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In this exposition, we give a setup for deriving asymptotic theorems for Petrin (2002) extension
of Berry, Levinsohn, and Pakes (BLP, 1995) framework to estimate demand and supply models with
additional moments. The additional moments contain the information relating the consumer demo-
graphics to the characteristics of the products they purchase. In the paper of the same title distributed
on the day of presentation, the extended estimator is shown to be consistent, asymptotically normal,
and more efficient than BLP estimator with further assumptions. The paper also contains discussion
on the conditions under which these asymptotic theorems hold for the random coefficient logit model
as well as the extensive simulation studies that confirm the benefit of the additional moments in
estimating the random coefficient logit model of demand in the presence of oligopolistic suppliers.

1 Introduction

Some recent empirical studies in industrial organization and marketing extend the
framework proposed by Berry, Levinsohn and Pakes (1995, henceforth BLP (1995)) by
integrating information on consumer demographics into the utility functions in order to
make their demand models more realistic and convincing. Wide availability of public
sources of information such as the Current Population Survey (CPS) and the Integrated
Public Use Microdata Series (IPUMS) makes these studies possible. Those sources give us
information on the joint distribution of the U. $S$ . household’s demographics including in-
come, age of household’s head, and family size. For example, Nevo $(2001)$ ’s examination
on price competition in the U. $S$ . ready-to-eat cereal industry uses individual’s income,
age and a dummy variable indicating if $s/he$ has a child in the utihty function. Sudhir
(2001) includes household’s income to model the U. $S$ . automobile demand in his study of
competitive interactions among firms in different market segments.

In analyzing the U. $S$ . automobile market, Petrin (2002) goes further and links demo-
graphics of new-vehicle purchasers to characteristics of the vehicles they purchased. Petrin
adds a set of functions of the expected value of consumer’s demographics given specific
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product characteristics (e.g. expected family size of households that purchased minivans)

as additional moments to the original moments used in BLP (1995) in the GMM es-
timation. Specifically, he matches the model’s probability of new vehicle purchase for

different income groups to the observed purchase probabilities in the Consumer Expendi-

ture Survey (CEX) automobile supplement. He also matches model prediction for average
household characteristics of vehicle purchasers such as family-size to the data in CEX au-
tomobile supplement. Petrin presupposes readily accessible and pubhcly available market
information on the population average.1 He maintains that “the extra information plays

the same role as consumer-level data, allowing estimated substitution pattems and (thus)

welfare to directly reflect demographic-driven differences in tastes for observed character-
istics” (page, 706, lines 22-25). His intention, it seems, is to reduce the bias associated
with “a heavy dependence on the idiosyncratic logit “taste” error” (page 707, lines 5-6).

He explains that “the idea for using these additional moments derives from Imbens and

Lancaster (1994). They suggest that aggregate data may contain useful information on
the average of micro variables” $($page 713, lines 27-29 $)^{}$

It should be noted that these additional moments are subject to simulation and sampling

errors in BLP estimation. This is because the expectations of consumer demographics

are evaluated conditional on a set of exogenous product characteristics $X$ and an un-
observed product quality $\xi$ , where the $\xi$ is evaluated with the simulation error induced
by BLP’s contraction mapping as well as with the sampling error contained in observed
market shares. In addition, market information against which the additional moments are
evaluated itself contains another type of sampling error. This is because the market infor-
mation is typically an estimate for the population average demographics obtained from
a sample of consumers (e.g. CEX sample), while observed market shares are calculated
from another sample of consumers. This error also affects evaluation of the additional
moments. In summary each of the four errors (the simulation error, the sampling error
in the observed market shares, the sampling error induced when researcher evaluates the
additional moments, and the sampling error in the market information itself) as well

as stochastic nature of the product characteristics affects evaluation of the additional
moments.

The estimator proposed by Petrin appears to assume that we are able to control impacts

lBemy, $L$ vinsohn, and Pake (2004), onand Pake(2004), on the other hand, use detail $d$ consumer-level data, which include not only
individuals’ choices but also the choices they would have made had their first choice products not been avaJlable. Although
the proposed method should improve the out-of-sample model’s prediction, it requlres proprietary consumer-level data,
which are not readily available to researchers, as the authors themselves acknowledged in the paper: the CAMIP data ‘are
generally not avallable to researchers outside of the company” (page 79, line 30).

2Original intension of Imbens and Lancaster is to improve efficiency for a class of the extremum estimators. There $1S$ a
difference between Petrin’s and Imbens and Lancaster’s approaches in sampling process to construct original and additional
sample moments. Petrin combines the sample moments calculated over products with additional moments calculated over
individuals, while Imbens and Lancaster use the moments calculated over the same individuals.
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from the first four errors. However, it is not apparent if Petrin estimator is consistent and
asymptotically normal (CAN) without such a control. Furthermore, it is not known either
if how many and in what way individuals need to be sampled in order for Petrin estimator
to be more efficient than BLP estimator. We write this paper to formalize Petrin’s idea
and provide the conditions under which Petrin estimator not only has CAN properties,
but is more efficient than BLP estimator. Then we implement extensive simulation studies
and confirm benefits of the additional moments in estimating the random coefficient logit
model of demand.

