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Abstract
We consider the elliptic equation $\Delta u+K(|x|)e^{u}=0$ in $R^{n}\backslash \{0\}$ with $n>2$ , when for $\ell>-2,$

$r^{-\ell}K(r)$ behaves monotonically near $0$ or $\infty$ . The method of phase plane in [1] is useful in analyzing
the structure of positive radial solutions, and the asymptotic behavior at $\infty$ . The approach leads to
the existence of singular solutions, arld verifies the asymptotic behavior at $0.$
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1. Introduction
We study the elliptic equation

$\triangle u+K(|x|)e^{u}=0$ , (1.1)

where $n>2,$ $\Delta=\sum_{i=1}^{n}=\partial x_{i}\partial^{2}$ is the Laplace operator, and $K$ is a continuous function in
$R^{n}\backslash \{0\}$ . Radial solutions of (1.1) satisfy the equation

$u_{rr}+ \frac{n-1}{r}u_{r}+K(r)e^{u}=0$ (1.2)

where $r=|x|$ . Under the following condition:

(K) $[Matrix]$
(1.2) with $u(O)=\alpha\in R$ has a unique solution $u\in C^{2}(0, \epsilon)\cap C[0, \epsilon)$ for small $\epsilon>0.$

By $u_{\alpha}(r)$ we denote the unique local solution with $u_{\alpha}(O)=\alpha.$ $A$ typical example is the
equation

$u_{rr}+ \frac{n-1}{r}u_{r}+cr^{\ell}e^{u}=0$ , (1.3)

where $c>0$ and $l>-2$ . The scale invariance of (1.3) is explained by

$u_{\alpha}(r)=\alpha+u_{0}(e^{\frac{\alpha}{2+\ell}}r)$ ,
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and the invariant singular solution is given by

$u_{s}(r)=-(2+\ell)\log r+\log(2+\ell)(n-2)-\log c.$

We call this behavior self-similarity. In fact, for every $\alpha,$ $u_{\alpha}(r)=u_{s}(r)+o(1)$ at $\infty$ . For

more general equation (1.2), we look for entire solutions $u_{\alpha}$ of satisfying

$\lim_{rarrow}\inf_{\infty}[u_{\alpha}(r)+(2+\ell)\log r]>-\infty$ . (1.4)

We show the following existence result by making use of the method of phase plane [1].

Theorem 1.1. Let $n>2$ with $\ell>-2$ . Assume that $K$ satisfies (K) and $r^{-\ell}K(r)$ is
non-increasing in $(0, \infty)$ . For every $\alpha\in R,$ $(1.2)$ has an entire solution $u_{\alpha}$ with (1.4).

When $r^{-\ell}K(r)$ converges to a positive constant at $\infty,$ $u_{\alpha}(r)$ is asymptotically self-similar.

Theorem 1.2. Let $n>2$ and $\ell>-2$ . Assume that $K$ satisfies (K) and $r^{-\ell}K(r)arrow c$ as
$rarrow\infty$ for some $c>0$ . Then, every solution $u$ of (1.2) near $\infty$ satisfies

$\lim_{rarrow\infty}[u(r)-\log\frac{(2+\ell)(n-2)}{cr^{2+\ell}}]=0$ , (1.5)

provided that $u(r)+(2+\ell)\log r$ does not decrease to $0$ near $\infty$ . If $r^{-\ell}K(r)$ is non-increasing

in $(0, \infty)$ , every entire solution $u_{\alpha}$ satisfies (1.5).

There have been previous works on the asymptotic behavior. See [4, 6, 8].

The asymptotic behavior for $\ell=-2$ involves $-$ log log term.

Theorem 1.3. Let $n>2$ . Assume that $K$ satisfies (K) and $r^{-2}K(r)arrow c$ as $rarrow\infty$ for
some $c>0$ . Then, every solution $u$ of (1.2) near $\infty$ satisfies

$\lim_{rarrow\infty}[u(r)-\log\frac{n-2}{c\log r}]=0$ , (1.6)

provided that $u(r)+\log(\log r)$ does not decrease to $0$ near $\infty.$

It is interesting to ask whether two entire solutions intersect each or not. The property
is closely related to stability of solutions as steady states. See [8] for the result on (1.3)

with $c=1$ and $\ell=0$ . We observe separation of solutions for $n\geq 10+4\ell$ while intersection
for $2<n<10+4\ell.$

Theorem 1.4. Let $2<n<10+4P$ and $\ell>-2$ . Assume that $K$ satisfies (K) and $r^{-\ell}K(r)$

is non-increasing in $(0, \infty)$ . If $r^{-\ell}K(r)arrow c$ at $\infty$ for some $c>0$, then (1.2) possesses one
singular solution and every $u_{\alpha}$ intersects the singular solution infinitely many times. Any

two entire solutions $u_{\alpha}$ and $u_{\beta}$ urith $\alpha<\beta$ intersect each other infinitely many times.

