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Entire Solutions of Elliptic Equations with Exponential
Nonlinearity*
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Abstract

We consider the elliptic equation Au + K(|z|)e* = 0 in R™\{0} with n > 2, when for £ > -2,
r~¢K(r) behaves monotonically near 0 or co. The method of phase plane in [1] is useful in analyzing
the structure of positive radial solutions, and the asymptotic behavior at co. The approach leads to
the existence of singular solutions, and verifies the asymptotic behavior at 0.
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1. Introduction

We study the elliptic equation

Au+ K(|z|)e* =0, (1.1)
where n > 2, A = 3%, 5%2; is the Laplace operator, and K is a continuous function in
R™\{0}. Radial solutions of (1.1) satisfy the equation

Upr + = ur + K(r)e* =0 (1.2)

where r = |x|. Under the following condition:

K(r) is continuous on (0, 00),
(K){ K(r)>0and K(r) 0 on (0, 0),
JorK(r)dr < co.

(1.2) with 4(0) = @ € R has a unique solution u € C%(0,¢) N C[0,¢) for small £ > 0.
By uq(r) we denote the unique local solution with uq(0) = a. A typical example is the
equation

ur + cre® = 0, (1.3)

Upp +

4

where ¢ > 0 and £ > —2. The scale invariance of (1.3) is explained by

Ue(T) = a+ uo(eiﬁr),
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and the invariant singular solution is given by
us(r) = —(2 + £) log 7 + log(2 + £)(n — 2) — logc.

We call this behavior self-similarity. In fact, for every o, ua(r) = us(r) + o(1) at co. For
more general equation (1.2), we look for entire solutions u, of satisfying

lirrg%gf[ua(r) +(2+£)logr] > —00. (1.4)

We show the following existence result by making use of the method of phase plane [1].

Theorem 1.1. Let n > 2 with £ > —2. Assume that K satisfies (K) and r~tK(r) is
non-increasing in (0,00). For every a € R, (1.2) has an entire solution uq with (1.4).

When r—¢K (r) converges to a positive constant at 0o, u,(r) is asymptotically self-similar.

Theorem 1.2. Let n > 2 and £ > —2. Assume that K satisfies (K) and r—*K(r) = ¢ as
r — oo for some ¢ > 0. Then, every solution u of (1.2) near co satisfies

lim [u(r) — log CFO =21 _ o (L5)

r—00 cr?tt

provided that u(r) + (2 +£) log r does not decrease to 0 near oo. If r~¢K(r) is non-increasing
in (0,00), every entire solution u, satisfies (1.5).

There have been previous works on the asymptotic behavior. See [4, 6, 8].
The asymptotic behavior for £ = —2 involves — loglog term.

Theorem 1.3. Let n > 2. Assume that K satisfies (K) and r—2K(r) = ¢ as r — oo for
some ¢ > 0. Then, every solution u of (1.2) near oo satisfies

n—2

lim [u(r) — log |=0, (1.6)

r—00 & log T
provided that u(r) + log(logr) does not decrease to 0 near co.

It is interesting to ask whether two entire solutions intersect each or not. The property
is closely related to stability of solutions as steady states. See [8] for the result on (1.3)
with ¢ = 1 and £ = 0. We observe separation of solutions for n > 10 + 4¢ while intersection
for 2 < n < 10+ 4¢4.

Theorem 1.4. Let 2 < n < 10+4£ and £ > —2. Assume that K satisfies (K) and r~*K(r)
is non-increasing in (0,00). If r¢K(r) = ¢ at co for some ¢ > 0, then (1.2) possesses one
singular solution and every u, intersects the singular solution infinitely many times. Any
two entire solutions u, and ug with « < B intersect each other infinitely many times.

Define k(r) = info<s<r s K (s) and K(r) = rtk(r). Let k(0) = lim,_,o r~*K(r) if it exists.



