A note on asymptotic higher－order properties of a two－stage estimation procedure

（二段階推定法の高次漸近特性に関する一考察）${ }^{1}$

Chikara Uno
Department of Mathematics，Akita University，Akita，010－8502，Japan
宇野力（秋田大学 教育文化学部）

1．Introduction

Let X_{1}, X_{2}, \ldots be a sequence of independent and identically distributed（i．i．d．） random variables from a normal population $N\left(\mu, \sigma^{2}\right)$ where the mean $\mu \in(-\infty, \infty)$ and the variance $\sigma^{2} \in(0, \infty)$ are both unknown．Having recorded X_{1}, \ldots, X_{n} ，we define $\bar{X}_{n}=n^{-1} \sum_{i=1}^{n} X_{i}$ and $S_{n}^{2}=(n-1)^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$ for $n \geq 2$ ．Let $d \in(0, \infty)$ and $\alpha \in(0,1)$ be any preassigned numbers．On the basis of the random sample of size n ，we consider a confidence interval $I_{n}=\left[\bar{X}_{n}-d, \bar{X}_{n}+d\right]$ for μ with confidence coefficient $1-\alpha$ ．If we take the sample of size n such that

$$
n \geq a^{2} \sigma^{2} / d^{2} \equiv n_{0}
$$

where a is the upper $100 \times \alpha / 2 \%$ point of the standard normal distribution，then it holds that $P\left(\mu \in I_{n}\right) \geq 1-\alpha$ for all fixed μ, σ^{2}, α and d ．Unfortunately，σ^{2} is unknown，so we cannot use the optimal fixed sample size n_{0} ．

Stein＇s two－stage procedure does not have the asymptotic second－order efficiency． Mukhopadhyay and Duggan（1997）proposed the following two－stage procedure， provided that $\sigma^{2}>\sigma_{L}^{2}$ where σ_{L}^{2} is positive and known to the experimenter．Let

$$
m=m(d)=\max \left\{m_{0},\left[a^{2} \sigma_{L}^{2} / d^{2}\right]^{*}+1\right\}
$$

where $m_{0}(\geq 2)$ is a preassigned integer and $[x]^{*}$ denotes the largest integer less than x ．By using the pilot observations X_{1}, \ldots, X_{m} ，calculate S_{m}^{2} and define

$$
N=N(d)=\max \left\{m,\left[b_{m}^{2} S_{m}^{2} / d^{2}\right]^{*}+1\right\}
$$

where b_{m} is the upper $100 \times \alpha / 2 \%$ point of the Student＇s t distribution with $m-1$

[^0]degrees of freedom. If $N>m$, then take the second sample X_{m+1}, \ldots, X_{N}. Based on the total observations X_{1}, \ldots, X_{N}, consider the fixed-width confidence interval $I_{N}=\left[\bar{X}_{N}-d, \bar{X}_{N}+d\right]$ for μ, where $\bar{X}_{N}=\left(X_{1}+\cdots+X_{N}\right) / N$. Then, it is possible to show the exact consistency, that is, $P\left(\mu \in I_{N}\right) \geq 1-\alpha$ for all fixed μ, σ^{2}, d and α. Mukhopadhyay and Duggan (1997) showed that as $d \rightarrow 0$
$$
\eta+o\left(n_{0}^{-1 / 2}\right) \leq E\left(N-n_{0}\right) \leq \eta+1+o\left(n_{0}^{-1 / 2}\right)
$$
where $\eta=(1 / 2)\left(a^{2}+1\right) \sigma^{2} \sigma_{L}^{-2}$, and so the above two-stage procedure has the asymptotic second-order efficiency. Aoshima and Takada (2000) gave a second-order approximation to the average sample number: $E\left(N-n_{0}\right)=\eta+(1 / 2)+O\left(n_{0}^{-1 / 2}\right)$ as $d \rightarrow 0$, and further Isogai et al. (2012) showed that $E\left(N-n_{0}\right)=\eta+(1 / 2)+O\left(n_{0}^{-1}\right)$ as $d \rightarrow 0$. As for the coverage probability, Mukhopadhyay and Duggan (1997) showed that as $d \rightarrow 0$
$$
1-\alpha+o\left(n_{0}^{-1}\right) \leq P\left(\mu \in I_{N}\right) \leq 1-\alpha+2 A n_{0}^{-1}+o\left(n_{0}^{-1}\right)
$$
where $A=(1 / 2) a \phi(a)$ and $\phi(x)$ is the probability density function (p.d.f.) of the standard normal distribution. Aoshima and Takada (2000) gave a second-order approximation to the coverage probability:
$$
P\left(\mu \in I_{N}\right)=1-\alpha+A n_{0}^{-1}+o\left(n_{0}^{-1}\right) \quad \text { as } d \rightarrow 0
$$