Define $\underline{k}(r)=\inf_{0<s\leq r}s^{-\ell}K(s)$ and $\underline{K}(r)=r^{\ell}\underline{k}(r)$ . Let $k(O)=\lim_{rarrow 0}r^{-\ell}K(r)$ if it exists.
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Theorem 1.5. Let $\ell>-2$ and $n\geq 10+4\ell$ . Assume that $K$ satisfies (K) and for $r>0,$

$r^{-\ell}K(r)\leq\delta\underline{k}(r)$ (1.7)

where $\delta=\frac{n-2}{4(2+\ell)}$ . Then, (1.2) possesses a singular solution $U$ and any two entire solutions
do not intersect each other. Moreover, $U(r)$ satisfies

$e^{u_{\alpha}(r)}<e^{U(r)} \leq\frac{b}{r^{2}\underline{K}(r)}$ , (1.8)

where $b=(2+\ell)(n-2)$ and $u_{\alpha}arrow U$ as $\alphaarrow\infty$ . Moreover, if $r^{-\ell}K(r)$ is non-increasing
in $(0, \infty)$ , then for each $\alpha,$

$r^{2+\ell}e^{u_{\alpha}(r)}$ is strictly increasing in $r.$

Note that $\delta\geq 1$ iff $n\geq 10+4\ell$ . In fact, (1.7) with $\delta=1$ , i.e., $n=10+4\ell$ , means that
$r^{-\ell}K(r)$ is non-increasing in $(0, \infty)$ .

The motivation of Theorems 1.4-5 is the separation structure for Lane-Emden equation

$\Delta u+u^{p}=0$ (1.9)

when $p>1$ is sufficiently large. In fact, when $p\geq p_{c}$ , where

$p_{c}=p_{c}(n,\ell)=\{\begin{array}{ll}\frac{(n-2)^{2}-2(\ell+2)(n+\ell)+2(\ell+2)\sqrt{(n+\ell)^{2}-(n-2)^{2}}}{(n-2)(n-10-4\ell)} if n>10+4\ell,\infty if n\leq 10+4\ell,\end{array}$

(1.9) has positive entire radial solutions and any two solutions among them do not intersect.
Hence, it is natural to expect that (1.1) possesses the property for $n>10+4\ell$ . See
[2, 3, 5, 7, 9] for the separation structure and the original paper [6] for $p_{c}.$

Our next goal is to study singular solutions which diverge to $\infty$ as $r$ approaches $0.$

We take two steps for the existence singular solutions. At first, we consider the case that
$k=r^{-l}K(r)$ is a positive constant near $0$ . Secondly, $k$ has the positive limit at $0$ , but is
strictly decreasing at $0$ . There exists a unique singular solution which has the similarity
asymptotically.

Theorem 1.6. Let $n>2$ and $\ell>-2$ . Assume that $K$ satisfies (K) and $r^{-\ell}K(r)arrow c$ as
$rarrow 0$ for some $c>0$ . Then, positive solution $u(1.2)$ near $0$ is unique and satisfies

$\lim_{rarrow 0}[u(r)-\log\frac{(2+\ell)(n-2)}{cr^{2+\ell}}]=0$ , (1.10)

provided that $r^{2+\ell}e^{u(r)}$ does not increase from $0$ near $0$ . Moreover, if $r^{-\ell}K(r)$ is non-
increasing near $0$, then (1.2) has a unique singular solution $u_{s}$ near $0$ which satisfies (1.10)
and

$r^{2+\ell}e^{u_{s}(r)} \geq\frac{(2+\ell)(n-2)}{c}.$
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2. Preliminaries
In this section, we recall basic facts on (1.2) under the assumption (K). For each $\alpha\in R,$

(1.2) has a unique solution $u\in C^{2}(0, \epsilon)\cap C[0, \epsilon)$ for some $\epsilon>0$ . This local solution is
decreasing and extended entirely.