Theorem 1.5. Let £ > —2 and n > 10 + 4¢. Assume that K satisfies (K) and for r > 0,
rtK(r) < dk(r) (1.7)

where § = ﬂn2;-|-2?5‘ Then, (1.2) possesses a singular solution U and any two entire solutions
do not intersect each other. Moreover, U(r) satisfies

ralr) ¢ U)o b

< PKG) 9

where b= (24 £)(n - 2) and uq = U as a — co. Moreover, if r—¢K(r) is non-increasing
in (0,00), then for each o, r*+4e¥«(") is strictly increasing in r.
Note that 6 > 1 iff n > 10 + 4¢. In fact, (1.7) with 6 = 1, i.e., n = 10 + 4/, means that

r~¢K(r) is non-increasing in (0, 00).
The motivation of Theorems 1.4-5 is the separation structure for Lane-Emden equation

Auv+uP =0 (1.9)

when p > 1 is sufficiently large. In fact, when p > p,, where

(n—2)2—2(l+2)(n+l)+2(l+2) (n+6)2—(n-2)2 . )
pc — pc(nz, e) — —(n—2)(n—10—4£) lf n > 10 + 4[,
00 if n<10+ 4¢,

(1.9) has positive entire radial solutions and any two solutions among them do not intersect.
Hence, it is natural to expect that (1.1) possesses the property for n > 10 + 4¢. See
(2, 3, 5, 7, 9] for the separation structure and the original paper [6] for p..

Our next goal is to study singular solutions which diverge to co as r approaches 0.
We take two steps for the existence singular solutions. At first, we consider the case that
k = r~tK(r) is a positive constant near 0. Secondly, k has the positive limit at 0, but is
strictly decreasing at 0. There exists a unique singular solution which has the similarity
asymptotically.

Theorem 1.6. Let n > 2 and £ > —2. Assume that K satisfies (K) and rtK(r) = ¢ as
r — 0 for some ¢ > 0. Then, positive solution u (1.2) near 0 is unique and satisfies

}gr%)[u(r) — log %:—2—)] =0, (1.10)

provided that r?*e*(") does not increase from 0 near 0. Moreover, if r~*K(r) is non-
increasing near 0, then (1.2) has a unique singular solution us near 0 which satisfies (1.10)
and
r2+€eu,('r) > (2 + Z) ('I’L - 2) )
¢
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2. Preliminaries

In this section, we recall basic facts on (1.2) under the assumption (K). For each a € R,
(1.2) has a unique solution u € C?(0,¢) N C[0,¢) for some ¢ > 0. This local solution is
decreasing and extended entirely.

Proposition 2.1. Let n > 2 and £ > —2. Assume that K satisfies (K) and
. 2 _
ll_r)r(l)r K(r)=0. (2.1)

Then, every solution uy of (1.2) with us(0) = a € R satisfies that
(24 £8)(n—-2)

Ua (’l") - IOg ,"2+g
is strictly increasing as long as the relation,
r2K(r)et=" < (2+ £)(n - 2). (2.2)

holds from r = 0.
Let V(t) := uq(r) — log 2+f (n=2) ¢ =logr. Then, V satisfies
Vie + aV; — b(1 — k(t)e¥) = 0, (2.3)
where a =n—2, b= (2+ £)(n — 2) and k(t) := e %K (e?). It follows from (2.1) that
t_ljr_n()() k(t)eV® = p~? 3% r2K(r)et=) =0
and thus, keV < 1 near —oo. If k¥ < 1 on (—o0,T) for some T', then by (2.3), we have
Vie +aV; = b(1 —k(t)e¥) >0 on (—oo,T). (2.4)
Multiplying (2.4) by e* for t < 7 < T and integrating from ¢t to 7, we obtain
e“ Vi (1) > e®Vi(t) = e (rul, +2 + £) : (2.5)
which converges to 0 as r — 0. Hence, we have ¢*"V;(7) > 0. Therefore, V; > 0 on (—oc, T}.

In order to obtain the integral equation

t
Vi(t) = e"“t/ b(1 — k(s)e¥)e? ds (2.6)
—00
near t = —oo, it suffices to have a sequence going to —oo in which ¢*V;(t) tends to 0.

Lemma 2.2. Let n > 2 with £ > —2. Assume that K satisfies (K). If u is a solution of

(1.2) defined in a deleted neighborhood N of r = 0 such that w(r) := u(r) —log @—i"g%——zl 18
bounded above and (2.2) holds on N, then w(r) is strictly increasing as long as (2.2) holds.

