(\beta)$ be the generalized principal
eigenvalue of ( $EP$).
(i) The mapping $\beta\mapsto\lambda^{*}(\beta)$ is non-positive, non-increasing, and concave.
(ii) There exists a $\beta_{c}\geq 0$ such that $\lambda^{*}(\beta)=0$ for $\beta\leq\beta_{c}$ and $\lambda^{*}(\beta)<0$ for $\beta>\beta_{c}.$

(iii) $\beta_{c}=0$ for $N\leq 2$ and $\beta_{c}>0$ for $N\geq 3.$

(iv) $\lambda^{*}(\beta)=\Lambda(\beta)$ for all $\beta.$

We next consider the “ground state” of ( $EP$ ), namely, a solution $\phi$ of the equation

$\lambda^{*}-\frac{1}{2}\triangle\phi+\frac{1}{2}c(x)|D\phi|^{2}+\beta V(x)=0$ in $\mathbb{R}^{N}.$ $(EP^{*})$

Theorem 1.3. Let (Hl) and (H2) hold. Let $\beta_{c}$ be the constant given in Theorem
1.2.
(i) For any $\beta\geq\beta_{c}$ , there exists at most one solution $\phi\in C^{2}(\mathbb{R}^{N})$ of $(EP^{*})$ up to
an additive constant.
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(ii) Suppose that $\beta>\beta_{c}$ . Then, there exists a $C>0$ such that the solution $\phi$ of
$(EP^{*})$ satisfies

$C^{-1}|x|-C\leq\phi(x)\leq C(1+|x|) , x\in \mathbb{R}^{N}.$

(iii) Suppose that $\beta=\beta_{c}$ . Then, there exists a $C>0$ such that the solution $\phi$ of
$(EP^{*})$ satisfies

$C^{-1}\log(1+|x|)-C\leq\phi(x)\leq C\log(1+|x|)+C, x\in \mathbb{R}^{N}.$

Theorem 1.3 plays a key role in constructing the optimal control of the stochastic
ergodic control (1).

Theorem 1.4. Assume (Hl) and (H2). Let $\phi=\phi(x)$ be a solution of $(EP^{*})$ , and let
$X=(X_{t})$ be the diffusion process governed by the stochastic differential equation

$dX_{t}=-c(X_{t})D\phi(X_{t})dt+dW_{t}, X_{0}=x$ . (3)

(i) $X$ is transient for $\beta<\beta_{c}$ , positive recurrent for $\beta>\beta_{c}$ , and recurrent for
$\beta=\beta_{c}.$

(ii) Set $\xi_{t}^{*}$ $:=c(X_{t})D\phi(X_{t})$ . Then $\lambda^{*}(\beta)=J_{\beta}(\xi^{*})$ for all $\beta\geq\beta_{c}$ , and $\lambda^{*}(\beta)=J_{\beta}(0)$

for all $\beta\leq\beta_{c}$ . In other words, $\xi^{*}$ is an optimal control provided $\beta\geq\beta_{c}.$

The proof of Theorem 1.4 relies on the so-called Lyapunov method, which allows
one to link the recurrence and transience of $X$ to the asymptotic behavior as $|x|arrow$

$\infty$ of the solution $\phi$ of $(EP^{*})$ . We refer to Section 4 of [5] for details (see also
[1,3,4,6,7,12] $)$ .

2 Criticality

In this section we discuss a relationship between Theorem 1.4 and the criticality
theory for linear Schr\"odinger operators. Throughout this section, we assume that
$c\equiv 1$ . In such a special case, ( $EP$ ) can be written as

$\lambda-\frac{1}{2}\triangle\phi+\frac{1}{2}|D\phi|^{2}+\beta V(x)=0$ in $\mathbb{R}^{N}$ . (4)

Let $(\lambda, \phi)$ be a solution of (4), and set $h$ $:=e^{-\phi}$ (this transformation is called the
Cole-Hopf transform). Then $h$ is a positive solution of the stationary problem

$-\mathcal{L}h=\lambda h$ in $\mathbb{R}^{N},$ $\mathcal{L}:=\frac{1}{2}\triangle+\beta V$ (5)
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Let $\sigma(-\mathcal{L})$ denote the spectrum of the self-adjoint extension $of-\mathcal{L}$ in $L^{2}(\mathbb{R}^{N})$ . Then
we have

$\lambda^{*}=\sup${ $\lambda|(4)$ has a solution $\phi$}
$= \sup${ $\lambda|(5)$ has a positive solution $h$ } $= \inf\{z|z\in\sigma(-\mathcal{L})\}.$

This observation allows one to extend the notion of principal eigenvalue to the
nonlinear equation ( $EP$ ).

