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1 Abstract

The representations of functionals of Brownian motions (or Lévy processes) by stochastic integrals are im-
portant theorems in Probability theory. In particular, the Clark-Ocone formula is an explicit stochastic
integral representation for random variables in terms of Malliavin derivatives that turns to be central in the
application to mathematical finance. On the other hand, a Stroock formula is an explicit representation for
chaos expansion by using Malliavin derivative. In this paper, we introduce a Clark-Ocone type formula
under change of measure for Lévy processes with L2-Lévy measure ([7]). We also introduce a Stroock type
formula for L2—Lévy functionals ([5]). This paper is résumé of [5] and [7].

2 A history of Clark-Ocone formulae

¢ The Clark-Ocone formula is an explicit stochastic integral representation for random variables in
terms of Malliavin derivatives: For F € D?(R),

T
F=E[F] + /0 /R E[DyF|Fi-]Q(dt, dz).
o One for Brownian functionals: Clark (1970, 1971, Stochastics 41, 42), Ocone (1984, Stochastics 12) and
Haussmann (1979 ,Stochastics 3).

¢ One for pure jump Lévy functionals: Lokka (2004, Stochastic Anal. Appl. 22)

o Clark-Ocone formula under change of measure for Brownian motions: Ocone-Karatzas (1991, Stochas-
tics 34).

¢ Clark-Ocone formula under change of measure for pure jump Lévy processes: Huehne (2005, Working
Paper)

e White noise generalization of the Karatzas-Ocone formula: Okur (2010, Stochastic Anal. Appl. 28)

¢ DiNunno et al. (2009, Universitext) and Okur (2012, Stochastics 84) introduced one for Lévy processes
and their results are different from our result (different setting, different representation).
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3 A history of Stroock type formulae

& Stroock formula is a useful tool to compute Wiener-It6 chaos expansions: If F € ﬂlele'z (R), then,

F=E[F]+ §1n<fn),
where,

fu= %]E[D”P].

We review a history of Stroock type formula:
e In 1987, D.W. Stroock proved the Stroock formula for Brownian motions.
¢ N. Privault (2002) got one on the Poisson space.

e Eddahbi et al. (2005) showed a Stroock formula for a certain class of Lévy processes.

4 Malliavin calculus for square integrable Lévy processes

Throughout this paper, we consider Malliavin calculus for Lévy processes, based on, [4] and [2].

For given an infinitely divisible distribution # on R, we can construct a Lévy process from Lévy-Ito
decomposition. For details, see the book by Sato [6].

Given an infinitely divisible distribution 4 on R, we have Lévy-Khintchine representation: there exist
unique a2 >0, 7 € R and Lévy measure v, that is

v({0}) = 0and /Rmin(l, z]2)v(dz) < oo,

such that its characteristic function has following form:

. 2 .
/R e u(dz). = exp <~gz—u2 +iyu+ /lRo (e —1— iuzlllzid)v(dz)) .
where Ry means R\ {0}. To construct centered square integral Lévy process, we assume that
¥ =0and / z2v(dz) < oo
Ry

In fact, the second condition is equivalent to existence of second moment of 78
Second, We give a Lévy process from an infinitely divisible distribution. Let {W; t € [0,T]} be a stan-
dard Brownian motion and N be a Poisson random measure independent of W defined by

N(A,t) = ) 14(AX;), A € B(Rg), AX; := X; — X;_,

s<¢t

We denote the compensated Poisson random measure by N(dt, dz) = N(dt,dz) — dtv(dz), where dtv(dz) =
A(dt)v(dz) is the compensator of N, v(-) the Lévy measure of y. We give a centered square integrable Lévy
process X = {X;;t € [0, T]} on a complete probability space (0, F, P; {Fthiep,1), as follows:

t
X :cht+/ / zN(ds, dz)
0 JRg
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where F = {F}},c( 7] is the augmented filtration generated by X.
To consider multiple integral, we consider the finite measure g defined on [0, T] x R by

q(E) = o /E(O) dtdo(dz) + /E Z2dtv(dz), E € B([0,T] xR),

where E(0) = {(t,0) € [0, T} x R;(t,0) € E} and E' = E — E(0), and the random measure Q on [0, T] x R
by
Q(E) =0 L o MWibo(dz) + /E N(dt,dz), EeB(0,T]xR).

Let L2 4n(R) denote the set of product measurable, deterministic functions / : ([o, T) x R)" — R satisfying

2 — 2
B33 7= o g P20 ) Pty ) gt 20) < .

Forn € Nand hy € L} ,(R), we denote

In(hn) := /( ompeaye 120 (o 2)) Qb dz) - Qb )

It is easy to see that E[Io(hg)] = hg and E[I,(hy)] = 0, for n > 1. In this setting, we introduce the following
chaos expansion (see Theorem 2 in [3], Section 2 of [4]).