In fact, if ¥ ¢K(r) > ¢ near 0 for some ¢ > 0, then w(r) is bounded above near 0 for
any solution u in a deleted neighborhood of r = 0.



3. Entire solution

We consider (2.3) and let ¢(V) := V;(t). Then, it follows from Proposition 2.1 that ¢(V) —
2+fasV — —oo and ¢ > 0 near t = —00. Moreover, q satisfies

dq 1%
3 = - ) 1
I +ag=b1-k(V)e") (3.1)
Here, we may define k(V') as long as ¢(V') does not change sign, and consider (3.1) on each
region where V is defined and ¢ has one sign.

Lemma 3.1. Let n > 2 with £ > —2. Assume K satisfies (K).

e If ¢ <0 on (v,v) for some v > v and k is non-increasing and q(v) = 0, then v is a
local minimum point.

e If ¢ > 0 on (v,7) for some v > v and k is non-decreasing and ¢(v) = 0, then ¥ is a
local mazimum point.

Remark. If ¢(v) =0 and 1 — k(v)e # 0, then v is an extremal point.

3.1. Existence

Let uy(r) be a local solution of (1.2). Setting V(t) := uq(r) — log 2+f2 (n=2) t = logr, we

see that V satisfies (2.3). By Proposition 2.1, V is defined in a neighborhood of —oo, and
V is strictly increasing as ¢ increases as long as the relation ke¥ < 1 holds. In case V is
increasing as t increases from —oo to 400, u, is an entire solution satisfying (1.4).

We consider the case that T = sup{7| V;(7) > 0 on (—00,7)} < +00. Considering

¢

Vi(t) = e““t/ b(1 — k(s)e¥)e® ds,
—0

we see that 1 — k(T)eV(™) < 0 since V; > 0 near —oco and V4(T) = 0. Then, Vi(T) < 0

from (2.3). We first assume that V;(T') < 0. Now, we choose t; > T where t; = sup{7 €

(T, +00) | Va(r) < 0on (T,7)} < +00. Let o = V(T) and v = V(¢;). Suppose v = —cc.

Since k is non-increasing, there exist T and ¢ > 0 such that

Vie +aV; =b(1 —ke¥) > ¢
for t > Ty. Hence, for t > T,

Vi(t) > e CTIY,(Ty) 4 SemoTh
a

and thus, V; should be positive eventually, a contradiction. Therefore, v > —oo and g(v) = 0.
Then, t; < +00. Let v7 = v = V(t;) > —oc. Since V;(t1) = 0, it follows from Lemma 3.1
that 1 — k(t1)eV®) > 0 and Vj4(t1) > 0. When V is increasing in (£;,T}) and decreasing in
(T1,t2) for some t; < Ty < t2, we consider ¢4 (V) = V;(t) on [t;,T1] and V; = V(T}). Then,

d
%E% +agy =b(1 -k (V)e") on (v, W), (3.2)
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where ki (V) = k(t) for t; < t < Ty. Similarly, let ¢_(V) = Vi(t) on [T3,t2]. Then,
¢+(T1) = ¢-(T1) =0, g—(v2) < 0 where v2 = V(t3), and

dq_
q_% +ag_ =b1 - k_(V)e') on (vs, T}), (3.3)
where k_(V) = k(t) for T} <t < ts.

Suppose vy < v;. Then, integrating (3.2) and (3.3) over (v1,V}) and subtracting, we

have
Vi

1, Y v
o0 +a [C@r-a)av=b [~k av, (3.4)

V1 1

which is a contradiction since k4 > k_. Hence, v > v;. Applying the same arguments
to any two consecutive local minimum points of V', we see that the global existence of the
local solution u, satisfying (1.4) since either V' is increasing eventually or V is not monotone
near +o0o. Moreover, in the latter case, setting {t;} be any set of consecutive increasing
local minimum points of V, we conclude by employing the arguments that v; = V(¢;) is
non-decreasing as j — co. Therefore, u, is an entire solution satisfying (1.4).

In fact, the monotonicity of local minima is valid even for singular solutions.

Proposition 3.2. Assume that K satisfies (K) and r K (r) is non-increasing in (0,00).
If u is any solution of (1.2) on (0,00), then local minima of u(r) — log %ﬂlﬁ can not be
decreasing.