Proposition 2.1. Let $n>2$ and $\ell>-2$ . Assume that $K$ satisfies (K) and

$\lim_{rarrow 0}r^{2}K(r)=0$ . (2.1)

Then, every solution $u_{\alpha}$ of (1.2) with $u_{\alpha}(O)=\alpha\in R$ satisfies that

$u_{\alpha}(r)- \log\frac{(2+\ell)(n-2)}{r^{2+\ell}}$

is strictly increasing as long as the relation,

$r^{2}K(r)e^{u_{\alpha}(r)}<(2+\ell)(n-2)$ . (2.2)

holds from $r=0.$

Let $V(t)$ $:=u_{\alpha}(r)- \log\frac{(2+\ell)(n-2)}{r^{2+\ell}},$ $t=\log r$ . Then, $V$ satisfies

$V_{tt}+aV_{t}-b(1-k(t)e^{V})=0$ , (2.3)

where $a=n-2,$ $b=(2+\ell)(n-2)$ and $k(t);=e^{-\ell t}K(e^{t})$ . It follows from (2.1) that

$\lim_{tarrow-\infty}k(t)e^{V(t)}=b^{-1}\lim_{rarrow 0}r^{2}K(r)e^{u_{\alpha}(r)}=0$

and thus, $ke^{V}<1near-\infty$ . If $ke^{V}<1$ on $(-\infty, T)$ for some $T$ , then by (2.3), we have

$V_{tt}+aV_{t}=b(1-k(t)e^{V})>0$ on $(-\infty,T)$ . (2.4)

Multiplying (2.4) by $e^{at}$ for $t<\tau\leq T$ and integrating from $t$ to $\tau$ , we obtain

$e^{a\tau}V_{t}(\tau)>e^{at}V_{t}(t)=e^{at}(ru_{\alpha}’+2+\ell)$ (2.5)

which converges to $0$ as $rarrow 0$ . Hence, we have $e^{a\tau}V_{t}(\tau)>0$ . Therefore, $V_{t}>0$ on $(-\infty, T].$

In order to obtain the integral equation

$V_{t}(t)=e^{-at} \int_{-\infty}^{t}b(1-k(s)e^{V})e^{as}ds$ (2.6)

near $t=-\infty$ , it suffices to have a sequence going $to-\infty$ in which $e^{at}V_{t}(t)$ tends to $0.$

Lemma 2.2. Let $n>2$ with $\ell>-2$ . Assume that $K$ satisfies (K). If $u$ is a solution of
(1.2) defined in a deleted neighborhood $N$ of $r=0$ such that $w(r):=u(r)- \log\frac{(2+\ell)(n-2)}{r^{2+\ell}}$ is
bounded above and (2.2) holds on $N$ , then $w(r)$ is strictly increasing as long as (2.2) holds.

In fact, if $r^{-\ell}K(r)\geq c$ near $0$ for some $c>0$ , then $w(r)$ is bounded above near $0$ for
any solution $u$ in a deleted neighborhood of $r=0.$

116



3. Entire solution

We consider (2.3) and let $q(V)$ $:=V_{t}(t)$ . Then, it follows from Proposition 2.1 that $q(V)arrow$

$2+\ell$ as $Varrow-\infty$ and $q>0$ near $t=-\infty$ . Moreover, $q$ satisfies

$q \frac{dq}{dV}+aq=b(1-k(V)e^{V})$ . (3.1)

Here, we may define $k(V)$ as long as $q(V)$ does not change $sign$ , and consider (3.1) on each
region where $V$ is defined arld $q$ has one $sign.$

Lemma 3.1. Let $n>2$ with $\ell>-2$ . Assume $K$ satisfies (K).
$\bullet$ If $q\leq 0$ on $(\underline{v}, v)$ for some $v>\underline{v}$ and $k$ is non-increasing and $q(\underline{v})=0$ , then $\underline{v}$ is a

local minimum point.. If $q\geq 0$ on $(v,\overline{v})$ for some $\overline{v}>v$ and $k$ is non-decreasing and $q(\overline{v})=0$ , then $\overline{v}$ is a
local maximum point.

Remark. If $q(v)=0$ and $1-k(v)e^{v}\neq 0$ , then $v$ is an extremal point.

