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Abstract

The aim of this note is to give a summary of [5]. We study Hamilton-
Jacobi-Bellman (HJB) equations of ergodic type associated with some stochas-
tic ergodic control problems. We prove that the optimal value of the stochas-
tic control problem coincides with the generalized principal eigenvalue of the
corresponding HJB equation. The results can be regarded as a nonlinear ex-
tension of the criticality theory for linear Schrédinger operators with decaying
potentials.

1 Introduction and Main results

In this note we consider the following minimization problem with real parameter [3:

&)
2¢(X7¥)

- pv(xH) dt} ,

T
Minimize Jg(§) := limsup lE [/ {
T—o00 T 0

t
subject to X® =z — & ds+ W, t>0,
t
0

where W = (W;) is an N-dimensional standard Brownian motion defined on some
filtered probability space (Q, F, P; (F;)), and ¢ = (&) stands for an RV-valued (F)-
progressively measurable process belonging to the admissible class A defined by

A:={£:[0,00) x 2 —» R"Y| €sS-SuPjg 1yxq [§¢| < oo for all T > 0}.
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We assume throughout this note that c and V satisfy the following properties:
(H1) c€ CZRY)and k <c < k7!in RY for some k > 0.
(H2) VeC}RM),V>0inRN, V#£0, and |z|2V(z) — 0 as |z| — oo.

Here, C2(RY) denotes the set of C?-functions f on R¥ such that f and its first and
second derivatives are bounded on R¥.

We are interested in characterizing the optimal value A(8) := infee 4 J5(€) as well
as the optimal control of (1) in terms of the associated partial differential equation.
More specifically, we consider the following HJB equation of ergodic type:

A %A¢ + %c(m) IDG2+ AV(z) =0 in RV, (EP)

The unknown of (EP) is the pair (), @) € R x C?(RY).
We now set
X* := sup{\ | (EP) has a C*-subsolution ¢}. (2)

Then the following theorem holds.

Theorem 1.1 (Theorem 2.1 of [5]). Let (H1) and (H2) hold. Then A* is well-defined
and finite. Moreover, (EP) has a solution ¢ € C?(R¥) if and only if A < \*.

We call \* the generalized principal eigenvalue of (EP). Note that the value of
A* depends on (. The next theorem concerns qualitative properties of A*(3) with
respect to (.

Theorem 1.2. Let (H1) and (H2) hold. Let A* = A*(3) be the generalized principal
eigenvalue of (EP).

(i) The mapping B — A*(08) is non-positive, non-increasing, and concave.

(ii) There exists a B, > 0 such that \*(8) = 0 for 8 < 8, and A\*(83) < 0 for 8 > 8..
(iii) B.=0for N<2and 3. >0 for N > 3.

(iv) A*(8) = A(B) for all §.

We next consider the “ground state” of (EP), namely, a solution ¢ of the equation
1
= %Aqﬁ +5¢@)|Dg +6V(x) =0 in RV, (EP*)

Theorem 1.3. Let (H1) and (H2) hold. Let 8. be the constant given in Theorem
1.2.

(i) For any 8 > 8., there exists at most one solution ¢ € C?(R") of (EP*) up to
an additive constant.
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(ii) Suppose that 3 > B,. Then, there exists a C' > 0 such that the solution ¢ of
(EP*) satisfies
Clz| - C < ¢(z) <C(1+]xl), zeRM.

(iii) Suppose that 3 = 3,. Then, there exists a C > 0 such that the solution ¢ of
(EP*) satisfies
C~'log(1+ |z]) — C < ¢(z) < Clog(l + |z|) + C, = €RY.

Theorem 1.3 plays a key role in constructing the optimal control of the stochastic
ergodic control (1).

Theorem 1.4. Assume (H1) and (H2). Let ¢ = ¢(z) be a solution of (EP*), and let
X = (X;) be the diffusion process governed by the stochastic differential equation

dXt = —C(Xt)D¢(Xt) dt + th, XO - T. (3)

(i) X is transient for 3 < f,, positive recurrent for B > (., and recurrent for
ﬂ = /Bc-

(i) Set & := c(X;)D@(X:). Then A\*(B) = Js(£*) for all 8 > 3., and A*(8) = J5(0)
for all 8 < B.. In other words, £* is an optimal control provided 8 > £..

