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1. Introduction

Let $X_{1},$ $X_{2},$
$\ldots$ be a sequence of independent and identically distributed $(i.i.d.)$

random variables from a normal population $N(\mu, \sigma^{2})$ where the mean $\mu\in(-\infty, \infty)$

and the variance $\sigma^{2}\in(0, \infty)$ are both unknown. Having recorded $X_{1},$
$\ldots,$

$X_{n}$ , we
define $\overline{X}_{n}=n^{-1}\sum_{i=1}^{n}X_{i}$ and $S_{n}^{2}=(n-1)^{-1} \sum_{i=1}^{n}(X_{i}-\overline{X}_{n})^{2}$ for $n\geq 2$ . Let
$d\in(0, \infty)$ and $\alpha\in(0,1)$ be any preassigned numbers. On the basis of the random
sample of size $n$ , we consider a confidence interval $I_{n}=[\overline{X}_{n}-d, \overline{X}_{n}+d]$ for $\mu$ with
confidence coefficient $1-\alpha$ . If we take the sample of size $n$ such that

$n\geq a^{2}\sigma^{2}/d^{2}\equiv n_{0},$

where $a$ is the upper $100\cross\alpha/2\%$ point of the standard normal distribution, then
it holds that $P(\mu\in I_{n})\geq 1-\alpha$ for all fixed $\mu,$

$\sigma^{2},$
$\alpha$ and $d$ . Unfortunately, $\sigma^{2}$ is

unknown, so we cannot use the optimal fixed sample size $n_{0}.$

Stein’s two-stage procedure does not have the asymptotic second-order efficiency.
Mukhopadhyay and Duggan (1997) proposed the following two-stage procedure,
provided that $\sigma^{2}>\sigma_{L}^{2}$ where $\sigma_{L}^{2}$ is positive and known to the experimenter. Let

$m=m(d)= \max\{m_{0}, [a^{2}\sigma_{L}^{2}/d^{2}]^{*}+1\},$

where $m_{0}(\geq 2)$ is a preassigned integer and $[x]^{*}$ denotes the largest integer less than
$x$ . By using the pilot observations $X_{1},$

$\ldots,$
$X_{m}$ , calculate $S_{m}^{2}$ and define

$N=N(d)= \max\{m, [b_{m}^{2}S_{m}^{2}/d^{2}]^{*}+1\},$

where $b_{m}$ is the upper 100 $\cross\alpha$/2% point of the Student’s $t$ distribution with $m-1$
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degrees of freedom. If $N>m$ , then take the second sample $X_{m+1},$
$\ldots,$

$X_{N}$ . Based
on the total observations $X_{1},$

$\ldots,$
$X_{N}$ , consider the fixed-width confidence interval

$I_{N}=[\overline{X}_{N}-d, \overline{X}_{N}+d]$ for $\mu,$ where $\overline{X}_{N}=(X_{1}+\cdots+X_{N})/N$ . Then, it is possible
to show the exact consistency, that is, $P(\mu\in I_{N})\geq 1-\alpha$ for all fixed $\mu,$

$\sigma^{2},$ $d$ and
$\alpha$ . Mukhopadhyay and Duggan (1997) showed that as $darrow 0$

$\eta+o(n_{0}^{-1/2})\leq E(N-n_{0})\leq\eta+1+o(n_{\overline{0}^{1/2}})$ ,

where $\eta=(1/2)(a^{2}+1)\sigma^{2}\sigma_{L}^{-2}$ , and so the above two-stage procedure has the asymp-
totic second-order efficiency. Aoshima and Takada (2000) gave a second-order ap-
proximation to the average sample number: $E(N-n_{0})=\eta+(1/2)+O(n_{0}^{-1/2})$ as
$darrow 0$ , and further Isogai et al. (2012) showed that $E(N-n_{0})=\eta+(1/2)+O(n_{0}^{-1})$ as
$darrow 0$ . As for the coverage probability, Mukhopadhyay and Duggan (1997) showed
that as $darrow 0$