3.1. Existence

Let $u_{\alpha}(r)$ be a local solution of (1.2). Setting $V(t)$ $:=u_{\alpha}(r)- \log\frac{(2+\ell)(n-2)}{r^{2+\ell}},$ $t=\log r$ , we
see that $V$ satisfies (2.3). By Proposition 2.1, $V$ is defined in a neighborhood $of-\infty$ , and
$V$ is strictly increasing as $t$ increases as long as the relation $ke^{V}<1$ holds. In case $V$ is
increasing as $t$ increases from $-\infty$ to $+\infty,$ $u_{\alpha}$ is an entire solution satisfying (1.4).

We consider the case that $T= \sup\{\tau|V_{t}(\tau)\geq 0 on (-\infty, \tau)\}<+\infty$ . Considering

$V_{t}(t)=e^{-at} \int_{-(x)}^{t}b(1-k(s)e^{V})e^{as}ds,$

we see that $1-k(T)e^{V(T)}\leq 0$ since $V_{t}>0$ near $-\infty$ and $V_{t}(T)=0$ . Then, $V_{tt}(T)\leq 0$

from (2.3). We first assurne that $V_{tt}(T)<0$ . Now, we choose $t_{1}>T$ where $t_{1}= \sup\{\tau\in$

$(T, +\infty)|V_{t}(\tau)\leq 0$ on $(T, \tau)\}\leq+\infty$ . Let $\overline{v}=V(T)$ and $\underline{v}=V(t_{1})$ . Suppose $\underline{v}=-\infty.$

Since $k$ is non-increasing, there exist $T_{1}$ and $c>0$ such that

$V_{tt}+aV_{t}=b(1-ke^{V})\geq c$

for $t\geq T_{1}$ . Hence, for $t>T_{1},$

$V_{t}(t) \geq e^{-a(t-T_{1})}V_{t}(T_{1})+\frac{c}{a}e^{-aT_{1}}$

and thus, $V_{t}$ should be positive eventually, a contradiction. Therefore, $\underline{v}>-\infty$ and $q(\underline{v})=0.$

Then, $t_{1}<+\infty$ . Let $v_{1}=\underline{v}=V(t_{1})>-\infty$ . Since $V_{t}(t_{1})=0$ , it follows from Lemma 3.1
that $1-k(t_{1})e^{V(t_{1})}>0$ and $V_{tt}(t_{1})>0$ . When $V$ is increasing in $(t_{1}, T_{1})$ and decreasing in
$(T_{1}, t_{2})$ for some $t_{1}<T_{1}<t_{2}$ , we consider $q+(V)=V_{t}(t)$ on $[t_{1}, T_{1}]$ and $V_{1}=V(T_{1})$ . Then,

$q_{+} \frac{dq+}{dV}+aq+=b(1-k_{+}(V)e^{V})$ on $(v_{1}, V_{1})$ , (3.2)
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where $k_{+}(V)=k(t)$ for $t_{1}\leq t\leq T_{1}$ . Similarly, let $q_{-}(V)=V_{t}(t)$ on $[T_{1}, t_{2}]$ . Then,
$q+(T_{1})=q-(T_{1})=0,$ $q_{-}(v_{2})\leq 0$ where $v_{2}=V(t_{2})$ , and

$q_{-} \frac{dq_{-}}{dV}+aq_{-}=b(1-k_{-}(V)e^{V})$ on $(v{}_{2}T_{1})$ , (3.3)

where $k_{-}(V)=k(t)$ for $T_{1}\leq t\leq t_{2}.$

Suppose $v_{2}\leq v_{1}$ . Then, integrating (3.2) and (3.3) over $(v_{1}, V_{1})$ and subtracting, we
have

$\frac{1}{2}q_{-}^{2}(v_{1})+a\int_{v_{1}}^{V_{1}}(q_{+}-q_{-})dV=b\int_{v1}^{V_{1}}(k_{-}-k_{+})e^{V}dV$ , (3.4)

which is a contradiction since $k+\geq k_{-}$ . Hence, $v2>v_{1}$ . Applying the same arguments
to any two consecutive local minimum points of $V$ , we see that the global existence of the
local solution $u_{\alpha}$ satisfying (1.4) since either $V$ is increasing eventually or $V$ is not monotone
near $+\infty$ . Moreover, in the latter case, setting $\{t_{j}\}$ be any set of consecutive increasing
local minimum points of $V$ , we conclude by employing the arguments that $v_{j}=V(t_{j})$ is
non-decreasing as $jarrow\infty$ . Therefore, $u_{\alpha}$ is an entire solution satisfying (1.4).

