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Abstract

We take a Schr\"odinger equation which has a pair of simple turning points connected by a
Stokes line, and consider WKB theoretic transformation series to the Weber equation. Under
suitable conditions, the transformation series is Borel summable, and analysis of so-called fixed
singularities can be reduce to the Weber equation.

\S 1. Introduction

We consider a second order linear differential equation with a large parameter

(1.1) $( \frac{d^{2}}{dx^{2}}-\eta^{2}Q(x))\psi=0.$

The coefficient $Q(x)$ is a holomorphic function (typically rational function or polyno-
mial). $Tbe$ equation has formal solutions (WKB solutions) of the form

(1.2) $\psi(x, \eta)=\exp(\int^{x}S(x, \eta)dx)$ ,

where $S(x, \eta)=\eta S_{-1}+S_{0}+\eta^{-1}S_{1}+\cdots$ is a formal power series satisfying the Riccati
equation

(1.3) $S^{2}+ \frac{dS}{dx}=\eta^{2}Q(x)$ .

The WKB solutions $\psi(x, \eta)$ $(or S(x, \eta))$ are divergent in general, and we apply Borel
resummation method. (See e.g., [12], [9].) Under generic assumptions, the WKB solu-
tions (of suitable normalization) is Borel summble (see [4], [8]), but in some cases not.
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$Q(x)=1-x^{2}/4 Q(x)=x^{3}-x$
Figure 1. two examples in which Stokes lines connect simple turning points

For example if $Q(x)=E-x^{2}/4$ (namely the Weber equation) with a positive constant
$E>0$ , WKB solutions are not Borel summable (depending on the normalization). See
e.g., [11]. This is a general phenomenon if the equation has a pair of turing points (zeros
of $Q(x))$ connected by a Stokes line $\Im\int^{x}\sqrt{Q(x)}dx=0$ . See e.g., [2], [3]. In Figure 1,
we give examples of Stokes lines connecting turning points.

In such cases, the Borel transform of a WKB solution has singularities on the real
axis (in the Borel plane), which we call “fixed singularites” They are fixed in the sence
that the location is independ of $x$ . To analyze such singularities, in [1], WKB theoretic
transformation to the Weber equation is constructed, and Borel transformability is
given. Here transformation series is a formal power series $x(q, \eta)=x_{0}(q)+\eta^{-1}x_{1}(q)+$

$\eta^{-2}x_{2}(q)+\cdots$ which transforms the equation

(1.4) $( \frac{d^{2}}{dq^{2}}-\eta^{2}Q(q))\psi=0$

to the Weber equation (with an infinite power series $E=E(\eta)=E_{0}+\eta^{-1}E_{1}+\eta^{-2}E_{2}+$

$)$

(1.5) $( \frac{d^{2}}{dx^{2}}-\eta^{2}(E-\frac{x^{2}}{4}))\phi=0,$

with a gauge transform $\psi=x^{-1/2}\phi$ . This is equivalent to that $x(q, \eta)$ satisfies the
following:

(1.6) $Q(q)=( \frac{dx}{dq})^{2}(E-\frac{x^{2}}{4})-\frac{1}{2}\eta^{-2}\{x;q\}.$

Here $\{x;q\}$ is the Schwarzian derivative. Though this is a transformation between
equations, this also connect WKB solutions of certain normalization. (See [1] and the
following section.)
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BOREL SUMMABILITY OF WKB THEORETIC TRANSFORMATION TO THE WEBER EQUATION

The purpose of this paper is to present Borel summability of transformation series
in a simple case, and add a brief explanation of the consequence (the following section).

In ending of this introduction, we refer to the work of Kamimoto and Koike ([5]),

which shows Borel summability of transformation series to the Airy equation $(Q(x)=$

$x)$ . The Airy equation has only one simple tuming point, and is the simplest equation

whose (Borel transformed) WKB solution has so-called “movable singularities” The

basic idea of the proof of the Weber case follows the Airy case [5], while one additional
problem arises which we should overcome. In this paper, we do not give a proof of Borel
summability of transformation series to the Weber equation. $A$ detailed proof will be
given elsewhere.