$1-\alpha+0(n_{0}^{-1})\leq P(\mu\in I_{N})\leq 1-\alpha+2An_{0}^{-1}+o(n_{0}^{-1})$,

where $A=(1/2)a\phi(a)$ and $\phi(x)$ is the probability density function $(p.d.f.)$ of the
standard normal distribution. Aoshima and Takada (2000) gave a second-order
approximation to the coverage probability:

$P(\mu\in I_{N})=1-\alpha+An_{0}^{-1}+o(n_{0}^{-1})$ as $darrow 0.$

Define $T_{d}=b_{m}^{2}S_{m}^{2}/d^{2},$ $t_{d}^{*}=n_{\overline{0}^{1/2}}(T_{d}-n_{0})$ and $U_{d}=[T_{d}]^{*}+1-T_{d}$ . Isogai et
al. (2012) showed that as $darrow 0$

$P(\mu\in I_{N})=1-\alpha+An_{0}^{-1}+\epsilon_{d}n_{0}^{-3/2}+o(n_{0}^{-3/2})$ ,

where $\epsilon_{d}=-A(a^{2}+1)E(t_{d}^{*}U_{d})$ and $|\epsilon_{d}|\leq A(a^{2}+1)\sqrt{\sigma^{2}/(6\sigma_{L}^{2})}+O(n_{0}^{-1/2})$ . Uno
(2013) established the asymptotic independence of $t_{d}^{*}$ and $U_{d}$ , and obtained that

$P(\mu\in I_{N})=1-\alpha+An_{0}^{-1}+o(n_{\overline{0}^{3/2}})$ as $darrow 0$ . (1)

In this article, we shall apply the result of Uno (2013) to the slight general case of
Mukhopadhyay and Duggan (1999) in Section 2 and give some examples in Section
3.

2. Asymptotic theory

We consider the case of Mukhopadhyay and Duggan (1999) with $\tau=1$ . Let
$X_{1},$ $X_{2},$

$\ldots$ be a sequence of i.i. $d$ . random variables from a population. Several
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optimal fixed sample sizes which arise from problems in sequential point and interval
estimation may be written in the form

$n_{0}=q\theta/h,$

where $q$ and $h$ are known positive numbers, but $\theta$ is the unknown and positive
nuisance parameter. We assume that

$\theta>\theta_{L},$

where $\theta_{L}(>0)$ is known to the experimenter. Mukhopadhyay and Duggan (1999)
proposed the following two-stage procedure. The initial sample size is defined by

$m \equiv m(h)=\max\{m_{0}, [q\theta_{L}/h]^{*}+1\},$

where $m_{0}(\geq 2)$ is a preassigned positive integer. By the pilot sample $X_{1},$
$\ldots,$

$X_{m}$ of
size $m$ , we consider an unbiased estimator $V(m)$ of $\theta$ satisfying $P\{V(m)>0\}=1.$
Further, suppose that

$Y_{m}=p_{m}V(m)/\theta$ is distributed as $\chi_{p_{m}}^{2}$ with $p_{m}=c_{1}m+c_{2},$

where $p_{m}$ is a positive integer with a positive integer $c_{1}$ and an integer $c_{2}$ , and
$\chi_{p_{m}}^{2}$ stands for a chi-square distribution with $p_{m}$ degrees of freedom. We consider
asymptotic theory as $harrow 0$ , namely, $n_{0}arrow\infty$ . Then,

$marrow\infty$ and $V(m)arrow^{P}\theta$ as $harrow 0,$

where $arrow^{P}$“ stands for convergence in probability. Let $q_{m}^{*}$ be positive where

$q_{m}^{*}=q+c_{3}m^{-1}+O(m^{-2})$ as $harrow 0$

with some real number $c_{3}$ . Define

$N \equiv N(h)=\max\{m, [q_{m}^{*}V(m)/h]^{*}+1\}.$

If $N>m$ , then one takes the second sample $X_{m+1},$
$\ldots,$

$X_{N}$ . The total observations
are $X_{1},$

$\ldots,$
$X_{N}$ . Throughout the remainder of this article, let

$T_{h}=q_{m}^{*}V(m)/h,$ $t_{h}^{*}=n_{0}^{-1/2}(T_{h}-n_{0})$ and $U_{h}=[T_{h}]^{*}+1-T_{h}.$

Then we obtain the following theorem.