We assume econometrician samples two sets of individuals independent of each other,
one to simulate market shares of products and the other to evaluate the additional mo-
ments, in order to avoid intractable correlations between the two sets of individuals. We
also assume the additional market information on demographics of consumers are calcu-
lated from a sample independent of these two samples. We follow the rigorous work of
Berry, Linton, and Pakes (2004) (hereinafter, BLP (2004)) in which the authors presented
the asymptotic theorems applicable to the random coefficient logit models of demand in
BLP (1995).

In section 2, we operationalize Petrin’s extension of BLP framework and define the
sampling and simulation errors in the GMM objective function.

2 System of Demand and Supply with Additional Moments
In this section, we give precise definition of the product space, and reframe the esti-

mation procedure of BLP when combining the demand and supply side moments with
the additional moments relating consumer demographics to the characteristics of prod-
ucts they purchase. Since our approach extends BLP (2004), notations and the most of
definitions are kept as identical as possible to those in BLP (2004).

2.1 Demand Side Model

The discrete choice differentiated product demand model formulates that the utility
of consumer $i$ for product $j$ is a function of demand parameters $\theta_{d}$ , observed product
characteristics $x_{j}$ , unobserved (by econometrician) product characteristics $\xi_{j}$ , and ran-
dom consumer tastes $\nu_{ij}$ . Given the product characteristics $(x_{j}, \xi_{j})$ for all $(J)$ products
marketed, consumers either buy one of the products or choose the “outside” good. Each
consumer makes the choice to maximize his$/her$ utility. Different consumers assign differ-
ent utility to the same product because their tastes are different. The tastes follow the
distribution $P^{0}.$
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Although most product characteristics are not correlated with the unobserved product

characteristics $\xi_{j}\in\Re,$ $j=1,$ $\ldots,$
$J$ , some of them (e.g. price) are. We denote the vector

of observed product characteristics $x_{j}=(x_{1j}’, x_{2j}’)’$ where $x_{1j}\in\Re^{K_{1}}$ are exogenous and
not correlated with $\xi_{j}$ , while $x_{2j}\in\Re^{K_{2}}$ are endogenous and correlated with $\xi_{j}$ . We
assume the set of exogenous product characteristics $(x_{1j}, \xi_{j}),j=1,$

$\ldots,$
$J$ are random

sample of product characteristics of size $J$ from the underlying population of product

characteristics.3 Thus, $(x_{1j}, \xi_{j})$ are assumed independent across $j$ , while $x_{2j}$ are not
in general across $j$ since they are endogenously determined in the market as functions of
others’ and its own product characteristics. The $\xi_{j}$ ’s are assumed to be mean independent

of $X_{1}=(x_{11}, \ldots, x_{1J})’$ and to have a finite conditional variance as

$E[\xi_{j}|X_{1}]=0$ and $\sup_{1\leq j\leq J}E[\xi_{j}^{2}|x_{1j}]<\infty$
(1)

with probability one. $A$ set of observed product characteristics for all the products is
denoted by $X=(x_{1}, \ldots, x_{J})’.$

The conditional purchase probability $\sigma_{ij}$ of product $j$ is a map from consumer $i$ ’s tastes
$\nu_{i}\in\Re^{v}$ , a demand parameter vector $\theta_{d}\in\Theta_{d}$ , and the set of characteristics of all products
$(X, \xi)$ , and is thus denoted as $\sigma_{ij}(X, \xi, \nu_{i};\theta_{d})$ . We assume $\sigma_{ij}(X, \xi, \nu_{i};\theta_{d})>0$ for all
possible values of $(X, \xi, \nu_{i}, \theta_{d})$ . BLP framework generates the vector of market shares,
$\sigma(X, \xi, \theta_{d}, P)$ , by aggregating over the individual choice probability with the distribution
$P$ of the consumer tastes $\nu_{i}$ as

$\sigma_{j}(X, \xi, \theta_{d}, P)=\int\sigma_{ij}(X, \xi, \nu_{i};\theta_{d})dP(\nu_{i})$

where $P$ is typically the empirical distribution of the tastes from a random sample drawn
from $P^{0}$ . Note that these market shares are still random variables due to the stochastic
nature of the product characteristics $X$ and $\xi$ . If we evaluate $\sigma_{j}(X, \xi, \theta_{d}, P)$ at $(\theta_{d}^{0}, P^{0})$ ,

where $\theta_{d}^{0}$ is the true value, we have the “conditionally true” market shares $s^{0}$ given the
product characteristics $(X, \xi)$ in the population, i.e. $\sigma(X, \xi, \theta_{d}^{0}, P^{0})\equiv s^{0}.$