The proof of Theorem 1.4 relies on the so-called Lyapunov method, which allows
one to link the recurrence and transience of X to the asymptotic behavior as |z| —
oo of the solution ¢ of (EP*). We refer to Section 4 of [5] for details (see also
[1,3,4,6,7, 12]).

2 Criticality

In this section we discuss a relationship between Theorem 1.4 and the criticality
theory for linear Schrodinger operators. Throughout this section, we assume that

¢ = 1. In such a special case, (EP) can be written as
1
A= 386+ 2IDGP +5V(2) =0 in RY. (4)

Let (A, ¢) be a solution of (4), and set h := e~® (this transformation is called the
Cole-Hopf transform). Then A is a positive solution of the stationary problem

_Lh=)h in RV, L= %va. (5)



112

Let o(—L) denote the spectrum of the self-adjoint extension of —£ in L2(RY). Then

we have

A* = sup{A|(4) has a solution ¢}
= sup{\| (5) has a positive solution h} = inf{z2 |2z € o(-L)}.

This observation allows one to extend the notion of principal eigenvalue to the
nonlinear equation (EP).

We now explain the connection between Theorem 1.4 and the classical criticality
theory for Schrodinger operators. Let us consider the elliptic equation

(L+X)h=0 in RY, L:= %A + BV. (6)

Then, in view of the criticality theory for linear operators (see [2, 8, 9, 10, 11, 12, 13]),
we see that £ + \* is critical for 8 > (. and subcritical for # < (.. Recall that
L + A\* is called subcritical if there exists a Green function of £ + A*, and called
critical if there is no Green function of £ + A* but (6) has a positive solution.
From the probabilistic point of view, the notions of criticality and subcriticality
are equivalent to the recurrence and transience of Doob’s h-transformed process,
respectively. Here, Doob’s h-transformed process is defined as a diffusion process
whose infinitesimal generator is given by £" + \*, where £" denotes the h-transform
of L:

1 Dh Lh
Lhf = —ﬁﬁ(hf) —Af —-Df + f, f € C*}(RM).
We point out that Doob’s h—transformed process comcides with the feedback diffu-
sion X governed by (3) provided ¢ = 1. Indeed, set ¢ := —logh. Then, by the
definitions of h and L, we see that
1 Dh
£h+)\*=§A - D——A D¢ - D,

which coincides with the infinitesimal generator of the feedback diffusion (3) with
¢ = 1. In this sense, Theorem 1.4 can be regarded as a nonlinear extension of the
criticality theory in terms of the stochastic optimal control.

We close this section by mentioning a connection between the stochastic ergodic
conrtol (1) and the finite time horizon problem. Let us consider the minimizing

problem
Minimize J3(§;T,x) [/ { &2 — ﬁV(Xf)} dt] ,

(7)
subject to X& =z — / & ds + W, t>0.
0
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Then the value function ug(T,z) := infec 4 J3(€;T,z) of (7) turns out to be the
unique classical solution to the Cauchy problem

— — —Au+ —|D¢|2 +0V =0 in (0,00) x RY,
u(0, -) = in R¥,

(CP)

We now take the Cole-Hopf transform v := e~*. Then v satisfies the linear equation

%_EAU BVv =0 in (0,00) x RY,
'U(O, -):1 in RN

In order to guess the long-time behavior of v, and therefore u, we apply the formal

eigenfunction expansion:

o(T, ) =Y e (L, h)hi, MNER, hie ARY), (8)
i=1
where ( = Jan h(z)dz, and (A, h;) (i = 1,2,...) denote the pairs of eigenvalues
and elgenfunctlons of —L. Suppose furthermore that A\; < Ay < A3 < ---. Then we
have
T, - =
u(zi ) = ——;;log (; e‘)"'T(l,hi)hi> — A as T — oo.
On the other hand, we also see that
T,z : T, T

Hence, if the inequality above can be replace by an equality, we obtain

ug(T, x)

A(B) = lim = X°(B). (9)

T—o0

Although the formal expansion (8) is not valid in our setting, the equalities (9) hold
true under (H1) and (H2). See Section 7 of [5] for details.
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