Theorem 1. $U_{h}$ and $t_{h}^{*}$ are asymptotically independent as $harrow 0$ . The asymptotic
distribution of $U_{h}$ is uniform on $(0,1)$ ; and the asymptotic distribution $oft_{h}^{*}$ is normal
with mean $0$ and variance $2\theta/(c_{1}\theta_{L})$ .
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The proof of Theorem 1 is similar to that of Theorem (i) of Uno (2013). So we
omit the details.

Let $\mathbb{R}^{+}=(0, \infty)$ and suppose that $g:\mathbb{R}^{+}arrow \mathbb{R}^{+}$ is a three-times differentiable
function snd the third derivative $g^{(3)}(x)$ is continuous at $x=1$ . By Taylor’s theorem,

we have

$g(N/n_{0})=g(1)+g’(1)n_{0}^{-1}(N-n_{0})+(1/2)g"(1)n_{0}^{-2}(N-n_{0})^{2}$

$+(1/6)g^{(3)}(W)n_{0}^{-3}(N-n_{0})^{3},$

where $W$ is a random variable such that $|W-1|<|(N/n_{0})-1|$ . Uno and Isogai
(2012) showed that if $\{g^{(3)}(W)n_{0}^{-3/2}(N-n_{0})^{3};0<h<h_{0}\}$ is uniformly integrable
for some sufficiently small $h_{0}>0$ , then as $harrow 0$

$E\{g(N/n_{0})\}=g(1)+B_{0}n_{0}^{-1}+\epsilon_{h}n_{0}^{-3/2}+o(n_{0}^{-3/2})$, (2)

where

$B_{0}=(1/2)g’(1)+\triangle(\theta/\theta_{L})$ , $\triangle=c_{3}q^{-1}g’(1)+c_{1}^{-1}g"(1)$ ,

$\epsilon_{h}=g"(1)E(t_{h}^{*}U_{h})$ and $|\epsilon_{h}|\leq|g"(1)|\sqrt{\theta/(6c_{1}\theta_{L})}+O(n_{0}^{-1/2})$ .

We obtain the next theorem.

Theorem 2. If $\{g^{(3)}(W)n_{0}^{-3/2}(N-n_{0})^{3};0<h<h_{0}\}$ is uniformly integrable for
some sufficiently small $h_{0}>0$ , then as $harrow 0$

$E\{g(N/n_{0})\}=g(1)+B_{0}n_{0}^{-1}+o(n_{0}^{-3/2})$ .

Proof. It is easily seen from Lemma 2.2 of Mukhopadhyay and Duggan (1999)
that $\{|t_{h}^{*}U_{h}| ; 0<h<h_{0}\}$ is uniformly integrable for some sufficiently small $h_{0}>0.$

Therefore, we have from Theorem 1 that $E(t_{h}^{*}U_{h})=o(1)$ as $harrow 0$ , which yields
$\epsilon_{h}=0(1)$ in (2). $\square$

Remark. If $\Delta=0$ , then the approximation of Theorem 2 does not depend on $\theta_{L}$

up to the order term.