Define $T_{d}=b_{m}^{2} S_{m}^{2} / d^{2}, t_{d}^{*}=n_{0}^{-1 / 2}\left(T_{d}-n_{0}\right)$ and $U_{d}=\left[T_{d}\right]^{*}+1-T_{d}$. Isogai et al. (2012) showed that as $d \rightarrow 0$

$$
P\left(\mu \in I_{N}\right)=1-\alpha+A n_{0}^{-1}+\varepsilon_{d} n_{0}^{-3 / 2}+o\left(n_{0}^{-3 / 2}\right)
$$

where $\varepsilon_{d}=-A\left(a^{2}+1\right) E\left(t_{d}^{*} U_{d}\right)$ and $\left|\varepsilon_{d}\right| \leq A\left(a^{2}+1\right) \sqrt{\sigma^{2} /\left(6 \sigma_{L}^{2}\right)}+O\left(n_{0}^{-1 / 2}\right)$. Uno (2013) established the asymptotic independence of t_{d}^{*} and U_{d}, and obtained that

$$
\begin{equation*}
P\left(\mu \in I_{N}\right)=1-\alpha+A n_{0}^{-1}+o\left(n_{0}^{-3 / 2}\right) \quad \text { as } d \rightarrow 0 \tag{1}
\end{equation*}
$$

In this article, we shall apply the result of Uno (2013) to the slight general case of Mukhopadhyay and Duggan (1999) in Section 2 and give some examples in Section 3.

2. Asymptotic theory

We consider the case of Mukhopadhyay and Duggan (1999) with $\tau=1$. Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables from a population. Several
optimal fixed sample sizes which arise from problems in sequential point and interval estimation may be written in the form

$$
n_{0}=q \theta / h
$$

where q and h are known positive numbers, but θ is the unknown and positive nuisance parameter. We assume that

$$
\theta>\theta_{L},
$$

where $\theta_{L}(>0)$ is known to the experimenter. Mukhopadhyay and Duggan (1999) proposed the following two-stage procedure. The initial sample size is defined by

$$
m \equiv m(h)=\max \left\{m_{0},\left[q \theta_{L} / h\right]^{*}+1\right\}
$$

where $m_{0}(\geq 2)$ is a preassigned positive integer. By the pilot sample X_{1}, \ldots, X_{m} of size m, we consider an unbiased estimator $V(m)$ of θ satisfying $P\{V(m)>0\}=1$. Further, suppose that

$$
Y_{m}=p_{m} V(m) / \theta \text { is distributed as } \chi_{p_{m}}^{2} \text { with } p_{m}=c_{1} m+c_{2}
$$

where p_{m} is a positive integer with a positive integer c_{1} and an integer c_{2}, and $\chi_{p_{m}}^{2}$ stands for a chi-square distribution with p_{m} degrees of freedom. We consider asymptotic theory as $h \rightarrow 0$, namely, $n_{0} \rightarrow \infty$. Then,

$$
m \rightarrow \infty \quad \text { and } \quad V(m) \xrightarrow{P} \theta \quad \text { as } h \rightarrow 0,
$$

where " \xrightarrow{P} " stands for convergence in probability. Let q_{m}^{*} be positive where

$$
q_{m}^{*}=q+c_{3} m^{-1}+O\left(m^{-2}\right) \quad \text { as } h \rightarrow 0
$$

with some real number c_{3}. Define

$$
N \equiv N(h)=\max \left\{m,\left[q_{m}^{*} V(m) / h\right]^{*}+1\right\}
$$

If $N>m$, then one takes the second sample X_{m+1}, \ldots, X_{N}. The total observations are X_{1}, \ldots, X_{N}. Throughout the remainder of this article, let

$$
T_{h}=q_{m}^{*} V(m) / h, \quad t_{h}^{*}=n_{0}^{-1 / 2}\left(T_{h}-n_{0}\right) \quad \text { and } \quad U_{h}=\left[T_{h}\right]^{*}+1-T_{h}
$$

Then we obtain the following theorem.
Theorem 1. U_{h} and t_{h}^{*} are asymptotically independent as $h \rightarrow 0$. The asymptotic distribution of U_{h} is uniform on $(0,1)$; and the asymptotic distribution of t_{h}^{*} is normal with mean 0 and variance $2 \theta /\left(c_{1} \theta_{L}\right)$.