In fact, the monotonicity of local minima is valid even for singular solutions.

Proposition 3.2. Assume that $K$ satisfies (K) and $r^{-\ell}K(r)$ is non-increasing in $(0, \infty)$ .
If $u$ is any solution of (1.2) on $(0, \infty)$ , then local minima of $u(r)- \log\frac{(2+\ell)(n-2)}{r^{2+\ell}}$ can not be
decreasing.

3.2. Asymptotic behavior at infinity

We now study the asymptotic behavior of solutions.

3.2.1. $-(2+\ell)\log$ decay

Lemma 3.3. Assume $c_{1}\leq k\leq c_{2}$ for some $c_{2}>c_{1}>0$ . Then,

$\lim_{tarrow+}\inf_{\infty}ke^{V}\leq 1\leq\lim_{tarrow+}\sup_{\infty}ke^{V}$ . (3.5)

Moreover, if $karrow c>0$ , then we have

$\lim_{tarrow+}\inf_{\infty}V(t)\leq-\log c\leq\lim_{tarrow+}\sup_{\infty}V(t)$ . (3.6)

Case 1: $V$ is monotone near $+\infty.$

Then, it follows from (3.6) that $1-ce^{d}=0$ , and thus $d=-\log c.$

Lemma 3.4. If $karrow c>0$ and $V$ is monotone, then $V$ converges $to-\log cat+\infty.$

Case 2: $V_{t}$ oscillates near $+\infty$ . We argue similarly as in the proof of Theorem 1.1.

Remark. If $k=r^{-\ell}K(r)\geq c>0$ near $\infty,$ $u(r)+(2+\ell)\log r$ is bounded above near
$\infty.$
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3.2.2. -loglog decay

Let $V(t)$ $:=u(r)+\log(\log r),$ $t=\log r$ . Then, $V$ satisfies

$V_{tt}+aV_{t}- \frac{1}{t}[a-\frac{1}{te^{t}}-k(t)e^{V}]=0$ , (3.7)

where $a=n-2$ and $k(t):=e^{-2t}K(e^{t})$ .

Lemma 3.5. Assume $c_{1}\leq k\leq c_{2}$ for some $c_{2}>c_{1}>0$ . Then,

$\lim_{tarrow+}\inf_{\infty}ke^{V}\leq a\leq\lim_{tarrow+}\sup_{\infty}ke^{V}.$

Therefore, if $karrow c>0$ , then we have

$\lim_{tarrow+}\inf_{\infty}V(t)\leq\log\frac{a}{c}\leq\lim_{tarrow+}\sup_{\infty}V(t)$ .

Case 1: $V$ is monotone near $+\infty.$

Then, $ce^{d}=a$ , and thus $d=\log a-\log c.$

Lemma 3.6. If $karrow c>0$ and $V$ is monotone, then $V$ converges to $\log\frac{a}{c}at+\infty.$

Case 2: $V_{t}$ oscillates near $+\infty$ . We argue in a similar way.

4. Intersection and Separation

When $2<n<10+4\ell$ , we observe the structure of intersection.

Proposition 4.1. Let $2<n<10+4\ell$ with $\ell>-2$ . Assume that $K$ satisfies (K) and
$r^{-\ell}K(r)arrow c>0$ as $rarrow\infty$ . Let $u$ be a solution of (1.2) satisfying (1.5). If $\psi$ is a
super-solution (or sub-solution) near $\infty$ of (1.2) and $\psi\geq(or\leq)u_{\alpha}$ , then $\psi\equiv u$ near $\infty.$

When $n$ is large enough, the monotonicity of $u+(2+\ell)\log r$ in $r$ may happen. We
consider not only the existence of entire solutions but also their separation property.

If (2.2) is true on $[0, \infty)$ , then $u_{\alpha}$ is a positive solution and $u_{\alpha}(r)+(2+\ell)\log r$ is
increasing as $r$ increases. In fact, the condition that $r^{-\ell}K(r)$ is non-increasing guarantees
that $tl_{1}is$ relation is satisfied in the entire space.