Equation in the form of $\sigma(X, \xi, \theta_{d}, P)=s$ can, in theory, be solved for $\xi$ as a function
of $(X, \theta_{d}, s, P)$ . BLP (1995) provides general conditions under which there is a unique
solution for

$s-\sigma(X, \xi, \theta_{d}, P)=0$ (2)
3BLP(2004) and we develop the econometric properties of an estimator where the presumption is that there is one

“national” market and the asymptotics in the data arise as the number of products gets large. Recent empirical studies
in $IO$ estimate demand functions by using regional-level data. For these cases, the asymptotics–not in the number of
products in a market, but the number of $marketsarrow an$ in principle be easy to obtain because their market shares do not
converge to zero. However, we found that the moments calculated for each regional market are likely to be correlated even
if we assume each consumer $ch\infty ses$ a product only from one regional market. This means, in practice, that asymptotic
covariance matrix of the estimated parameter becomes harder to obtain. More impoltantly, asymptotics so obtained are
conditional on the characteristics of products available in the market, while our asymptotics are unconditional.
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for every $(X, \theta_{d}, s, P)\in \mathcal{X}\cross\Theta_{d}\cross S_{J}\cross \mathcal{P}$ , where $\mathcal{X}$ is a space for the product charac-
teristics $X,$ $S_{J}$ is a space for the market share vector $s$ , and $\mathcal{P}$ is a family of probability
measures. If we solve (2) at any $(\theta_{d}, s, P)\neq(\theta_{d}^{0}, s^{0}, P^{0})$ , the independence assumption for
the resulting $\xi_{j}(X, \theta_{d}, s, P)$ no longer holds because the two factors deciding the $\xi_{J}$–the
market share $s_{j}$ and the endogenous product characteristics $x_{2j}$ for product j–are en-
dogenously determined through the market equilibrium (e.g. Nash in prices or quantities)
as a function of the product characteristics not only of its own but also of its competi-
tors. However, if we solve the identity $\sigma(X, \xi, \theta_{d}^{0}, P^{0})=s^{0}$ with respect to $\xi$ under the
conditions to guarantee the uniqueness of the $\xi$ in (2), we are able to retrieve the original
$\xi_{j}(X, \theta_{d}^{0}, s^{0}, P^{0})$ , which we assume are independent across $j.$

2.2 Supply Side Model

In this paper we take into account supply side moment condition unlike not in BLP
(2004). The framework is based on BLP (1995). Here, we give the model and define
notations.

The supply side model formulates the pricing equations for the $J$ products marketed.
We assume an oligopolistic market where a finite number of suppliers provide multiple
products. Suppliers $(m=1, \ldots, F)$ are maximizers of profit from the combination of
products they produce. Assuming the Bertrand-Nash pricing for supplier’s strategy pro-
vides the first order condition for the product $j$ of the manufacturer $m$ as

$\sigma_{j}(X, \xi, \theta_{d}, P)+\sum_{l\in \mathcal{J}_{m}}(p_{l}-c_{l})\partial\sigma_{l}(X, \xi, \theta_{d}, P)/\partial p_{j}=0$ for $j\in \mathcal{J}_{m},$

where $\mathcal{J}_{m}$ denotes a set of the products offered by manufacturer $m$ , and $p_{J}’$ and $c_{j}$ are
respectively price and marginal cost of product $j$ . This equation can be expressed in
matrix form

$\sigma(X, \xi, \theta_{d}, P)+\Delta(p-c)=0$ (3)

where $\Delta$ is the $J\cross J$ non-singular gradient matrix of $\sigma(X, \xi, \theta_{d}, P)$ with respect to $p$

whose $(j, k)$ element is defined by

$\triangle_{jk}=\{\begin{array}{ll}\partial\sigma_{k}(X, \xi, \theta_{d}, P)/\partial p_{j}, if the products j and k are produced by the same firm; (4)0, otherwise.\end{array}$

We define the marginal cost $c_{j}$ as a function of the observed cost shifters $w_{j}$ and the
unobserved (by econometrician) cost shifters $\omega_{j}$ as

$g(c_{j})=w_{j}’\theta_{c}+\omega_{j}$ (5)
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where $g(\cdot)$ is a monotonic function and $\theta_{c}\in\Theta_{c}$ is a vector of cost parameters. While the
choice of $g(\cdot)$ depends on apphcation, we assume $g(\cdot)$ is continuously differentiable with a
finite derivative for all realizable values of cost. Suppose that the observed cost shifters $w_{j}$

consist of exogenous $w_{1j}\in\Re^{L_{1}}$ as well as endogenous $w_{2j}\in\Re^{L_{2}}$ , and thus we write $w_{j}=$