3.2. Asymptotic behavior at infinity

We now study the asymptotic behavior of solutions.

3.2.1. —(2+¢)log decay

Lemma 3.3. Assume ¢; < k < ¢ for some ¢ > ¢; > 0. Then,

liminf k¥ <1 < limsup ke . (3.5)
t—+00 t—+00

Moreover, if k — ¢ > 0, then we have

- < _loge < 1i ‘ ‘
lginﬁ&f V(t) < —loge < lilji&p V(t) (3.6)

Case 1: V is monotone near +oo.
Then, it follows from (3.6) that 1 — ce? = 0, and thus d = — logec.

Lemma 3.4. If k — ¢ > 0 and V is monotone, then V converges to — log ¢ at +o0.

Case 2: V; oscillates near +00. We argue similarly as in the proof of Theorem 1.1.

Remark. If k = 7 ¢K(r) > ¢ > 0 near oo, u(r) + (2 + £) log r is bounded above near
0.



3.2.2. —loglog decay
Let V(t) := u(r) + log(logr),t = logr. Then, V satisfies

1

1 v
Vie + aVi — Zla — = — k(t)e”] =0, (8.7)

where @ = n — 2 and k(t) := e 2 K(et).
Lemma 3.5. Assume ¢; < k < ¢g for some co > ¢; > 0. Then,

liminf ke¥ < a < lim sup ke .
t—r+o00 t—+00

Therefore, if £ — ¢ > 0, then we have

a
Iminf V() <log— <1i V(t).
im inf ()_ogc_irgfip (t)

Case 1: V is monotone near +oo.
Then, ce? = a, and thus d = loga — log c.

Lemma 3.6. Ifk — ¢ >0 and V is monotone, then V converges to log ¢ at +oo.

Case 2: V; oscillates near +0o. We argue in a similar way.

4. Intersection and Separation

When 2 < n < 10 + 44, we observe the structure of intersection.

Proposition 4.1. Let 2 < n < 10 + 4¢ with £ > —2. Assume that K satisfies (K) and
rtK(r) = ¢ > 0 asr — co. Let u be a solution of (1.2) satisfying (1.5). If ¥ is a
super-solution (or sub-solution) near co of (1.2) and ¢ > (or <)u,, then 1) = u near co.

When n is large enough, the monotonicity of u + (2 + £)logr in r may happen. We
consider not only the existence of entire solutions but also their separation property.

If (2.2) is true on [0,00), then wu, is a positive solution and uu(r) + (2 + £)logr is
increasing as r increases. In fact, the condition that r—¢K(r) is non-increasing guarantees
that this relation is satisfied in the entire space.

Theorem 4.2. Let n > 10+ 4¢ and £ > —2. Suppose that K(r) satisfies (K) and r—*K(r)
is non-increasing. Then, for each ¢, (1.2) possesses a entire solution u, with u,(0) = «
such that uq(r) + (2 + £)logr is strictly increasing and (2.2) holds on [0, 0).

Proposition 4.3. Let n > 2 and ¢ > —2. Assume that K satisfies (K) and (2.1). Then,
for every solution u, of (1.2) with u,(0) = ¢ € R,

2K (r)e*e) < b (4.1)

holds from r = 0.
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5. Singular solution

We study the existence of singular solutions of (1.2) when r~¢K(r) is non-increasing and
limr*K(r) =¢
r—0

for some 0 < ¢ < co. Before discussing the existence, we consider the asymptotic behavior
of singular solutions.

5.1. Asymptotic behavior at zero

The arguments of this subsection is similar to those of Subsection 4.2. But, we consider the
issue for the completeness.

Lemma 5.1. Assume ¢; < k < ¢2 for some ¢; > ¢ > 0. Then,

liminf keV < 1 < limsupke” . (5.1)

t—=—o00 t——o0
Moreover, if k — ¢ > 0, then we have
liminf V(t) < —loge < limsup V(t). (5.2)
t—-00 t—o—o0
Case 1: V is monotone near +o00.
Then, it follows from (5.2) that 1 — ce? = 0, and thus d = —logc.
Lemma 5.2. If k — ¢ > 0 and V' is monotone, then V converges to — logc at —oc.