Recall the fixed-width interval estimation of $\mu$ of $N(\mu, \sigma^{2})$ described in Section
1. We take $q=a^{2},$ $h=d^{2},$ $\theta=\sigma^{2},$ $\theta_{L}=\sigma_{L}^{2},$ $V(m)=S_{m}^{2}$ and $q_{m}^{*}=b_{m}^{2}$ . Then
we have $p_{m}=m-1(c_{1}=1, c_{2}=-1)$ and $q_{m}^{*}=b_{m}^{2}=a^{2}+c_{3}m^{-1}+O(m^{-2})$

with $c_{3}=(1/2)a^{2}(a^{2}+1)$ . Taking $g(x)=2\Phi(a\sqrt{x})-1$ , where $\Phi$ is the cumulative
distribution function of $N(0,1)$ , we have $g(1)=1-\alpha,$ $g’(1)=a\phi(a)$ and $g”(1)=$

$-(1/2)a(a^{2}+1)\phi(a)$ . Thus, from Lemma 4.1 of Isogai et al. (2012) and Theorem
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2, we obtain $P(\mu\in I_{N})=E\{g(N/n_{0})\}=1-\alpha+(1/2)a\phi(a)n_{0}^{-1}+o(n_{\overline{0}^{3/2}})$ , which
becomes the approximation (1). Note that $\triangle\equiv c_{3}q^{-1}g’(1)+c_{1}^{-1}g"(1)=0$ , and so
$B_{0}=(1/2)a\phi(a)$ does not depend on $\sigma_{L}^{2}.$

3. Examples

We shall apply our theorem to three problems.

3.1. Bounded risk estimation of the normal mean

We consider a sequence of i.i. $d$ . random variables $X_{1},$ $X_{2},$
$\ldots$ from a normal

population $N(\mu, \sigma^{2})$ where $\mu\in \mathbb{R}=(-\infty, \infty)$ and $\sigma^{2}\in \mathbb{R}^{+}$ are both unknown.
We assume that there exists a known and positive lower bound $\sigma_{L}^{2}$ for $\sigma^{2}$ such
that $\sigma^{2}>\sigma_{L}^{2}$ . Having recorded $X_{1},$

$\ldots,$
$X_{n}$ , we define $\overline{X}_{n}=n^{-1}\sum_{i=1}^{n}X_{i}$ and

$V(n)=(n-1)^{-1} \sum_{i=1}^{n}(X_{i}-\overline{X}_{n})^{2}$ for $n\geq 2$ . On the basis of the random sample
$X_{1},$

$\ldots,$
$X_{n}$ of size $n$ , we want to estimate $\mu$ by $\overline{X}_{n}$ under the loss function

$L_{n}=(\overline{X}_{n}-\mu)^{2}.$

Then, the risk is given by $R_{m}=E(L_{n})=\sigma^{2}/n$ . For any preassigned $w>0$ , we hope
that $R_{n}=\sigma^{2}/n\leq w$ , which is equivalent to

$n\geq\sigma^{2}/w\equiv n_{0}.$

Unfortunately $\sigma$ is unknown, so we can not use the optimal fixed sample size $n_{0}.$

Thus we define a two-stage procedure. Let

$m=m(w)= \max\{m_{0}, [\sigma_{L}^{2}/w]^{*}+1\},$

where $m_{0}\geq 4$ . By using the pilot observations $X_{1},$
$\cdots,$ $X_{m}$ , we calculate $V(m)$ and

$N=N(w)= \max\{m, [b_{m}V(m)/w]^{*}+1\},$

where $b_{m}=(m-1)/(m-3)$ . The risk is given by $R_{N}=E(\overline{X}_{N}-\mu)^{2}$ . It follows
from $(7c.6.2)$ and $(7c.6.7)$ with $c^{2}=w$ and $b^{2}=b_{m}$ in section $7c.6$ of Rao (1973)
that $R_{N}\leq w$ for all fixed $\mu,$ $\sigma$ and $w$ . Therefore our requirement is fulfilled. In
the notations of Section 2, note that $h=w,$ $\theta=\sigma^{2},$ $\theta_{L}=\sigma_{L}^{2},$ $q=1,$ $p_{m}=m-1$
$(c_{1}=1, c_{2}=-1)$ and $q_{m}^{*}=b_{m}=1+2m^{-1}+O(m^{-2})$ with $c_{3}=2$ . Taking
$g(x)=x^{-1}$ for $x>0$ , we have $R_{N}=E(\sigma^{2}/N)=wE\{g(N/n_{0})\}$ and $\triangle=0.$ $\mathbb{R}om$

