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A relation between instanton-type solutions of P,
(J = L,11, 34,1V)-hierarchies with a large parameter

By

Yoko UMETA*

Abstract
We report a relation between instanton-type solutions for equations of Py (J = 1,11, 34,IV)-

hierarchies with a large parameter. The content of these notes is a short summary of our
forthcoming papers [2], [16] and [17].

§1. Definitions of Py (J =I,1I,34,IV)-hierarchies with a large parameter 7

We recall the definitions of equations of P; (J = I,1I, 34,1V)-hierarchies with a large
parameter 7 given in [15], [8] and [9].

(i) The m-th members (P;)m and (Psq)m of P, Pss-hierarchies with n

Let ux and vg (k = 1,2,...) be unknown functions of ¢ and cx’s are constants: In
what follows, §;,, stands for Kronecker’s delta.

e For m=1,2,..., (P)n, has the following form (see [15]):

d

S8 g i=12...,m,
dt

-1 dtJ =2(’U,j+‘1+uluj+wj)a 7=1,2,...,m,

with the assumption u,, 1 = 0. Here w; is recursively defined by

1 J j-1 1 j—1
(1.2) w; = -2— Zukuj+1_k + Zukwj_k iy Z’Ukvj_k +c;+ 5jmt.
k=1 k=1 k=1
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e Form=1,2,..., (P34)m has the following form (see [9]):

d .
—l—u]-IQ’Uj’ I=12,...,m,
(1.3) a
~1d_;=2(uj+1+u1uj+wj), i=L2...,m,
with
2 _ K2
(1.4) Umt1 = —Wm + Colim + —o

Here v(# 0), x and {c; }7%o are constants, and w; is recursively defined by

1 J j-1 1 Jj-1
wj = 5 E UkUjt+1—k + ZUka'_k; ) E VkVj—k + Cj
k=1 k=1 k=1

(1.5) A
Jj—1

+ co (QUJ - Z’U,kuj_k) + 5j,m—17t + 25jm7t00-
k=1

Note that the form above has been slightly modified from the original form given by

[9]. If we replace un, (resp. v,,) in (1.3) and (1.4) with un, — vt (resp. vy, — 7)_1—;— :

then we have the original form of (Ps4),.
(ii) The m-th members (Py1),, and (Prv)m of Py, Pry-hierarchies with 7

Let ux and v (k =1,2,...) be unknown functions of ¢ and ¢;’s are constants.

e Form=1,2,..., (Pi1)m has the following form (see [8]):

du; 7 .
_1d_tJ = —2(u1Uj +Uj+uj+1)+2cju1, j=1,2,...,m,
(1.6)
dv; ‘
_1_6% :2(U1Uj +'Uj+1+wj)—2cj’01, j =1,2’”.,m,

with umy1 = vt and vmy1 = k. Here v(# 0), x and ¢;’s are constants, and w; is
recursively defined by

j—1 J 1 Jj—1 J-1
(17) Wy = Zuj__kwk + Zuj_k+1vk + 5 Zvj_kvk - Z Cj— kW
k=1 k=1 k=1 k=1

e Form=1,2,..., (Ptv)m has the following form (see [8]):

14y

' dt
1.8

. vy

dt

= —2(U1Uj +v; + Uj+1) + 2Cjul - 25j,m—17ta

=2(v1uj+vj+1+wj)—2cjv1, ] =1,2,....,m,



134

INSTANTON-TYPE SOLUTIONS OF Py (J = I, II, 34, IV)-HIERARCHIES WITH 7

with
(vm — 1) — &f

2(Um — Cm)

(1.9) Umtl = —Q1, Umgl = —Wp —

Here v(# 0), a1, a2 and ¢;’s are constants, and w; is defined by

j—1 j—1
(1.10) w; = ZU’J kwk—}-ZuJ k+1Vk + — EUJ kvk—Zc] kWi + 0jmYtuL.
k=1 k=1 k=1

Note that the form above has been slightly modified from the original form given by
[8]. If we replace u,, in (1.8) and (1.9) with u,, —7t, then we have the original form
of (PIV)m'

§2. P; (J=1,11,34,1V)-hierarchies with 1 in terms of generating functions

In this note, we consider the represented forms with generating functions of unknown
functions. Let 6 denotes an independent variable.