Case 2: V; oscillates near —oo.

Remark. From the proof, we see that if k = r*K(r) > ¢ > 0 near 0, u(r) + (2+£€) log r
is bounded above near 0.
5.2. Asymptotically self-similar solution

We look for singular solutions with the behavior

. b

Setting ¢(r) = u(r) — log pb?[, we have

a+1 b b
Pr— 3 + —k(r)e? =0, (5.4)

r

Orr +

where a+1=n—1 and k(r) = r“K(r). If k = c, then the obvious solution is ¢ = — logc.
Hence, we assume k # c¢. In order to confirm the existence of a local positive solution
with ¢(0) = —log ¢, we first construct the solution when k(r) is constant near 0. Then, we
utilize the obtained solutions to verify the existence for the case r. = 0, where 7, = inf{r >
0] k(r) < ¢}.



Let 0 < ¢ < oco. If k is constant near 0, the obvious solution is ¢ = — log ¢ near 0 and
the existence of local solution near r = r. is rather standard.

Step 1. Assume that k(r) := r¢K(r) = ¢ > 0 near 0.
Let r. = sup{r > 0| k(r) = ¢}. For given § > 0, there exists r5 > r, such that
0 < k(rs) < c and |logk(rs) — logc| < 4.

Theorem 5.3. Letn > 2 and ! > —2. Assume that r~ K (r) is continuous and 0 < r, < 0o
for some ¢ > 0. Then, (5.4) with (5.8) has a unique local positive solution u € C?((0,r. +
€))NC([0,rc +€)) for small e > 0.

In order to make the local singular solution to be defined on the whole space, we apply
the same arguments as in Theorem 1.1 and then conclude the existence of a solution with
slow decay.

Now, we consider V(t) = ¢(r) with t = logr. Then, we claim the orbit of ¢(V) proceeds
to the right in the phase plane.

Lemma 5.4. Let n > 2 and £ > —2. Assume (K) and r*K(r) is non-increasing from
c¢>0 at 0. If us is a singular solution, then

us(r) > log (5.5)

cr2+t
and (5.3) holds.

Lemma 5.5. Let n > 2 and £ > —2. Assume (K) and r~¢K(r) is non-increasing from cy
at 0 to c1 at R > 0 for some c2 > ¢; > 0. Then,

b
us(r) < log v + M(c1,¢2) (5.6)
on (0, R), where M(c1,cz) is defined by c;eM — M = 2 +logcy.

Step 2. Assume that k(r) -+ c¢>0at r =0 and r, = 0.
Define k; by
1
ki(r) = ¢ = k(55)
for0<r< 2—1j, and k;(r) = k(r) for r > -zl,r Set Vj(t) = u; —log -T—z,bT[, where u; — log r2l-)+ =
—log¢; on (0, 51-;] and u; — log T—}’g are local solutions of (5.4) with k = k; satisfying (5.3)
with ¢ = ¢;. Then, V; satisfies

Vi +aV = b(1 — k;e").

Since k; is decreasing and V; = L; on (—oo, —j log 2], there exists r; > 51; such that V) >0
on (—jlog2,logr;) and Vj(logr;) > —logc;. Note that k; is increasing in j and — log ¢
decreases to —logc as j — 0o. Setting u; := ¢; + log ?}37, we have

m—1

r_ — . -m, /
—u; = mr o D
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and thus

1 = mlim P 2™

lim f
r—0

r—0

Let cg = R'K(R) and K; = r'k;. Then, for j large, k; > cg on (0, R) and for r € (0, R),

(pj=0.

,
) = o [ K@enOsnids

M pr oM
< bee / " 3ds = bee rL. (5.7)
0

rn—1 n—2

where M = M(cg,c). Hence, v} is uniformly bounded on any compact subset of (0, R)

in j and consequently, {u;} is equicontinuous on any compact subset of (0, R). Hence, by
applying Arzela-Ascoli Theorem and adapting a diagonal argument, u(r) := lim;j_,c0 u;(r)
is well-defined and continuous on (0, 00) and satisfies

" n—1

v = —— v - Ke* on (0,00).

Since u;(r) — log;abfg > —logc¢; > —loge, we conclude that u(r) > logchb+, and u is a
singular solution.
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