We now explain the connection between Theorem 1.4 and the classical criticality
theory for Schr\"odinger operators. Let us consider the elliptic equation

$(\mathcal{L}+\lambda^{*})h=0$ in $\mathbb{R}^{N},$ $\mathcal{L}:=\frac{1}{2}\Delta+\beta V$ (6)

Then, in view of the criticality theory for linear operators (see [2, 8, 9, 10, 11, 12, 13]),
we see that $\mathcal{L}+\lambda^{*}$ is critical for $\beta\geq\beta_{c}$ and subcritical for $\beta<\beta_{c}$ . Recall that
$\mathcal{L}+\lambda^{*}$ is called subcritical if there exists a Green function of $\mathcal{L}+\lambda^{*}$ , and called
critical if there is no Green function of $\mathcal{L}+\lambda^{*}$ but (6) has a positive solution.
From the probabilistic point of view, the notions of criticality and subcriticality
are equivalent to the recurrence and transience of Doob’s $h$-transformed process,
respectively. Here, Doob’s $h$-transformed process is defined as a diffusion process
whose infinitesimal generator is given by $\mathcal{L}^{h}+\lambda^{*}$ , where $\mathcal{L}^{h}$ denotes the $h$-transform
of $\mathcal{L}$ :

$\mathcal{L}^{h}f:=\frac{1}{h}\mathcal{L}(hf)=\frac{1}{2}\Delta f+\frac{Dh}{h}\cdot Df+\frac{\mathcal{L}h}{h}f, f\in C^{2}(\mathbb{R}^{N})$ .

We point out that Doob’s $h$-transformed process coincides with the feedback diffu-
sion $X$ governed by (3) provided $c\equiv 1$ . Indeed, set $\phi$ $:=-\log h$ . Then, by the
definitions of $h$ and $\mathcal{L}^{h}$ , we see that

$\mathcal{L}^{h}+\lambda^{*}=\frac{1}{2}\Delta+\frac{Dh}{h}\cdot D=\frac{1}{2}\Delta-D\phi\cdot D,$

which coincides with the infinitesimal generator of the feedback diffusion (3) with
$c\equiv 1$ . In this sense, Theorem 1.4 can be regarded as a nonlinear extension of the
criticality theory in terms of the stochastic optimal control.

We close this section by mentioning a connection between the stochastic ergodic
conrtol (1) and the finite time horizon problem. Let us consider the minimizing
problem

Minimize $J_{\beta}(\xi;T, x)$ $:=E[ \int_{0}^{T}\{\frac{1}{2}|\xi_{t}|^{2}-\beta V(X_{t}^{\xi})\}dt],$

(7)
subject to $X_{t}^{\xi}=x- \int_{0}^{t}\xi_{s}ds+W_{t},$ $t\geq 0.$
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Then the value function $u_{\beta}(T, x)$ $:= \inf_{\xi\in \mathcal{A}}J_{\beta}(\xi;T, x)$ of (7) turns out to be the
unique classical solution to the Cauchy problem

$\{\begin{array}{ll}\frac{\partial u}{\partial t}-\frac{1}{2}\triangle u+\frac{1}{2}|D\phi|^{2}+\beta V=0 in (0, \infty)\cross \mathbb{R}^{N},u(0, \cdot)=0 in \mathbb{R}^{N}.\end{array}$ ( $CP$ )

We now take the Cole-Hopf transform $v:=e^{-u}$ . Then $v$ satisfies the linear equation

$\{\begin{array}{ll}\frac{\partial v}{\partial t}-\frac{1}{2}\triangle v-\beta Vv=0 in (0, \infty)\cross \mathbb{R}^{N},v(0, \cdot)=1 in \mathbb{R}^{N}.\end{array}$

In order to guess the long-time behavior of $v$ , and therefore $u$ , we apply the formal
eigenfunction expansion:

$v(T, \cdot)=\sum_{i=1}^{\infty}e^{-\lambda_{i}T}(1, h_{i})h_{i}, \lambda_{i}\in \mathbb{R}, h_{i}\in L^{2}(\mathbb{R}^{N})$ , (8)

where (1, h) $:= \int_{\mathbb{R}^{N}}h(x)dx$ , and $(\lambda_{i}, h_{i})(i=1,2, \ldots)$ denote the pairs of eigenvalues
and eigenfunctions $of-\mathcal{L}$ . Suppose furthermore that $\lambda_{1}<\lambda_{2}\leq\lambda_{3}\leq\cdots$ . Then we
have

$\frac{u(T,\cdot)}{T}=-\frac{1}{T}\log(\sum_{i=1}^{\infty}e^{-\lambda_{i}T}(1, h_{i})h_{i})arrow\lambda_{1}$ as $Tarrow\infty.$

On the other hand, we also see that

$\Lambda(\beta)=\inf_{\xi\in \mathcal{A}}\lim_{Tarrow}\sup_{\infty}\frac{J_{\beta}(\xi;T,x)}{T}\geq\lim\sup\inf_{\xi Tarrow\infty\in \mathcal{A}}\frac{J_{\beta}(\xi;T,x)}{T}=\lim_{Tarrow}\sup_{\infty}\frac{u_{\beta}(T,x)}{T}.$

Hence, if the inequality above can be replace by an equality, we obtain

$\Lambda(\beta)=\lim_{Tarrow\infty}\frac{u_{\beta}(T,x)}{T}=\lambda^{*}(\beta)$ . (9)

Although the formal expansion (8) is not valid in our setting, the equalities (9) hold
true under (Hl) and (H2). See Section 7 of [5] for details.
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