(i) The m-th members (P}),, and (Ps4)m of P, Ps34-hierarchies with n
We define generating functions U, V and C of (Pi)y, (resp. (Ps4)m) by

U(G)—iukﬁk V() = kal?k and
(2.1) F=t

o0

Z ¢k + Oxmt)0* ! (resp. C(6) = chOkH),
k=1

k=1

respectively. Here uk, vk, cx (k= 1,2,...) denote unknown functions and constants of

(P)m (resp. (Ps4)m). In what follows, by A = B we mean that A — B is zero modulo
gm+2,

e (P1)n, is rewritten in the following form

2V
d (U8
2.2 i = —9Vv?2
(2.2) T (V&)' <_(1+2u10)(1—U)+3i—fC_'—U—91)

with the condition that the coefficients of §™*! of U and V are zero.
o (P34)m is rewritten in the following form

. d (U8 2ve
- = — 2 _
T a\ve) = —(1+2(u1 +c0)f)(1 - U) + L+20 1 ﬁ(g 2c0)

(2.3)

0
* (2'yt0m(1 + (u1 + 200)0)>
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with the condition that the coefficient of 6”1 of U (resp. V) is equal to the right
hand side of (1.4) (resp. zero).

Remark that, if we compare the coefficients with respect to 7 (2 < j < m + 1) on the
both sides of (2.2) (resp. (2.3)), we obtain (1.1) (resp. (1.3)).

(ii) The m-th members (Pry),, and (Ppy)m of Py, Pry-hierarchies with n
We define generating functions U, V and C of (Pi1)m, (resp. (Prv)m) by

(2.4) U@:waxmpZMwamo@=zmh
k=1 k=1 k=1

respectively. Here uy, vg, ¢, (k =1,2,...) denote unknown functions and constants of
(-PII)m (resp. (PIV)m)-
® (Pi)p, is rewritten in the following form

(2.5) 12 =2 UV + V20
dt _ _ r Ty oy
Ve vi(1 U+C)9+2(1_U+C)+V

with the condition that the coefficients of §™+1 of U and V are vt and &, respectively.
® (Py)m is rewritten in the following form

2.6 L d (Uf)) ) ( u(l1-U+ C’)H‘; U —2;/9 — ™ )
. n = = 20V +V
dt — — [ m+1
Ve v1(1 U+C)0+2(1_U+C)+V+7tv19

with the condition that the coefficients of §™*! of U and V are equal to the right
hand sides of (1.9), respectively.

Remark that, if we compare the coefficients with respect to 87 (2 < j < m + 1) on the
both sides of (2.5) (resp. (2.6)), we obtain (1.6) (resp. (1.8)).

§3. The generating functions of the leading terms of 0-parameter
solutions

As is shown in [4], each Pj-hierarchy has a formal power series of 7~! in the form
oo o0
(3.1) uk(t) = Y 7 0ak;(t), wk() =3 0790k (t), j=1,...,m.
j=0 =0

The solution taking the form of (3.1) is often called a 0-parameter solution, as the form
does not have any free parameters. Let us define the generating functions of the leading
terms 4; o and ;¢ of their 0-parameter solutions of (Pj),, (J =1,1I,34,IV) by

oo oo
(3.2) Uo(0) = Y diol’, Do) =D 06"
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Each explicit form of (3.2) for (P;),, (J =1,1I,34,1V) is given as follows.

(PI)m

aoo1o 12
0~ 1+2'&1’09’ 0=

Here 1 o is taken so that the coefficient of 0™+ in 4 is zero.

(P34)m

6= 1 14+ 2(C + co9)
0= (1 + 210 + co)0) (1 — 27t6™)
0o =0,

where 47 o and 9,9 are taken so that the coefficients of gm+1
2 2
A ~ N ~ Umo — K )
in 4y and 9y are equal to —Wm 0 + Colm,0 + ——=—— and 0,
2'U.m,0
respectively. Here @, o is defined by (1.5) with uk, vx and wg

being replaced by i g, k0 and W o.

(PII)m

. 1
tip = (1 +C')(1 - \/(1 00 — 201007 ),

A. —_ i 1
96 = (1+ C) (—1 +(1+ u1,o9)\/(1 + 11,00)% — 201,06 )

Here 4, o and 97 o are taken so that the coefficients of ™!
in %y and 9y are vt and k, respectively.