$(w_{1j}’, w_{2j}’)’$ and $W=(w_{1}, \ldots, w_{J})’$ . The exogenous cost shifters include not only the
cost variables determined outside the market under consideration (e.g. factor price), but
also the product design characteristics suppliers cannot immediately change in response
to fluctuation in demand. The cost variables determined at the market equilibrium (e.g.
production scale) are treated as endogenous cost shifters. As in the formulation of $(x_{1j}, \xi_{j})$

on the demand side, we assume a set of exogenous cost shifters $(w_{1j}, \omega_{j})$ is a random
sample of cost shifters from the underlying population of cost shifters. Thus $(w_{1j}, \omega_{j})$

are assumed to be independent across $j$ , while $w_{2j}$ are in general not independent across
$j$ as they are determined in the market as functions of cost shifters of other products.
Similar to the demand side unobservables, the unobserved cost shifters $\omega_{j}$ are assumed
to be mean independent of the exogenous cost shifters $W_{1}=(w_{11}, \ldots, w_{1J})’$ , and satisfy
with probability one,

$E[\omega_{j}|W_{1}]=0$ , and $\sup_{1\leq j\leq J}E[\omega_{j}^{2}|w_{1j}]<\infty$ . (6)

Define $g(x)\equiv(g(x_{1}), \ldots, g(x_{J}))$ . Solving the first order condition (3) with respect to
$c$ and substituting for (5) give the vector of the unobserved cost shifters

$\omega(\theta, s, P)=g(p-m_{g}(\xi(X, \theta_{d}, s, P), \theta_{d}, P))-W\theta_{c}$, (7)

where

$m_{g}\equiv-\Delta^{-1}\sigma(X, \xi, \theta_{d}, P)$ (8)

represents the vector of profit margins for all the products in the market. Hereafter, we
suppress the dependence of $\xi_{j}$ and $\omega_{j}$ on $X$ and $W$ to express $\xi_{j}(\theta_{d}, s, P)$ and $\omega_{j}(\theta, s, P)$

respectively for notational simplicity. Notice that the parameter vector $\theta$ in $\omega$ contains
both the demand and supply parameters, i.e. $\theta=(\theta_{d}’, \theta_{c}’)’$ . Since the profit margin
$m_{g_{j}}(\xi, \theta_{d}, P)$ for product $j$ is determined not only by its unobserved product charac-
teristics $\xi_{j}$ , but by those of the other products in the market, these $\omega_{j}$ are in general
dependent across $j$ when $(\theta, s, P)\neq(\theta^{0}, s^{0}, P^{0})$ . However, when (7) is evaluated at
$(\theta, s, P)=(\theta^{0}, s^{0}, P^{0})$ , we are able to recover the original $\omega_{j},j=1,$ $\ldots,$

$J$ , and they are
assumed independent across $j.$
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2.3 GMM Estimation with Additional Moments

Let us define the $J\cross M_{1}$ demand side instrument matrix $Z_{d}=(z_{1}^{d}, \ldots, z_{J}^{d})’$ whose
components $z_{j}^{d}$ can be written as $z_{j}^{d}(x_{11}, \ldots, x_{1J})\in\Re^{M_{1}}$ , where $z_{j}^{d}(\cdot)$ : $\Re^{K_{1}\cross J}arrow\Re^{M_{1}}$

for $j=1,$ $\ldots,$
$J$ . It should be noted that the demand side instruments $z_{j}^{d}$ for product

$j$ are assumed to be a function of the exogenous characteristics not only of its own, but
of the other products in the market. This is because the instruments by definition must
correlate with the product characteristics $x_{2j}$ , and these endogenous variables $x_{2j}$ (e.g.
price) are determined by both its own and its competitors’ product characteristics.

Similar to the demand side, we define the $J\cross M_{2}$ supply side instrumental variables
$Z_{c}=(z_{1}^{c}, \ldots, z_{J}^{c})’$ as a function of the exogenous cost shifters $(w_{11}, \ldots, w_{1J})$ of all the
products. Here, $z_{j}^{c}(w_{11}, \ldots, w_{1J})\in\Re^{M_{2}}$ and $z_{j}^{c}(\cdot)$ : $\Re^{L_{1}\cross J}arrow\Re^{M_{2}}$ for $j=1,$ $\ldots,$

$J.$

We also note that some of the exogenous product characteristics $x_{1j}$ affect the price of
product because they affect manufacturing cost. Thus those $x_{1j}$ may also be used as the
exogenous cost shifter $w_{1j}$ if they are uncorrelated with the unobservable cost shifter $\omega_{j}.$

Assume, for moment, that we know the underlying taste distribution of $P^{0}$ and that
we are able to observe the true market share $s^{0}$ . Considering stochastic nature of the
product characteristics $X_{1}$ and $\xi$ , we set forth the demand side restriction as

$E_{x_{1},\xi}[z_{j}^{d}\xi_{j}(\theta_{d}, s^{0}, P^{0})]=0$ (9)

at $\theta_{d}=\theta_{d}^{0}$ where the expectation is taken with respect not only to $\xi$ , but also to $X_{1}.$