Proposition 1 Any F-measurable square integrable random variable F has a unique representation
(=]
F=Y IL(fa) P-as.
n=0

with functions f, € L%',q,n (R) that are symmetric in the n pairs (t;,z;),1 < i < n and we have the isometry

o0
B[ = ¥ nilfulls
n=0 An

We next define the follows:

Definition 1 Let D*2(R),k > 1 denote the set of F -measurable random variables F € L2(P) with the representa-
tion F = Y00 In(hy) satisfying

00
Y nn—-1)---(n—k+ l)n!Hh,,Hiz < o0.
n=k Tan
ForF € ]Dk'z(]R), k > 1, we define the k-th Malliavin derivative as follows:
o0
Dfl,zl,m,tk,zkl: = E n(n - 1) e (n -k + l)ln—k(hn((tb Zl)l Tty (tk,Zk), ))r
n=k

(tozx) € [0, T) x Rk > 1.

We next establish the following fundamental result.

Proposition 2 (The closability of operator D,[7]) Let F € L?(P) and F, € D2(R), k € N such that
1. limg_,o Fx = F in L3(P),



2. {Ds;F )2, converges in L2(q x P).
Then, F € D2 and limy_,, Dy ;F; = Dy ,F in L2(q x IP).
We also introduce a Clark-Ocone type formula for Lévy functionals.

Proposition 3 (Clark-Ocone type formula for Lévy functionals) Let F € D! (R). Then,

F = E[F]+ /[OT]X]RE[Dt,zpm-]g(dt,dz)

Il

T T -
E[F] +0 /0 E[DyoF | Fi_JdW(t) + /0 /}R E[Dy,E|Fi_|zN(dt, dz).
0
Proof The proof is same to the one for the Brownian motion case (see, Theorem 4.1 in Di Nunno et al (2009)) and
pure jump Lévy case (see, Theorem 12.16 in Di Nunno et al (2009)). O

We also introduce the follows.
Lemma1l Let F € D?(R). Then, for 0 < t < T, E[F|F}] € DY*(R) and
D, E[F|F] = ]E[Ds,xF|-7:t]1{5_<_¢}/ forg—ae. (s,x) € [0,T] x R, P—as.
Proof We can show the same step as Lemma 3.1 of [1]. O

Next we introduce a chain rule. First we define the following.

Definition2 1. Let C3°(R") denote the space of smooth functions f : R" — R with compact support.

2. A random variable of the form F = f(Xy,,--- , X;,), where f € C®(R"),n € N,and t,,- - ,tn > 0, is said
to be a smooth random variable. The set of all smooth random variables is denoted by S.

3. For F € S, we define the Malliavin derivative operator D as a map from S into L%(g x P)

n af
DizF i= ) = (X, Xe) 1o o) (£ 2)
= ox;
S 21 (8), - X, +ZZ1W"] () = fXey o Xe) 1R, (2)

for (t,z) € [0, T] x R.

By Lemma 3.1 and Theorem 4.1 in [2], we can see that the closure of the domain of D with respect to the

norm
IFlip == {E[[F|*] +E[IIDFIIi3}}”2

is the space D'?(R) and D;,F = D, ,F forall F € S C D2(R). Moreover, by Corollary 4.1 in [2], the set S
of smooth random variables is dense in L?(IP), D2(R). Hence, we can see the following;:
F € D2(R) if and only if there exists a sequence {F}ey, F € S with i — Fin L2(P) and D, F, — Dy ,F
in L2(q x P).
Similarly, for F € § and k € N, we can introduce a k-th Malliavin derivative operator DF as a map from S
into L%(g* x IP)

D:’(llzl’“

By induction we can show that D* is closable and the closure of the domain of definition of Dk with respect
to the norm

F=Dyz - DyyF.

kZy

k ,
IFllpx := {E[IF*] + gE[HD’PHizi]}”z
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is the space D¥?(R) and Dy, z, .- tn,2.F = Dty,21, tn2n F for all F € S € D¥2(R). Hence, we also see that the
set S of smooth random variables is dense in L?(IP), D*?(R) and that F € D¥2(R),k > 1 if and only if there
exists a sequence {F,}%2,, F, € Swith F, —» Fin L(P)and D} , ... Fx— Df, ... FinL%(gF x P)
fork > 1.

Now we introduce a chain rule.

Proposition 4 (Chain rule) Let ¢ € C!(R%;R) and F = (Fy,--- ,F,), where, Fy,--- ,F, € D?(R). Suppose
that ¢(F) € L2(P), £} 32 ¢(F) DioFi € L*(A x P) and 2EitzPushi Bt sDiski) -eBin B ¢ 12(22y(dz)dtaP).
Then, (F) € D2(R),

n
0
Diog(F) =) 55, P (F)DeoFi
k=1%%k

and
(p(Fl + 2Dy F, - B+ ZDg,sz) - (p(Fl, cee ,Fk)
Z

Dt'z¢(F) = 4 560

5 Commutation of integration and the Malliavin differentiability
In this section, we consider about commutations of integration and the Malliavin differentiability (see [7]).