The proof of Theorem 1 is similar to that of Theorem (i) of Uno (2013). So we omit the details.

Let $\mathbb{R}^{+}=(0, \infty)$ and suppose that $g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a three-times differentiable function and the third derivative $g^{(3)}(x)$ is continuous at $x=1$. By Taylor's theorem, we have

$$
\begin{aligned}
g\left(N / n_{0}\right)=g(1) & +g^{\prime}(1) n_{0}^{-1}\left(N-n_{0}\right)+(1 / 2) g^{\prime \prime}(1) n_{0}^{-2}\left(N-n_{0}\right)^{2} \\
& +(1 / 6) g^{(3)}(W) n_{0}^{-3}\left(N-n_{0}\right)^{3}
\end{aligned}
$$

where W is a random variable such that $|W-1|<\left|\left(N / n_{0}\right)-1\right|$. Uno and Isogai (2012) showed that if $\left\{g^{(3)}(W) n_{0}^{-3 / 2}\left(N-n_{0}\right)^{3} ; 0<h<h_{0}\right\}$ is uniformly integrable for some sufficiently small $h_{0}>0$, then as $h \rightarrow 0$

$$
\begin{equation*}
E\left\{g\left(N / n_{0}\right)\right\}=g(1)+B_{0} n_{0}^{-1}+\epsilon_{h} n_{0}^{-3 / 2}+o\left(n_{0}^{-3 / 2}\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& B_{0}=(1 / 2) g^{\prime}(1)+\Delta\left(\theta / \theta_{L}\right), \quad \Delta=c_{3} q^{-1} g^{\prime}(1)+c_{1}^{-1} g^{\prime \prime}(1) \\
& \epsilon_{h}=g^{\prime \prime}(1) E\left(t_{h}^{*} U_{h}\right) \quad \text { and } \quad\left|\epsilon_{h}\right| \leq\left|g^{\prime \prime}(1)\right| \sqrt{\theta /\left(6 c_{1} \theta_{L}\right)}+O\left(n_{0}^{-1 / 2}\right)
\end{aligned}
$$

We obtain the next theorem.
Theorem 2. If $\left\{g^{(3)}(W) n_{0}^{-3 / 2}\left(N-n_{0}\right)^{3} ; 0<h<h_{0}\right\}$ is uniformly integrable for some sufficiently small $h_{0}>0$, then as $h \rightarrow 0$

$$
E\left\{g\left(N / n_{0}\right)\right\}=g(1)+B_{0} n_{0}^{-1}+o\left(n_{0}^{-3 / 2}\right)
$$

Proof. It is easily seen from Lemma 2.2 of Mukhopadhyay and Duggan (1999) that $\left\{\left|t_{h}^{*} U_{h}\right| ; 0<h<h_{0}\right\}$ is uniformly integrable for some sufficiently small $h_{0}>0$. Therefore, we have from Theorem 1 that $E\left(t_{h}^{*} U_{h}\right)=o(1)$ as $h \rightarrow 0$, which yields $\epsilon_{h}=o(1)$ in (2).

Remark. If $\Delta=0$, then the approximation of Theorem 2 does not depend on θ_{L} up to the order term.