Supply side restriction we use is

$E_{w_{1},\omega}[z_{j}^{c}\omega_{j}(\theta, s^{0}, P^{0})]=0$ (10)

at $\theta=\theta^{0}$ . BLP framework uses the orthogonal conditions between the unobserved prod-
uct characteristics $(\xi_{j}, \omega_{j})$ and the exogenous instrumental variables $(z_{j}^{d}, z_{j}^{c})$ as moment
conditions to obtain the GMM estimate of the parameter $\theta$ . The sample moments for the
demand and supply systems are

$G_{J}( \theta, s^{0}, P^{0})=(\begin{array}{ll}G_{J}^{d}(\theta_{d},s^{0} P^{0})G_{J}^{c}(\theta,s^{0} P^{0})\end{array})=( \sum_{j}z_{j}^{d}\xi_{j}(\theta_{d},s^{0},P^{0})/J\sum_{j}z_{j}^{c}\omega_{j}(\theta,s^{0},P^{0})/J)$ . (11)

For some markets, market summaries are publicly available such as average demo-
graphics of consumers who purchased a specific type of products, even if their detailed
individual-level data such as their purchasing histories are not. In the U. $S$ . automobile
market, for instance, we can obtain the data on the median income of consumers who
purchased domestic, European, or Japanese vehicles from pubhcations such as the Ward’s
Motor Vehicle Facts $\xi y$ Figures.
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We now operationalize the idea put forth by Petrin (2002), which extends BLP frame-

work by adding moment conditions constructed from the market summary data. First

we define some words and notations. Discriminating attribute is the product characteris-

tic or the product attribute that enables consumers to discriminate some products from

others. When we say consumer $i$ chooses discriminating attribute $q$ , this means that

consumer chooses a product from a group of products whose characteristic or attribute

have discriminating attribute $q$ . Discriminating attribute $q$ is assumed to be a function

of observed product characteristics $X$ . An automobile attribute “import” is one such

discriminating attribute. When we say a consumer chooses this attribute, what we mean

is that the consumer purchases an imported vehicle. Similarly, “minivan” and “costing

between $20,000 to $30,000’’ are examples of the discriminating attribute. On the other

hand, unobservable consumer’s proximity to a dealership is a function of $\xi$ only and may

not be regarded as a discriminating attribute as defined. We consider a finite number of

discriminating attributes $(q=1, \ldots, N_{p})$ and denote a set of all the products that have

attribute $q$ as $\mathcal{Q}_{q}$ . We assume the market share of products with discriminating attribute

is positive, that is, $Pr[C_{i}\in \mathcal{Q}_{q}|X, \xi(\theta_{d}, s^{0}, P^{0})]>0$ , where $C_{i}$ denotes the choice of

randomly sampled consumer $i.$

We next consider expectation of consumer‘s demographics conditional on a specific

discriminating attribute. Suppose that the consumer $i$ ’s demographics can be decomposed

into observable and unobservable components $\nu_{i}=(\nu_{i}^{obs}, \nu_{i}^{unobs})$ . The densities of $\nu_{i}$ and
$\nu_{i}^{obs}$ are respectively denoted as $P^{0}(d\nu_{i})$ and $P^{0}(d\nu_{i}^{obs})$ . Observable demographic variables

such as age, family size, or, income, is already numerical, but for other demographics such

as household with children, belonging to a certain age group, choice of residential area,

can be numerically expressed using indicators. We denote this numerically represented $D$

dimensional demographics as $\nu_{i}^{obs}=(\nu_{i1}^{obs}, \ldots, \nu_{iD}^{obs})’$ . We assume that the joint density of

demographics $\nu_{i}^{obs}$ is of bounded support. The consumer $i$ ’s d-th observed demographic
$v_{id}^{obs},$ $d=1,$ $\ldots,$

$D$ is averaged over all consumers choosing discriminating attribute $q$ in the

population to obtain the conditional expectation $\eta_{dq}^{0}=E[\nu_{id}^{obs}|C_{i}\in \mathcal{Q}_{q}, X, \xi(\theta_{d}^{0},s^{0}, P^{0})].$

An example of this conditional expectation would be the expected value of income of

consumers in the population $P^{0}$ who purchased an imported vehicle. We assume $\eta_{dq}^{0}$

has a finite mean and variance for all $J$ , i.e. $E_{x,\xi}[\eta_{dq}^{0}]<\infty$ and $V_{x,\xi}[\eta_{dq}^{0}]<\infty$ for

$d=1,$ $\ldots,$
$D,$ $q=1,$ $\ldots,$

$N_{p}.$

Let $Pr[dv_{id}^{obs}|C_{i}\in \mathcal{Q}_{q}, X, \xi(\theta_{d}, s^{0}, P^{0})]$ be the conditional density of consumer $i$ ’s demo-

graphics $\nu_{id}^{obs}$ given his/her choice of discriminating attribute $q$ and product characteristics
$(X, \xi(\theta_{d}, s^{0}, P^{0}))$ . Since the conditional expectation $\eta_{dq}^{0}$ can be written as