Proposition 1 of Uno and Isogai (2012) and Theorem 2, we obtain

$R_{N}/w=1-(1/2)n_{0}^{-1}+o(n_{\overline{0}^{3/2}})$ as $warrow 0.$

37



3.2. Fixed-width interual estimation of the negative exponential location

Let $X_{1},$ $X_{2},$
$\ldots$ be a sequence of i.i. $d$ . random variables from a population having

the following p.d. $f.$ :

$f(x)=\sigma^{-1}\exp\{-(x-\mu)/\sigma\},$ $x>\mu,$

where $\mu\in \mathbb{R}$ and $\sigma\in \mathbb{R}^{+}$ are both unknown. We assume that there exists a known
and positive lower bound $\sigma_{L}$ for $\sigma$ such that $\sigma>\sigma_{L}$ . For any preassigned numbers
$d>0$ and $\alpha\in(0,1)$ , we want to construct a confidence interval $I_{n}$ for the location
parameter $\mu$ based on the random sample $X_{1},$

$\ldots,$
$X_{n}$ of size $n$ such that the length

of $I_{n}$ is fixed at $d$ and $P\{\mu\in I_{n}\}\geq 1-\alpha$ for all fixed $\mu$ and $\sigma$ . Having recorded
$X_{1},$

$\ldots,$
$X_{n}$ , we define $X_{n(1)}= \min\{X_{1}, \ldots, X_{n}\}$ and $V(n)=(n-1)^{-1} \sum_{i=1}^{n}(X_{i}-$

$X_{n(1)})$ for $n\geq 2$ , and consider a confidence interval $I_{n}=[X_{n(1)}-d, X_{n(1)}]$ for the
location $\mu$ . Then $P\{\mu\in I_{n}\}\geq 1-\alpha$ for all fixed $\mu,$ $\sigma,$ $\alpha$ and $d$ , provided

$n\geq a\sigma/d\equiv n_{0}$ with $a=\ln(1/\alpha)(>0)$ .

Mukhopadhyay and Duggan (1999) proposed the following two-stage procedure. Let

$m=m(d)= \max\{m_{0}, [a\sigma_{L}/d]^{*}+1\},$

where $m_{0}\geq 2$ . By using the pilot observations $X_{1},$
$\ldots,$

$X_{m}$ , we calculate $V(m)$ and

$N=N(d)= \max\{m, [b_{m}V(m)/d]^{*}+1\},$

where $b_{m}$ is the upper 100$\alpha$% point of the $F$-distribution with 2 and $2(m-1)$ degrees
of freedom. Then the interval $I_{N}=[X_{N(1)}-d, X_{N(1)}]$ is proposed for $\mu$ . It follows
from (3.3) of Mukhopadhyay and Duggan (1999) that $P\{\mu\in I_{N}\}\geq 1-\alpha$ for all
fixed $\mu,$ $\sigma,$

$d$ and $\alpha$ . Then, let $h=d,$ $\theta=\sigma,$ $\theta_{L}=\sigma_{L},$ $q=a,$ $p_{m}=2m-2$
$(c_{1}=2, c_{2}=-2)$ and $q_{m}^{*}=b_{m}=a+(1/2)a^{2}m^{-1}+O(m^{-2})$ with $c_{3}=(1/2)a^{2}$ in
the notations of Section 2. Taking $g(x)=1-e^{-ax}$ for $x>0$ , we have $P\{\mu\in I_{N}\}=$