Definition3 1. Let LY2(R) denote the space of product measurable and FF -adapted processes G : Q1 x [0, T] x
R — R satisfying

G(s,x) € D'?(R),q—a.e. (s,x) € [0,T] x Rand
2
E [ /( o1y D22 Palds, daat dz)] < oo,
2. Let IL(1,’2(]R) denote the space of measurable and IF -adapted processes G : ) x [0, T] — R satisfying
E [ /[o,n |G(s)|2ds] < o,
G(s) e D'?(R), s € [0,T],a.e. and
E D;.G(s)|*dsq(dt,d .
3. Let ][:%'Z(IR) denote the space of product measurable and F -adapted processes G : (A x [0,T] x Ry — R
satisfying
E|f G(s, x)Pv(dx)d ] < oo,
[, |G 0Pu(d)is] < o

E [(/[O,ﬂxRo |G(s, x)lv(dx)ds) 2] < oo,

G(s,x) € D2(R), (s, x) € [0,T] x Ry, ae.,

N [/IO,T]le </[0,T]xrko 1D12G(s,%) Iv(dx)ds>2q(dt'dz)] e
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and
E D; ,G(s, 2 dsg(dt, 0o.
[/HJ,T]X -/[O,T]xIRgI t2G(s, x)| v(dx)dsg( dz)} <

We next discuss the commutation relation of the stochastic integral with the Malliavin derivative. A canon-
ical space version of it was shown by [1].

Proposition 5 Let G : 2 x [0,T] x R — R be a predictable process with E [ f[o,T}xJR |G(s, x)|%q(ds, dx)] < 0.
Then
G € LY*(R) if and only if /[0 g G5 2)Q(ds,dx) € DY(R). 1
,T] x

Furthermore, if iy 11, g G(s, x)Q(ds,dx) € D'2(R), then, for q -a.e. (t,z) € [0, T] x R, we have
D /{O’T]XRG(s,x)Q(ds,dx) =G(t,2) + /[o,m D1,G(s, x)Q(ds, dx), P—as,, @)

and f[O,T] R Dt2G(s,x)Q(ds, dx) is a stochastic integral in Itd sense.

Next proposition provides a commutation of the Lebesgue integration and the Malliavin differentiability.
Delong and Imkeller ([1]) also derived a canonical space version of it.

Proposition 6 Assume that G : QO x [0,T] x R — R is a product measurable and F -adapted process, n on
[0, T] x R a finite measure, so that conditions

2
E [/[O,T]XR IG(s, x)| n(ds,dx)J < oo,
G(s,x) € D'*(R), fory—ae.(s,x) € [0,T] xR,

E [/([0 — JD[,ZG(S,x)}zr](ds,dx)q(dt, dz)} < o0

are satisﬁed. Then we have
G ,xryd,dx GIDI’ZIR
/[;J,T]x]R (S ) ( ° ) ( )

and the differentiation rule

P dx) = G (s, x)n(ds,
tz /[O,T]xR G(s, x)n(ds, dx) /[0 TIxR D:,G(s,x)5(ds, dx)

a

holds for g -a.e. (t,z) € [0,T] x R, P -a.s.

By using o-finiteness of v and Proposition 6, we can show the following proposition.

Proposition 7 Let G € L}?(R). Then,
G(s, x)v(dx)ds € D'2(R
S, G50 d)ds € DR(R)
and the differentiation rule
D / G(s, x)v(dx)ds = / D+ ,G(s, x)v(dx)d
tz 01Xk (s, x)v(dx)ds OTIxR, t2G(s, x)v(dx)ds

holds for g -a.e. (t,z) € [0,T] x R, P -a.s.
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6 A Clark-Ocone type formula under change of measure for Lévy pro-
cesses

In this section, we introduce a Clark-Ocone type formula under change of measure for Lévy processes ([7]).
Now, we assume the following.

Assumption 1 Let 0(s,x) < 1,s € [0, T],x € Roand u(s),s € [0, T, be predictable processes such that
! 1 0 2 dx)d
/0 /Ro{| og(1 — (s, x))| + 62(s, ) }v(dx)ds < oo, as.,
T
/0 u?(s)ds < o0, as.
Moreover we denote
Z() = exp( / u(s)dW (s) - / (s)2ds + / / log(1 - 8(s, x))N (ds, dx)
t 1
+/0 /RO( og(1 — 8(s, %)) + 9(5,x))v(dx)ds> ,te[0,T).