$E[v_{id}^{obs}|C_{i}\in \mathcal{Q}_{q}, X, \xi(\theta_{d}, s^{0}, P^{0})]$ (12)
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$= \int\nu_{id}^{obs}Pr[dv_{id}^{obs}|C_{i}\in \mathcal{Q}_{q}, X, \xi(\theta_{d}, s^{0}, P^{0})]$

$= \frac{\int v_{id}^{obs}Pr[C_{i}\in \mathcal{Q}_{q}|X,\xi(\theta_{d},s^{0},P^{0}),v_{id}^{obs}]P^{0}(dv_{id}^{obs})}{Pr[C_{i}\in \mathcal{Q}_{q}|X,\xi(\theta_{d},s^{0},P^{0})]}$

$= \frac{\int v_{id}^{obs}Pr[C_{i}\in \mathcal{Q}_{q}|X,\xi(\theta_{d},s^{0},P^{0}),\nu_{i}]P^{0}(d\nu_{i})}{Pr[C_{i}\in \mathcal{Q}_{q}|X,\xi(\theta_{d},s^{0},P^{0})]}$

$= \int v_{id}^{obs}\frac{\sum_{j\in Q_{q}}\sigma_{ij}(X,\xi(\theta_{d},s^{0},P^{0}),\nu_{i};\theta_{d})}{\sum_{j\in Q_{q}}\sigma_{j}(X,\xi(\theta_{d},s^{0},P^{0}),\theta_{d},P^{0})}P^{0}(d\nu_{i})$ ,

we can form an identity, which is the basis for additional moment conditions

$\eta_{dq}^{0}-\int v_{id}^{obs}\frac{\sum_{j\in Q_{q}}\sigma_{ij}(X,\xi(\theta_{d}^{0},s^{0},P^{0}),\nu_{i};\theta_{d}^{0})}{\sum_{j\in Q_{q}}\sigma_{j}(X,\xi(\theta_{d}^{0},s^{0},P^{0}),\theta_{d}^{0},P^{0})}P^{0}(d\nu_{i})\equiv 0$ (13)

for $q=1,$ $\ldots,$
$N_{p},$ $d=1,$

$\ldots,$
$D.$

Although $P^{0}$ is so far assumed known, we typically are not able to calculate the second
term on the left hand side of (13) analytically and will have to approximate it by using the
empirical distribution $P^{T}$ of i.i. $d$ . sample $\nu_{t},$ $t=1,$ $\ldots,$

$T$ from the underlying distribution
$P^{0}$ . The corresponding sample moments $G_{J,T}^{a}(\theta_{d}, s^{0}, P^{0}, \eta^{0})$ , where $a$ on the shoulder
stands for additional, are

$G_{J,T}^{a}( \theta_{d}, s^{0}, P^{0}, \eta^{0})=\eta^{0}-\frac{1}{T}\sum_{t=1}^{T}\nu_{t}^{obs}\otimes\psi_{t}(\xi(\theta_{d}, s^{0}, P^{0}), \theta_{d}, P^{0})$ (14)

where

$\eta^{0}=(\eta_{11}^{0},\ldots,\eta_{1N_{p}}^{0},\ldots,\eta_{D1}^{0},\ldots,\eta_{DN_{p}}^{0})’, \psi_{t}(\xi,\theta_{d},P)=(\begin{array}{l}\frac{\sum_{j\in Q_{1}}\sigma_{tj(X,\xi,\nu_{t},\theta_{d})}}{\sum_{j\in Q_{1}}\sigma_{j}(X,\xi,\theta_{d},P)}\vdots\frac{\sum_{j\in Q_{N_{p}}}\sigma_{tj}(X,\xi,\nu_{t},\theta_{d})}{\sum_{j\in\Omega_{N_{p}}}\sigma_{j}(X,\xi,\theta_{d},\mathcal{P})}\end{array})$ . (15)

The symbol $\otimes$ denotes the Kronecker product. The quantity $\psi_{t}(\xi, \theta_{d}, P)$ is the consumer
$t$ ’s model-calculated purchasing probability of products with discriminating attribute $q$

relative to the model-calculated market share of the same products. Note that these
additional moments are again conditional on product characteristics $(X, \xi(\theta_{d}, s^{0}, P^{0}))$ ,
and thus depend on the indices $J$ and $T.$

We use the set of the three moments, two from (11) and from (14) as

$G_{J,T}(\theta, s^{0}, P^{0}, \eta^{0})=(\begin{array}{llll}G_{J}^{d}(\theta_{d} S^{0}P^{0}) ’ G_{J}^{c}(\theta,s^{0} P^{0}) G_{J,T}^{a}(\theta_{d},s^{0} P^{0} \eta^{0})\end{array})$ (16)

to estimate $\theta$ in theory. As pointed out in BLP (2004), we have two issues when evaluating
$||G_{J,T}(\theta, s^{0}, P^{0}, \eta^{0})||$ . First, we assume $P^{0}$ is known so far, we typically are not able to
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calculate $\sigma(X, \xi, \theta_{d}, P^{0})$ analytically and have to approximate it by a simulator, say
$\sigma(X, \xi, \theta_{d}, P^{R})$ , where $P^{R}$ is the empirical measure of i.i. $d$ . sample $\nu_{r},$ $r=1,$ $\ldots,$