$E\{1-\exp(-Nd/\sigma)\}=E\{g(N/n_{0})\}$ and $\triangle=0.$ $\mathbb{R}om$ Proposition 2 of Uno and
Isogai (2012) and Theorem 2, we obtain

$P\{\mu\in I_{N}\}=1-\alpha+(1/2)a\alpha n_{0}^{-1}+o(n_{0}^{-3/2})$ as $darrow 0.$

3.3. Selecting the $be\mathcal{S}t$ normal population

Suppose there exist $k(\geq 2)$ independent populations $\pi_{i},$ $i=1,$ $\ldots,$
$k$ and each $\pi_{i}$

has a normal distribution $N(\mu_{i}, \sigma^{2})$ , where the mean $\mu_{i}$ and the common variance $\sigma^{2}$

are unknown. Let us denote $\mu=(\mu_{1}, \ldots, \mu_{k})’$ and write $\mu_{[1]}\leq\cdots\leq\mu_{[k-1]}\leq\mu_{[k]}$ for
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the ordered $\mu$ values. Along the line of Bechhofer (1954), we consider the problem
of selecting the population associated with the largest $\mu_{[k]}$ , referred to as the best
population, while guaranteeing

$P\{CS\}\geq P^{*}$ whenever $\mu\in\Omega(\delta)$ (3)

for given $\delta(>0)$ and $P^{*}\in(k^{-1},1)$ , where $\Omega(\delta)=\{\mu : \mu_{[k]}-\mu_{[k-1]}\geq\delta\}$ and the
complementary subspace $\Omega^{C}(\delta)$ is called the indifference zone. Here and elsewhere,

$CS$” stands for “Correct Selection” Let $X_{i1},$ $X_{i2},$
$\ldots$ be i.i. $d$ . random variables

from $\pi_{i}$ for $i=1,$ $\ldots,$
$k$ . Having recorded $X_{i1},$

$\ldots,$
$X_{in}$ with fixed $n(\geq 2)$ from each

$\pi_{i}$ , we compute $\overline{X}_{in}=n^{-1}\sum_{j=1}^{n}X_{ij}$ and $\overline{X}_{[kn]}=\max_{1\leq i\leq k}\overline{X}_{in}$ . If $\sigma^{2}$ were known,
one implements the following selection rule $(SR)$ for fixed $n$ :

$SR_{n}$ : Select the population which gives rise to the largest sample

mean $\overline{X}_{[kn]}$ as the best population. (4)

Then, it follows from the equation (2.2) of Aoshima and Aoki (2000) that

$\inf_{\mu\in\Omega(\delta)}P\{CS_{(SR_{n})}\}=\int_{-\infty}^{\infty}\Phi^{k-1}(y+\sqrt{n\delta^{2}/\sigma^{2}})\phi(y)dy,$

where $CS_{(SR_{n})}$ stands for “Correct Selection” under the selection rule $SR_{n}$ . The
infimum is attained when $\mu_{[1]}=\cdots=\mu_{[k-1]}=\mu_{[k]}-\delta$ , which is known as the least
favorable configuration. Let

$H(x)= \int_{-\infty}^{\infty}\Phi^{k-1}(y+\sqrt{x})\phi(y)dy,$ $x>0$

and $z=z(k, P^{*})$ is a positive constant which satisfies the integral equation $H(z^{2})=$

$P^{*}$ . The requirement (3) is satisfied if

$n\geq z^{2}\sigma^{2}/\delta^{2}\equiv n_{0}.$

Since $\sigma^{2}$ is unknown, we can not use the optimal fixed sample size $n_{0}$ . The two-
stage procedure proposed by Bechhofer et al. (1954) satisfies (3) and hence it has
the exact consistency.