Theorem 4.2. Let $n\geq 10+4\ell$ and $\ell>-2$ . Suppose that $K(r)$ satisfies (K) and $r^{-\ell}K(r)$

is non-increasing. Then, for each $\alpha,$ $(1.2)$ possesses $a$ entire solution $u_{\alpha}$ with $u_{\alpha}(O)=\alpha$

such that $u_{\alpha}(r)+(2+\ell)\log r$ is strictly increasing and (2.2) holds on $[0, \infty)$ .

Proposition 4.3. Let $n>2$ and $\ell>-2$ . Assume that $K$ satisfies (K) and (2.1). Then,
for every solution $u_{\alpha}$ of (1.2) with $u_{\alpha}(O)=\alpha\in R,$

$r^{2}\underline{K}(r)e^{u_{\alpha}(r)}<b$ (4.1)

holds from $r=0.$
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5. Singular solution
We study the existence of singular solutions of (1.2) when $r^{-\ell}K(r)$ is non-increasing and

$\lim_{rarrow 0}r^{-l}K(r)=c$

for some $0<c<\infty$ . Before discussing the existence, we consider the asymptotic behavior
of singular solutions.

5.1. Asymptotic behavior at zero
The arguments of this subsection is similar to those of Subsection 4.2. But, we consider the
issue for the completeness.

Lemma 5.1. Assume $c_{1}\leq k\leq c_{2}$ for some $c_{2}>c_{1}>0$ . Then,

$\lim_{tarrow}\underline{\inf_{\infty}}ke^{V}\leq 1\leq\lim_{tarrow-}\sup_{\propto)}ke^{V}$ . (5.1)

Moreover, if $karrow c>0$ , then we have

$\lim_{tarrow}\underline{\inf_{\infty}}V(t)\leq-\log c\leq\lim_{tarrow-}\sup_{\infty}V(t)$ . (5.2)

Case 1: $V$ is monotone near $+\infty.$

Then, it follows from (5.2) that $1-ce^{d}=0$ , and thus $d=-\log c.$

Lemma 5.2. If $karrow c>0$ and $V$ is monotone, then $V$ converges $to-\log cat-\infty.$

Case 2: $V_{t}$ oscillates near $-\infty.$

Remark. $\mathbb{R}om$ the proof, we see that if $k=r^{-\ell}K(r)\geq c>0$ near $0,$ $u(r)+(2+\ell)\log r$

is bounded above near $0.$

5.2. Asymptotically self-similar solution

We look for singular solutions with the behavior

$\lim_{rarrow 0}[u(r)-\log\frac{b}{cr^{2+\ell}}]=0$ . (5.3)

Setting $\varphi(r)=u(r)-\log\frac{b}{r^{2+\ell}}$ , we have

$\varphi_{rr}+\frac{a+1}{r}\varphi_{r}-\frac{b}{r^{2}}+\frac{b}{r^{2}}k(r)e^{\varphi}=0$ , (5.4)

where $a+1=n-1$ and $k(r)=r^{-\ell}K(r)$ . If $k\equiv c$ , then the obvious solution is $\varphi\equiv-\log c.$

Hence, we assume $k\not\equiv c$ . In order to colffirrn the existerrce of a local positive solution
with $\varphi(0)=-\log c$ , we first construct the solution when $k(r)$ is constant near $0$ . Then, we
utilize the obtained solutions to verify the existence for the case $r_{c}=0$ , where $r_{c}= \inf\{r>$

$0|k(r)<c\}.$
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Let $0<c<\infty$ . If $k$ is constant near $0$ , the obvious solution is $\varphi=-\log c$ near $0$ and
the existence of local solution near $r=r_{c}$ is rather standard.

Step 1. Assume that $k(r)$ $:=r^{-\ell}K(r)=c>0$ near $0.$

Let $r_{c}= \sup\{r\geq 0|k(r)=c\}$ . For given $\delta>0$ , there exists $r\delta>r_{c}$ such that
$0<k(r\delta)<c$ and $|\log k(r_{\delta})-\log c|<\delta.$

Theorem 5.3. Let $n>2$ and $l>-2$ . Assume that $r^{-l}K(r)$ is continuous and $0<r_{c}<\infty$

for some $c>0$ . Then, (5.4) with (5.3) has a unique local positive solution $u\in C^{2}((0,$ $r_{c}+$

$\epsilon))\cap C([O, r_{c}+\epsilon))$ for small $\epsilon>0.$

In order to make the local singular solution to be defirled on the whole space, we apply
the same arguments as in Theorem 1.1 and then conclude the existence of a solution with
slow decay.