Recall the fixed-width interval estimation of μ of $N\left(\mu, \sigma^{2}\right)$ described in Section 1. We take $q=a^{2}, h=d^{2}, \theta=\sigma^{2}, \theta_{L}=\sigma_{L}^{2}, V(m)=S_{m}^{2}$ and $q_{m}^{*}=b_{m}^{2}$. Then we have $p_{m}=m-1\left(c_{1}=1, c_{2}=-1\right)$ and $q_{m}^{*}=b_{m}^{2}=a^{2}+c_{3} m^{-1}+O\left(m^{-2}\right)$ with $c_{3}=(1 / 2) a^{2}\left(a^{2}+1\right)$. Taking $g(x)=2 \Phi(a \sqrt{x})-1$, where Φ is the cumulative distribution function of $N(0,1)$, we have $g(1)=1-\alpha, g^{\prime}(1)=a \phi(a)$ and $g^{\prime \prime}(1)=$ $-(1 / 2) a\left(a^{2}+1\right) \phi(a)$. Thus, from Lemma 4.1 of Isogai et al. (2012) and Theorem

2, we obtain $P\left(\mu \in I_{N}\right)=E\left\{g\left(N / n_{0}\right)\right\}=1-\alpha+(1 / 2) a \phi(a) n_{0}^{-1}+o\left(n_{0}^{-3 / 2}\right)$, which becomes the approximation (1). Note that $\Delta \equiv c_{3} q^{-1} g^{\prime}(1)+c_{1}^{-1} g^{\prime \prime}(1)=0$, and so $B_{0}=(1 / 2) a \phi(a)$ does not depend on σ_{L}^{2}.

3. Examples

We shall apply our theorem to three problems.

3.1. Bounded risk estimation of the normal mean

We consider a sequence of i.i.d. random variables X_{1}, X_{2}, \ldots from a normal population $N\left(\mu, \sigma^{2}\right)$ where $\mu \in \mathbb{R}=(-\infty, \infty)$ and $\sigma^{2} \in \mathbb{R}^{+}$are both unknown. We assume that there exists a known and positive lower bound σ_{L}^{2} for σ^{2} such that $\sigma^{2}>\sigma_{L}^{2}$. Having recorded X_{1}, \ldots, X_{n}, we define $\bar{X}_{n}=n^{-1} \sum_{i=1}^{n} X_{i}$ and $V(n)=(n-1)^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$ for $n \geq 2$. On the basis of the random sample X_{1}, \ldots, X_{n} of size n, we want to estimate μ by \bar{X}_{n} under the loss function

$$
L_{n}=\left(\bar{X}_{n}-\mu\right)^{2} .
$$

Then, the risk is given by $R_{n}=E\left(L_{n}\right)=\sigma^{2} / n$. For any preassigned $w>0$, we hope that $R_{n}=\sigma^{2} / n \leq w$, which is equivalent to

$$
n \geq \sigma^{2} / w \equiv n_{0}
$$

Unfortunately σ is unknown, so we can not use the optimal fixed sample size n_{0}. Thus we define a two-stage procedure. Let

$$
m=m(w)=\max \left\{m_{0},\left[\sigma_{L}^{2} / w\right]^{*}+1\right\}
$$

where $m_{0} \geq 4$. By using the pilot observations X_{1}, \cdots, X_{m}, we calculate $V(m)$ and

$$
N=N(w)=\max \left\{m,\left[b_{m} V(m) / w\right]^{*}+1\right\}
$$

where $b_{m}=(m-1) /(m-3)$. The risk is given by $R_{N}=E\left(\bar{X}_{N}-\mu\right)^{2}$. It follows from (7c.6.2) and (7c.6.7) with $c^{2}=w$ and $b^{2}=b_{m}$ in section 7c. 6 of Rao (1973) that $R_{N} \leq w$ for all fixed μ, σ and w. Therefore our requirement is fulfilled. In the notations of Section 2, note that $h=w, \theta=\sigma^{2}, \theta_{L}=\sigma_{L}^{2}, q=1, p_{m}=m-1$ $\left(c_{1}=1, c_{2}=-1\right)$ and $q_{m}^{*}=b_{m}=1+2 m^{-1}+O\left(m^{-2}\right)$ with $c_{3}=2$. Taking $g(x)=x^{-1}$ for $x>0$, we have $R_{N}=E\left(\sigma^{2} / N\right)=w E\left\{g\left(N / n_{0}\right)\right\}$ and $\Delta=0$. From Proposition 1 of Uno and Isogai (2012) and Theorem 2, we obtain

$$
R_{N} / w=1-(1 / 2) n_{0}^{-1}+o\left(n_{0}^{-3 / 2}\right) \quad \text { as } w \rightarrow 0
$$