Let us assume that $\sigma^{2}>\sigma_{L}^{2}$ where $\sigma_{L}^{2}(>0)$ is known, and define

$m=m( \delta)=\max\{m_{0}, [z^{2}\sigma_{L}^{2}/\delta^{2}]^{*}+1\}$ , (5)

where $m_{0}\geq 2$ . Take the initial sample $X_{i1},$
$\ldots,$

$X_{im}$ from each $\pi_{i}$ and compute $\overline{X}_{im},$

$i=1,$ $\ldots,$
$k$ and $V(m)=k^{-1} \sum_{i=1}^{k}V_{im}$ where $V_{im}=(m-1)^{-1} \sum_{j=1}^{m}(X_{ij}-\overline{X}_{im})^{2}.$

Aoshima and Aoki (2000) proposed

$N=N( \delta)=\max\{m, [t^{2}V(m)/\delta^{2}]^{*}+1\}$ , (6)
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where $t=t(k, P^{*})$ is a positive constant such that $E\{H(t^{2}Y_{m}/p_{m})\}=P^{*}$ . Here,
$Y_{m}=p_{m}V(m)/\sigma^{2}$ has the distribution $\chi_{p_{m}}^{2}$ with $p_{m}=k(m-1)$ . In the notations
of Section 2, note that $q=z^{2},$ $\theta=\sigma^{2},$ $\theta_{L}=\sigma_{L}^{2},$ $h=\delta^{2},$ $c_{1}=k,$ $c_{2}=-k$ and
$q_{m}^{*}=t^{2}$ . Secondly, one takes the additional sample $X_{i(m+1)},$ $\ldots,$

$X_{iN}$ of size $N-m$

from each $\pi_{i}$ and computes $\overline{X}_{iN}=\sum_{j=1}^{N}X_{ij}/N,$ $i=1,$ $\ldots,$
$k$ . Then, we implement

the selection rule $SR_{N}$ given by (4) associated with $\overline{X}_{[kN]}=\max_{1\leq i\leq k}\overline{X}_{iN}$ . For the
two-stage procedure defined by (5) and (6), Aoshima and Aoki (2000) showed the
exact consistency, namely, $i_{YJ}f_{\mu\in\Omega(\delta)}P\{CS_{(SR_{N})}\}\geq P^{*}$ for each fixed $\delta$ . It follows
from the equation (2.9) of Aoshima and Aoki (2000) that as $\deltaarrow 0$

$t^{2}=z^{2}+c_{3}m^{-1}+O(m^{-2})$ , where $c_{3}=- \frac{z^{4}H"(z^{2})}{kH(z^{2})}.$

Here, $H’$ and $H”$ are the first and second derivatives of $H$ , respectively. Taking
$g(x)=H(z^{2}x)$ for $x>0$ , we have $\inf_{\mu\in\Omega(\delta)}P\{CS_{(SR_{N})}\}=E\{g(N/n_{0})\}$ and $\triangle=0.$

From Proposition 4 of Uno and Isogai (2012) and Theorem 2, we obtain

$\inf_{\mu\in\Omega(\delta)}P\{CS_{(SR_{N})}\}=P^{*}+(1/2)z^{2}H’(z^{2})n_{0}^{-1}+o(n_{0}^{-3/2})$ .

Mukhopadhyay and Duggan (1999) proposed

$N^{\uparrow}=N^{\dagger}( \delta)=\max\{m,$ $[z^{2}V(m)/\delta^{2}]^{*}+1\}$ . (7)

For the two-stage procedure defined by (5) and (7), the exact consistency does not
hold and $\triangle=k^{-1}z^{4}H"(z^{2})$ . Hence, from Proposition 3 of Uno and Isogai (2012)
and Theorem 2, we have

$\inf_{\mu\in\Omega(\delta)}P\{CS_{(SR_{N})}\dagger\}=P^{*}+B_{0}^{\dagger}n_{0}^{-1}+o(n_{0}^{-3/2})$,

where $B_{0}^{\dagger}=(1/2)z^{2}H’(z^{2})+k^{-1}z^{4}H"(z^{2})\sigma^{2}\sigma_{L}^{-2}$ , which depends on $\sigma_{L}^{2}.$
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