$R$ from
the underlying distribution $P^{0}$ . The sample $\nu_{r},$ $r=1,$ $\ldots,$

$R$ are assumed independent
of the sample $\nu_{t},$ $t=1,$ $\ldots,$

$T$ in (14) for evaluating the additional moments. Simulated
market shares are then given by

$\sigma_{j}(X, \xi, \theta_{d}, P^{R})=\int\sigma_{ij}(X, \xi, \nu_{i};\theta_{d})dP^{R}(\nu_{i})\equiv\frac{1}{R}\sum_{r=1}^{R}\sigma_{rj}(X, \xi, \nu_{r};\theta_{d})$ . (17)

Second, we are not necessarily able to observe the true market shares $s^{0}$ . Instead, the
vector of given observed market shares, $s^{n}$ , are typically constructed from $n$ i.i.d. draws
from the population of consumers, and hence is not equal to the population value $s^{0}$ in
general. The observed market share of product $j$ is

$s_{j}^{n}= \frac{1}{n}\sum_{i=1}^{n}1(C_{i}=j)$ , (18)

where the indicator variable $1(C_{i}=j)$ takes one if $C_{i}=j$ and zero otherwise. Since $C_{i}$

denotes the choice of randomly sampled consumer $i$ , they are i.i. $d$ . across $i.$

We substitute $\xi(\theta_{d}, s^{n}, P^{R})$ given as a solution of $s^{n}-\sigma(X, \xi, \theta_{d}, P^{R})=0$ for (11) to
obtain

$G_{J}^{d}( \theta_{d}, s^{n}, P^{R})=J^{-1}\sum_{j=1}^{J}z_{j}^{d}\xi_{j}(\theta_{d}, s^{n}, P^{R})$ . (19)

Furthermore, substituting $\omega(\theta, s^{n}, P^{R})=(\omega_{1}(\theta, s^{n}, P^{R}), \ldots, \omega_{J}(\theta, s^{n}, P^{R}))’$ obtained from
evaluating (7) at $\xi=\xi(\theta_{d}, s^{n}, P^{R})$ and $P=P^{R}$ for (11) gives

$G_{J}^{c}( \theta, s^{n}, P^{R})=J^{-1}\sum_{j=1}^{J}z_{j}^{c}\omega_{j}(\theta, s^{n}, P^{R})$ . (20)

In addition, we have another issue when evaluating the additional moments in (14). In
general, we do not know the conditional expectation of demographics $\eta_{dq}^{0}$ , instead, we have
its estimate $\eta_{dq}^{N}$ from independent sources, which is typically estimated from the sample
of $N$ consumers. The sample counterparts we can calculate for the additional moments
are thus

$G_{J,T}^{a}( \theta_{d}, s^{n}, P^{R}, \eta^{N})=\eta^{N}-\frac{1}{T}\sum_{t=1}^{T}\nu_{t}^{obs}\otimes\psi_{t}(\xi(\theta_{d}, s^{n}, P^{R}), \theta_{d}, P^{R})$ (21)

for $\theta_{d}\in\Theta_{d}$ . As a result, the actual sample-based objective function we minimize in the
GMM estimation is the sum of norm of $G_{J}^{d}(\theta_{d}, s^{n}, P^{R}),$ $G_{J}^{c}(\theta, s^{n}, P^{R})$ , and $G_{J,T}^{a}(\theta_{d}, s^{n}, P^{R}, \eta^{N})$ ,
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that is, the norm of

$G_{J,T}(\theta, s^{n}, P^{R}, \eta^{N})=(G_{JT}^{a}(\theta_{d},s^{n},P^{R}, \eta^{N})G_{J}^{c},(\theta, s^{n}, P^{R})G_{J}^{d}(\theta_{d},s^{n},P^{R}))$ . (22)

Notice that the first two moments $G_{J}^{d}$ and $G_{J}^{C}$ in (22) are sample moments averaged
over products $j=1,$ $\ldots,$

$J$ , while the third moment $G_{J,T}^{a}$ is averaged over consumers
$t=1,$ $\ldots,$

$T$ . Note also that in the expression $G_{J,T}(\theta, s^{n}, P^{R}, \eta^{N})$ , there exist five distinct
randomness: one from the draws of the product characteristics $(x_{1j}, \xi_{j}, w_{1j}, \omega_{j})$ , two from
the samphng processes not controlled by econometrician of consumers for $s^{n}$ and $\eta^{N}$ , two
from the empirical distributions $P^{R}$ and $P^{T}$ employed by econometrician. The impact of
these randomnesses on the estimate of $\theta$ are decided by the relative size of the sample–
$J,$ $n,$ $N,$ $R$ and $T$ . Now we are going to operationahze the samphng and the simulation
errors in the following.