Define a measure Q on Fr by
dQ(w) = Z(w, T)dP(w),
and we assume that Z(T) satisfies the Novikov condition, that is,
E [exp( / 2(s)ds—i—/ / {(1 = 8(s,x)) log(1 — (s, x)) +9(s,x)}v(dx)ds)] 0o,

Furthermore we denote
No(dt,dx) := 0(t, x)v(dx)dt + N(dt,dx)

and
dWq () := u(t)dt + dW(t).

Second, we assume the following.

Assumption 2 We denote
H(t,z) = exp (— /OTth,zu(s)dWQ(s) - %/OT(th,zu(s))st
+ /T/ [th,ZG(s, x) + log (1 - zlgt_zzg%z;) (1-6(s, x))] v(dx)ds

) ).

Dl 09(5, x)

K(t) := / Dyou(s)dWe(s) + / / 25 Vlds dx)

and

and assume that o # 0. Furthermore, we assume the following:
1. F,Z(T) € D'?(R), with FZ(T) € L%(P),
Z(T)DyzF + FDy,Z(T) + 2Dy o F - Dt ,Z(T) € L?(q x P),
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2. Z(T)Dyplog Z(T) € L3(A x P), Z(T) (e?Pt=1082(T) _ 1) € L2(v(dz)dtdP),

3. u(s)Dyou(s) € L*(A x P),2u(s)Dyzu(s) + z(Dyzu(s))? € L2(z2v(dz)dtdP), s-a.e.
4 1og( - 2R2e)) € 12(v(dz)dtdp), Rt € 12(A x P), (s, %) .

5. 071y, x 1log(1 - 6(s, x)) € LY*(R),

6. u(s)? € Ly” and 9(s, x),log(1 — 6(s, x)) € L*(R),

7. and FH(t,z), H(t,z) Dy .F € L}(Q), (t,2) -a.e.

We next introduce a Clark-Ocone type formula under change of measure for Lévy processes.

Theorem 1 Under Assumption 1 and Assumption 2, we have

F = ]EQ[F]+0'/0 IEQ[DH)P FK(i’)

} dWg(t)
+ / / Eo[F(A(t,z) — 1) + zA(t, 2) Dy F| Fi | No (dt, dz).
Corollary 1 Assume in addition to all assumptions of Theorem 1, u and 0 are deterministic functions, then we have

T T .
F = Eq[F] +0 /0 Eq[DyoF| Fi_JdWg () + /0 /R BQ[DyFIi-JeNo dt,dz).

7 Stroock type formula for L?-Levy functionals

Finally, we introduce a Stroock type formula for L2-Levy functionals ([5]).

Theorem 2 Let F € N>, D*2(R). Then, we have

—E[F]+ ilmfn),
where,

E[Df, ., . F]
fil(br,21), -, (b zi)) = __‘1»’-1k_|’k2k__

forallk > 1.

Example 1 Let F = || o.T)xR (s, x)Q(ds, dx), where, h is a bounded function and we assume fIR v(dz) < co.
Now, we denote G = F2. Then,

G =E[G] + illn(f,,),

where, E[G] = f[O,T]th(s,x)zq(ds,dx), filt,z1) = zih(ty,21)?, fa(t, 21, t2,22) = h(ty,z1)h(t, z2), and
fa(t1,21, -+ ,tn,zn) = 0,n > 3. Moreover, we have

2
EIGY = ’ 2 ’ ) 2 t, 4,4t )
[G7] (/[O’T]th(s x)“g(ds,dx) +./[0,T]szlh( 121)4(dty, dzy)

2 2
+2 /( omperge 11721 (12,220 01, 20)q )
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Example 2 Let F = eXT, where, X1 = cWr + fOT Jr,2N(dt,dz) € LP(P) forall p > 1 and we assume [g (¢* —
1)%v(dz) < co. Then,

F=E[F]+ Y (i),

n=1
where,
1 n _ )
hu(tr 21, tn,2n) = —E[F) ] T[1j0,m1x 0} (8ir 2:) + Lo 1y (tir 20)2; et - 1)]
: i=1

and

E[F] = exp [%UZT +T /RO (-1 z)v(dz)] .

Example 3 Let L(x,T) fo 8(X(s) —x)ds € N, Dk2, x € ]R where, & is Dirac’s delta function and T < oo.
Then, L(x, T) = [L(x, T)] + X1 In(fn), where, E[L(x, T)] = & [T [ EleV=1X()-0)aeds,

E[eVTHX(5)-2))

N e exp ( o’stl? + s/ (V1w _q— \/_€1|u|<1)v(du)>
and
filtze, -+t 2k)
- 2711 n! /T/ E[e\/—_mX(S)_x)]
x H (\/_61[0 s1x {0} (4, i) + e/ 11[0,S]X]R0(t,-, z,~)) déds.
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