3.2. Fixed-width interval estimation of the negative exponential location

Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables from a population having the following p.d.f.:

$$
f(x)=\sigma^{-1} \exp \{-(x-\mu) / \sigma\}, \quad x>\mu,
$$

where $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}^{+}$are both unknown. We assume that there exists a known and positive lower bound σ_{L} for σ such that $\sigma>\sigma_{L}$. For any preassigned numbers $d>0$ and $\alpha \in(0,1)$, we want to construct a confidence interval I_{n} for the location parameter μ based on the random sample X_{1}, \ldots, X_{n} of size n such that the length of I_{n} is fixed at d and $P\left\{\mu \in I_{n}\right\} \geq 1-\alpha$ for all fixed μ and σ. Having recorded X_{1}, \ldots, X_{n}, we define $X_{n(1)}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ and $V(n)=(n-1)^{-1} \sum_{i=1}^{n}\left(X_{i}-\right.$ $\left.X_{n(1)}\right)$ for $n \geq 2$, and consider a confidence interval $I_{n}=\left[X_{n(1)}-d, X_{n(1)}\right]$ for the location μ. Then $P\left\{\mu \in I_{n}\right\} \geq 1-\alpha$ for all fixed μ, σ, α and d, provided

$$
n \geq a \sigma / d \equiv n_{0} \quad \text { with } a=\ln (1 / \alpha)(>0)
$$

Mukhopadhyay and Duggan (1999) proposed the following two-stage procedure. Let

$$
m=m(d)=\max \left\{m_{0},\left[a \sigma_{L} / d\right]^{*}+1\right\},
$$

where $m_{0} \geq 2$. By using the pilot observations X_{1}, \ldots, X_{m}, we calculate $V(m)$ and

$$
N=N(d)=\max \left\{m,\left[b_{m} V(m) / d\right]^{*}+1\right\}
$$

where b_{m} is the upper $100 \alpha \%$ point of the F-distribution with 2 and $2(m-1)$ degrees of freedom. Then the interval $I_{N}=\left[X_{N(1)}-d, X_{N(1)}\right]$ is proposed for μ. It follows from (3.3) of Mukhopadhyay and Duggan (1999) that $P\left\{\mu \in I_{N}\right\} \geq 1-\alpha$ for all fixed μ, σ, d and α. Then, let $h=d, \theta=\sigma, \theta_{L}=\sigma_{L}, q=a, p_{m}=2 m-2$ $\left(c_{1}=2, c_{2}=-2\right)$ and $q_{m}^{*}=b_{m}=a+(1 / 2) a^{2} m^{-1}+O\left(m^{-2}\right)$ with $c_{3}=(1 / 2) a^{2}$ in the notations of Section 2. Taking $g(x)=1-e^{-a x}$ for $x>0$, we have $P\left\{\mu \in I_{N}\right\}=$ $E\{1-\exp (-N d / \sigma)\}=E\left\{g\left(N / n_{0}\right)\right\}$ and $\Delta=0$. From Proposition 2 of Uno and Isogai (2012) and Theorem 2, we obtain

$$
P\left\{\mu \in I_{N}\right\}=1-\alpha+(1 / 2) a \alpha n_{0}^{-1}+o\left(n_{0}^{-3 / 2}\right) \quad \text { as } d \rightarrow 0 .
$$

3.3. Selecting the best normal population

Suppose there exist $k(\geq 2)$ independent populations $\pi_{i}, i=1, \ldots, k$ and each π_{i} has a normal distribution $N\left(\mu_{i}, \sigma^{2}\right)$, where the mean μ_{i} and the common variance σ^{2} are unknown. Let us denote $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{k}\right)^{\prime}$ and write $\mu_{[1]} \leq \cdots \leq \mu_{[k-1]} \leq \mu_{[k]}$ for
the ordered μ values. Along the line of Bechhofer (1954), we consider the problem of selecting the population associated with the largest $\mu_{[k]}$, referred to as the best population, while guaranteeing

$$
\begin{equation*}
P\{C S\} \geq P^{*} \quad \text { whenever } \boldsymbol{\mu} \in \Omega(\delta) \tag{3}
\end{equation*}
$$