2.4 The Sampling and Simulation Errors

The sampling error, $\epsilon^{n}$ , is defined as the difference between the observed market shares
$s^{n}$ and the true market share $s^{0}$ . Specffically, its component $\epsilon_{j}^{n}$ for the product $j$ is

$\epsilon_{j}^{n} \equiv s_{j}^{n}-s_{j}^{0}=\frac{1}{n}\sum_{i=1}^{n}\{1(C_{i}=j)-s_{j}^{0}\}=\frac{1}{n}\sum_{i=1}^{n}\epsilon_{ji}$ (23)

for $j=1,$ $\ldots,$
$J$ , where $\epsilon_{ji}\equiv 1(C_{i}=j)-s_{j}^{0},$ $i=1,$ $\ldots,$

$n$ are the differences of the
sampled consumer’s choice from the population market share $(s_{j}^{0})$ of the same choice and
are assumed independent across $i.$

Note that from (2), for any $\theta_{d}\in\Theta_{d}$ , the unique solutions $\xi$ for $s^{n}-\sigma(X, \xi, \theta_{d}, P^{R})=0$

and $s^{0}-\sigma(X, \xi, \theta_{d}, P^{0})=0$ are written as $\xi(\theta_{d}, s^{n}, P^{R})$ and $\xi(\theta_{d}, s^{0}, P^{0})$ respectively.
So, substituting these $\xi s$ back into $\sigma(X, \xi, \theta_{d}, P^{R})$ and $\sigma(X, \xi, \theta_{d}, P^{0})$ retrieves $s^{n}$ and
$s^{0}$ respectively, or $s^{n}=\sigma(X, \xi(\theta_{d}, s^{n}, P^{R}), \theta_{d}, P^{R})$ and $s^{0}=\sigma(X, \xi(\theta_{d}, s^{0}, P^{0}), \theta_{d}, P^{0})$

for any $\theta_{d}\in\Theta_{d}$ . Similarly, if we evaluate (2) with the observed (true) market share
$s^{n}(s^{0})$ and the underlying (empirical) population $P^{0}(P^{R})$ of consumers, the resulting
$\xi(\theta_{d}, s^{n}, P^{0})(\xi(\theta_{d}, s^{0}, P^{R}))$ satisfies $s^{n}=\sigma(X, \xi(\theta_{d}, s^{n}, P^{0}), \theta_{d}, P^{0})$

$(s^{0}=\sigma(X, \xi(\theta_{d}, s^{0}, P^{R}), \theta_{d}, P^{R}))$ for all $\theta_{d}\in\Theta_{d}$ . These facts are used to define the
simulation errors below.

The simulation process generates the simulation error $\epsilon^{R}(\theta_{d})$ , which is for any $\theta_{d}$ the
difference between the simulated market shares in (17) from the $P^{R}$ and those from the
$P^{0}$ . The simulation error $\epsilon_{j}^{R}$ for product $j$ with sample of $R$ consumers is defined as
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follows.

$\epsilon_{j}^{R}(\theta_{d}) \equiv\sigma_{j}(X, \xi(\theta_{d}, s^{0}, P^{0}),\theta_{d}, P^{R})-\sigma_{j}(X, \xi(\theta_{d}, s^{0}, P^{0}), \theta_{d}, P^{0})$ (24)

$= \frac{1}{R}\sum_{r=1}^{R}\epsilon_{jr}^{*}(X, \xi(\theta_{d}, s^{0}, P^{0}),\theta_{d})$

for $j=1,$ $\ldots,$
$J$ , where $\epsilon_{jr}^{*}(X, \xi, \theta_{d})=\sigma_{rj}(X, \xi, \nu_{r};\theta_{d})-\sigma_{j}(X, \xi, \theta_{d}, \mu),$$r=1,$ $\ldots,$

$R$

are independent across $r$ conditional on $(X, \xi)$ by the simulating process.
We also assume $N$ independent consumer draws with their purchasing histories are

used to construct the additional information $\eta^{N}=(\eta_{11}^{N}, \ldots, \eta_{1N_{p}}^{N}, \ldots, \eta_{D1}^{N}, \ldots, \eta_{DN_{p}}^{N})’$ and
define the samphng error $\epsilon^{N}$ in the additional information $\eta^{N}$ itself as follows.

$\epsilon^{N}\equiv\eta^{N}-\eta^{0}=\frac{1}{N}\sum_{i=1}^{N}\epsilon_{i}^{\#}$ . (25)

In short, we assume here that $\eta^{N}$ is the average of $N$ conditionally independent random
variables given the set of product characteristics $(X, \xi)$ of all products.

Since we use the sample of $T$ draws of consumer to evaluate the additional moments,
this also induces the sampling error in $G_{J,T}^{a}(\theta_{d}, s^{n}, P^{R}, \eta^{N})$ in (21). Note that quantities
$n$ and $N$ are are normally beyond the control of econometrician. On the other hand
quantities $R$ and $T$ are are both chosen by econometrician.
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