Now, we consider $V(t)=\varphi(r)$ with $t=\log r$ . Then, we claim the orbit of $q(V)$ proceeds
to the right in the phase plane.

Lemma 5.4. Let $n>2$ and $\ell>-2$ . Assume (K) and $r^{-\ell}K(r)$ is non-increasing from
$c>0$ at $0$ . If $u_{s}$ is a singular solution, then

$u_{S}(r) \geq\log\frac{b}{cr^{2+\ell}}$ (5.5)

and (5.3) holds.

Lemma 5.5. Let $n>2$ and $\ell>-2$ . Assume (K) and $r^{-\ell}K(r)$ is non-increasing from $c_{2}$

at $0$ to $c_{1}$ at $R>0$ for some $c_{2}>c_{1}>0$ . Then,

$u_{s}(r)< \log\frac{b}{r^{2+\ell}}+M(c, c)$ (5.6)

on $(0, R)$ , where $M(c_{1}, c_{2})$ is defined by $c_{1}e^{M}-M=\lrcorner c_{2}c+\log c_{2}.$

Step 2. Assume that $k(r)arrow c>0$ at $r=0$ and $r_{c}=0.$

Defirle $k_{j}$ by

$k_{j}(r)=c_{j}=k( \frac{1}{2^{j}})$

for $0 \leq r\leq\frac{1}{2J}$ , and $k_{j}(r)=k(r)$ for $r \geq\frac{1}{2J}$ . Set $V_{j}(t)=u_{j}- \log\frac{b}{r^{2+\ell}}$ , where $u_{j}- \log\frac{b}{r^{2+\ell}}=$

$-\log c_{j}$ on $(0, \frac{1}{2J}] and u_{j}-\log\frac{b}{r^{2+\ell}} are$ local solutions $of (5.4)$ with $k=k_{j}$ satisfying (5.3)
with $c=c_{j}$ . Then, $V_{j}$ satisfies

$V_{j}"+aV_{j}’=b(1-k_{j}e^{V_{j}})$ .

Since $k_{j}$ is decreasing and $V_{j}=L_{j}$ on $(-\infty, -j\log 2]$ , there exists $r_{j}> \frac{1}{2j}$ such that $V_{j}’\geq 0$

on $(-j \log 2, \log r_{j})$ and $V_{j}(\log r_{j})>-\log c_{j}$ . Note that $k_{j}$ is increasing in $j$ and $-\log c_{j}$

decreases to-log $c$ as $jarrow\infty$ . Setting $uj$ $:= \varphi_{j}+\log\frac{b}{r^{2+\ell}}$ , we have

$-u_{j}’=mr^{-m-1}\varphi_{j}-r^{-m}\varphi_{j}’,$

121



and thus
$\lim_{rarrow 0}r^{n-1}u_{j}’=mp_{arrow 0}mr^{n-2-m}\varphi_{j}=0.$

Let $cR=R^{-l}K(R)$ and $K_{j}=r^{l}k_{j}$ . Then, for $j$ large, $k_{j}\geq cR$ on $(0, R)$ and for $r\in(O, R)$ ,

$-u_{j}’(r) = \frac{1}{r^{n-1}}\int_{0}^{r}K_{j}(s)e^{u_{j}(s)}s^{n-1}ds$

$\leq \frac{bce^{M}}{r^{n-1}}\int_{0}^{r}s^{n-3}ds=\frac{bce^{M}}{n-2}r^{-1}$ . (5.7)

where $M=M(c_{R}, c)$ . Hence, $u_{j}’$ is uniformly bounded on any compact subset of $(0, R)$

in $j$ and consequently, $\{u_{j}\}$ is equicontinuous on any compact subset of $(0, R)$ . Hence, by
applying $Arze1\grave{a}_{r}$Ascoli Theorem and adapting a diagonal argument, $u(r)$ $:= \lim_{jarrow\infty}u_{j}(r)$

is well-defined arld continuous on $(0, \infty)$ arld satisfies

$u”=- \frac{n-1}{r}u’-Ke^{u}$ on $(0, \infty)$ .

Since $u_{j}(r)-\log_{\nabla\urcorner}^{b}r+\geq-\log c_{j}\geq-\log c$, we conclude that $u(r) \geq\log\frac{b}{cr^{2+\ell}}$ and $u$ is a
singular solution.
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