for given $\delta(>0)$ and $P^{*} \in\left(k^{-1}, 1\right)$, where $\Omega(\delta)=\left\{\boldsymbol{\mu}: \mu_{[k]}-\mu_{[k-1]} \geq \delta\right\}$ and the complementary subspace $\Omega^{c}(\delta)$ is called the indifference zone. Here and elsewhere, "CS" stands for "Correct Selection". Let $X_{i 1}, X_{i 2}, \ldots$ be i.i.d. random variables from π_{i} for $i=1, \ldots, k$. Having recorded $X_{i 1}, \ldots, X_{i n}$ with fixed $n(\geq 2)$ from each π_{i}, we compute $\bar{X}_{i n}=n^{-1} \sum_{j=1}^{n} X_{i j}$ and $\bar{X}_{[k n]}=\max _{1 \leq i \leq k} \bar{X}_{i n}$. If σ^{2} were known, one implements the following selection rule $(S R)$ for fixed n :
$S R_{n}$: Select the population which gives rise to the largest sample mean $\bar{X}_{[k n]}$ as the best population.

Then, it follows from the equation (2.2) of Aoshima and Aoki (2000) that

$$
\inf _{\mu \in \Omega(\delta)} P\left\{C S_{\left(S R_{n}\right)}\right\}=\int_{-\infty}^{\infty} \Phi^{k-1}\left(y+\sqrt{n \delta^{2} / \sigma^{2}}\right) \phi(y) d y
$$

where $C S_{\left(S R_{n}\right)}$ stands for "Correct Selection" under the selection rule $S R_{n}$. The infimum is attained when $\mu_{[1]}=\cdots=\mu_{[k-1]}=\mu_{[k]}-\delta$, which is known as the least favorable configuration. Let

$$
H(x)=\int_{-\infty}^{\infty} \Phi^{k-1}(y+\sqrt{x}) \phi(y) d y, \quad x>0
$$

and $z=z\left(k, P^{*}\right)$ is a positive constant which satisfies the integral equation $H\left(z^{2}\right)=$ P^{*}. The requirement (3) is satisfied if

$$
n \geq z^{2} \sigma^{2} / \delta^{2} \equiv n_{0}
$$

Since σ^{2} is unknown, we can not use the optimal fixed sample size n_{0}. The twostage procedure proposed by Bechhofer et al. (1954) satisfies (3) and hence it has the exact consistency.

Let us assume that $\sigma^{2}>\sigma_{L}^{2}$ where $\sigma_{L}^{2}(>0)$ is known, and define

$$
\begin{equation*}
m=m(\delta)=\max \left\{m_{0},\left[z^{2} \sigma_{L}^{2} / \delta^{2}\right]^{*}+1\right\} \tag{5}
\end{equation*}
$$

where $m_{0} \geq 2$. Take the initial sample $X_{i 1}, \ldots, X_{i m}$ from each π_{i} and compute $\bar{X}_{i m}$, $i=1, \ldots, k$ and $V(m)=k^{-1} \sum_{i=1}^{k} V_{i m}$ where $V_{i m}=(m-1)^{-1} \sum_{j=1}^{m}\left(X_{i j}-\bar{X}_{i m}\right)^{2}$. Aoshima and Aoki (2000) proposed

$$
\begin{equation*}
N=N(\delta)=\max \left\{m,\left[t^{2} V(m) / \delta^{2}\right]^{*}+1\right\} \tag{6}
\end{equation*}
$$

where $t=t\left(k, P^{*}\right)$ is a positive constant such that $E\left\{H\left(t^{2} Y_{m} / p_{m}\right)\right\}=P^{*}$. Here, $Y_{m}=p_{m} V(m) / \sigma^{2}$ has the distribution $\chi_{p_{m}}^{2}$ with $p_{m}=k(m-1)$. In the notations of Section 2, note that $q=z^{2}, \theta=\sigma^{2}, \theta_{L}=\sigma_{L}^{2}, h=\delta^{2}, c_{1}=k, c_{2}=-k$ and $q_{m}^{*}=t^{2}$. Secondly, one takes the additional sample $X_{i(m+1)}, \ldots, X_{i N}$ of size $N-m$ from each π_{i} and computes $\bar{X}_{i N}=\sum_{j=1}^{N} X_{i j} / N, i=1, \ldots, k$. Then, we implement the selection rule $S R_{N}$ given by (4) associated with $\bar{X}_{[k N]}=\max _{1 \leq i \leq k} \bar{X}_{i N}$. For the two-stage procedure defined by (5) and (6), Aoshima and Aoki (2000) showed the exact consistency, namely, $\inf _{\mu \in \Omega(\delta)} P\left\{C S_{\left(S R_{N}\right)}\right\} \geq P^{*}$ for each fixed δ. It follows from the equation (2.9) of Aoshima and Aoki (2000) that as $\delta \rightarrow 0$

$$
t^{2}=z^{2}+c_{3} m^{-1}+O\left(m^{-2}\right), \quad \text { where } c_{3}=-\frac{z^{4} H^{\prime \prime}\left(z^{2}\right)}{k H^{\prime}\left(z^{2}\right)}
$$