(PIV)m

o = (14 C)(1 - /1/£(8,0)),
900 = (L + C)(=1+ (1 + 01,00)/1/f(t.0) ) — vt6™,
f(t, 0) := (1 + 1;,00)% — 201,062 — 27t0™(1 + 211,00 — c16),

where 4, ¢ and ¥; o are taken so that the coefficients of gm+1

(Dm0 — C“1)2 - O‘g
2('&/m,0 - cm)

respectively. Here @y, o is defined by (1.10) with ux, v and wy

in 4y and vy are equal to —a; and —Wm, o — ,

being replaced by 1,0, Ok,0 and wg,o.
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§4. Instanton-type solutions of (Pj),, (J =1,1I,34,IV)

We prepare some notation. Let v4(t),...,vem(t) of (Py),, denote the roots of the
following algebraic equation Aj(}, t) = 0 of A with vy, = —vp if k£ <0:
o If J =1 (resp. 34), then A;(], t) is defined by

g™ = o gs(A)™F
k=1

with \2 A2 )
— 81 —8(t10+c
93(N) = = (resp. gsa()) = )
Here iy, ¢’s are defined by (3.2) of (P;)m (J =1, 34) respectively.
o If J=1II or IV, then Aj(\,t) is defined by

m

g™ = (ko — cx)ga(N)™*

k=1

/\2
g1(A) = —U10 — vy + 2010 .

Here 4,0, 01,0 are defined by (3.2) of (Py),, (J = II,IV) respectively and so are c.

with

Let €2 be an open subset in C; and the two conditions are always assumed:

(A1) The roots v;(t)’s (1 < |i| < m) are mutually distinct for each ¢ € €.
(A2) The function pivi(t) + -+ 4+ Pmm(t) does not vanish identically on Q for any

(p1,...,Pm) € Z™\ {0}.
Then we have the following theorem.

Theorem 4.1 ([2], [17]). We have instanton-type solutions of (Py)m, (J = 1, 34) with
free 2m-parameters (B—m, ..., Bm) € C*™[n~1] of the form

Uzﬁo'i‘(l—ao)u, VZ’IAJ()-F(I—’IALO)’U,

(1) (Z)=Zf;ﬂ(7,t;n)x4(vk), A(uk)=(u_5$’;l )
1<|k[<m 2
(4.2) Rrtm)y=3( 3 flpe®e™ )i,
A
0

with a(vg) = = 3 93(vk)767F1. Here (tg,00), vk and g5 of (Py)m (J =
=0

1—-0g3(vk) =
I, 34) have been defined in the previous section respectively. For the explicit forms of

f,gyp,l(t) (J =1,34), see [2] and [17].
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The following describes the relation between instanton-type solutions of (), and
(P 34)m-

Theorem 4.2 ([17]). An instanton-type solution of (Ps4)m is transformed alge-
braically to that of (P;)m by the replacements of all terms which are depending on their

0-parameter solutions.

Theorem 4.3 ([16]). We have instanton-type solutions of (P1)m (J = IL1IV) with
free 2m-parameters (B_m, - -, Bm) € C*™[n71] of the form

U=ﬁ0+(1—-ﬁ0+0)u, V='f)0+(1—ﬁ0+0)’0,

W\ o A Ly a(vk)
(4.3) (v) —ka( JmAk), Ak (gj(yk)a(vk)>

1<|k|<m

(44) Rty =3 3 fpe®e)n”,

j=1 £20,pez™

28+|p|=j
where a(vg) = % . i (vk)167Ft and g3(vk) = L Ve + 2019 . Here
k) = T 69 ,n) j=OgJ k 03(Vk) 5 TV 1,0 -

(g, 70), vk and g3 of (P1)m (J = ILIV) have been defined in the previous section
respectively. For the explicit forms of f,‘g’p_l(t) (J =1L, IV), see [16].

The following describes the relations between instanton-type solutions of (Pi1)m and
(P IV)m-

Theorem 4.4 ([16]). An instanton-type solution of (Pi1)m is transformed alge-
braically to that of (Prv)m by the replacements of all terms which are depending on

their 0-parameter solutions.
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