Here, H^{\prime} and $H^{\prime \prime}$ are the first and second derivatives of H, respectively. Taking $g(x)=H\left(z^{2} x\right)$ for $x>0$, we have $\inf _{\mu \in \Omega(\delta)} P\left\{C S_{\left(S R_{N}\right)}\right\}=E\left\{g\left(N / n_{0}\right)\right\}$ and $\Delta=0$. From Proposition 4 of Uno and Isogai (2012) and Theorem 2, we obtain

$$
\inf _{\mu \in \Omega(\delta)} P\left\{C S_{\left(S R_{N}\right)}\right\}=P^{*}+(1 / 2) z^{2} H^{\prime}\left(z^{2}\right) n_{0}^{-1}+o\left(n_{0}^{-3 / 2}\right)
$$

Mukhopadhyay and Duggan (1999) proposed

$$
\begin{equation*}
N^{\dagger}=N^{\dagger}(\delta)=\max \left\{m,\left[z^{2} V(m) / \delta^{2}\right]^{*}+1\right\} \tag{7}
\end{equation*}
$$

For the two-stage procedure defined by (5) and (7), the exact consistency does not hold and $\Delta=k^{-1} z^{4} H^{\prime \prime}\left(z^{2}\right)$. Hence, from Proposition 3 of Uno and Isogai (2012) and Theorem 2, we have

$$
\inf _{\mu \in \Omega(\delta)} P\left\{C S_{\left(S R_{N^{\dagger}}\right)}\right\}=P^{*}+B_{0}^{\dagger} n_{0}^{-1}+o\left(n_{0}^{-3 / 2}\right)
$$

where $B_{0}^{\dagger}=(1 / 2) z^{2} H^{\prime}\left(z^{2}\right)+k^{-1} z^{4} H^{\prime \prime}\left(z^{2}\right) \sigma^{2} \sigma_{L}^{-2}$, which depends on σ_{L}^{2}.

References

Aoshima, M., Aoki, M. (2000). Two-stage procedure having exact consistency and second order properties for the s best selection. Sequential Anal. 19, 115-131.

Aoshima, M., Takada, Y. (2000). Second-order properties of a two-stage procedure for comparing several treatments with a control. J. Japan Statist. Soc. 30, 27-41.

Bechhofer, R. E. (1954). A single-sample multiple decision procedure for ranking means of normal populations with known variance. Ann. Math. Statist. 25, 16-39.

Bechhofer, R. E., Dunnett, C. W., Sobel, M. (1954). A two-sample multiple decision procedure for ranking means of normal populations with a common unknown variance. Biometrika 41, 170-176.

Isogai, E., Uno, C., Takeuchi, D. (2012). Two-stage procedure having exact thirdorder properties for a normal mean. Commun. Statist.-Theor. Meth. 41, 4332-4347.

Mukhopadhyay, N., Duggan, W.T. (1997). Can a two-stage procedure enjoy secondorder properties? Sankhyā, Ser. A 59, 435-448.

Mukhopadhyay, N., Duggan, W.T. (1999). On a two-stage procedure having second-order properties with applications. Ann. Inst. Statist. Math. 51, 621-636.

Rao, C. R. (1973). Linear Statistical Inference and its Applications, Second edition, Wiley, New York.

Uno, C. (2013). Asymptotic theory for a two-stage procedure in sequential interval estimation of a normal mean. Statist. Probab. Lett. 83, 1420-1423.

Uno, C., Isogai, E. (2012). Asymptotic properties of a two-stage procedure and their applications. Far East J. Theor. Stat. 40, 75-105.

[^0]: ${ }^{1}$ 本研究は，科学研究費助成事業（学術研究助成基金助成金）基盤研究（C）課題番号 24540107 （研究代表者宇野力）から研究助成を受けています。