\S 2. Borel summability of transformation series

In this section, for simplicity we assume that the coefficient $Q(q)$ in (1.4) is polyno-

mial. Let $q\pm$ be simple tuming points of the equation (1.4). Assume $q\pm$ are connected
by a Stokes line and the other Stokes lines emanating from the two points tend to infin-
ity. For example, if $Q(q)=q(q^{2}-1)$ and we take $q+=0$ and $q_{-}=-1$ , these conditions
are satisfied (See Figure 1). Take a neighborhood

(2.1) $D= \{|\int_{q+}^{q}\sqrt{Q}dq|<d\}\cup\{|\int_{q-}^{q}\sqrt{Q}dq|<d\}$

of $\{q_{\pm}\}$ and set

(2.2) $\hat{D}=\bigcup_{q\in D}\{\Im\int_{q}^{q}\sqrt{Q}dq=0\}.$

(cf. Figure 2.) We take $d$ small enough so that $\hat{D}$ does not contain any tuming points

except for $q\pm\cdot$ Then there exist formal power series $x(q, \eta)=x_{0}(q)+\eta^{-1}x_{1}(q)+$

$\eta^{-2}x_{2}(q)+\cdots$ and $E(\eta)=E_{0}+\eta^{-1}E_{1}+\eta^{-2}E_{2}+\cdots$ with $x_{j}(q)$ being holomorphic on
$\hat{D}(j=0,1,2, \ldots)$ which satisfy the equation (1.6) and $dx_{0}/dq\neq 0.$ $x(q, \eta)$ and $E(\eta)$

are uniquely determined up to the choice of $x_{0}(q)$ . See [1], [9].

Remark. $x_{0}(q)$ is a map which maps a turning point to a turning point, a level curve
(Stokes line) $\Im\int^{q}\sqrt{Q}dq=0$ to a level curve (Stokes line) $\Im\int^{x}\sqrt{(E_{0}-x^{2}/4)}dx=0.$

There are two turning points $q\pm$ , and we have two choices of $x_{0}(q)$ .

The Borel summability of $E(\eta)$ is known. See [8]. In addition we have the following

theorem.

Theorem 2.1. Under the assumptions above, the transformation series $x(q, \eta)$ is

Borel summable uniformly on $\hat{D}.$
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Figure 2. Domains $D$ and $\hat{D}.$

Thus the equation (1.4) on $\hat{D}$ is transformed to the canonical equation (1.5) by two
Borel summable series $x(q, \eta)$ and $E(\eta)$ . Then as is explained in [1] and [9] (though
mainly Airy case, not Weber case), a WKB solution of (1.4) is also transformed into
a WKB solution of (1.5); Let $\psi(q, \eta)$ be a WKB solution of (1.4) normalized at $q+$

$\phi(x, E, \eta)$ be a WKB solution of (1.5) normalized at $2\sqrt{E}$ . Here we assume $x_{0}(q_{+})=$

$2\sqrt{E_{0}}$. (For normalization, see e.g., [9].) Then the following relation holds:

(2.3) $\psi(q, \eta)=(\frac{dx}{dq}(q, \eta))^{-1/2}\phi(x(q, \eta), E(\eta), \eta)$ .

Though this is a formal relation, if Borel transformed, this becomes an analytic relation.
Set $x(q, \eta)=x_{0}(q)+X(q, \eta)$ and $E(\eta)=E_{0}+F(\eta)$ . By Taylor expansion, we have

$\psi(q, \eta)=(\frac{dx}{dq}(q, \eta))\sum_{n=0}^{-1/2\infty}X^{n}(q, \eta)\partial^{n}\phi n!$
$\overline{\partial x^{n}}(x_{0}(q), E(\eta), \eta)$

(2.4)

$=( \frac{dx}{dq}(q, \eta))\sum_{n=0}^{-1/2\infty}\frac{X^{n}(q,\eta)}{n!}(\sum_{m=0}^{\infty}\frac{F^{m}(\eta)}{m!}\partial E^{m}\partial x^{n}\partial^{n+m}\phi(x_{0}(q), E_{0}, \eta))$ .

Then by Borel transform, we have
(2.5)

$\psi_{B}(q, y)=((\frac{dx}{dq})^{-1/2})_{B}(q, y)*\sum_{n=0}^{\infty}\frac{X_{B}^{*n}(q,y)}{n!}*(\sum_{m=0}^{\infty}\frac{F_{B}^{*m}(y)}{m!}*\frac{\partial^{n+m}\phi_{B}}{\partial E^{m}\partial x^{n}}(x_{0}(q), E_{0}, y))$ ,

where the subscript $B$ means Borel transform $and*$ is convolution. Now let us take one
term

$(( \frac{dx}{dq})^{-1/2})_{B}(q, y)*\frac{X_{B}^{*n}(q,y)}{n!}*\frac{F_{B}^{*m}(y)}{m!}*\frac{\partial^{n+m}\phi_{B}}{\partial E^{m}\partial x^{n}}(x_{0}(q), E_{0}, y)$ .
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$Q(x)=(x-1)/x Q(x)=1/(x^{2}-1)$
Figure 3. Stokes lines connecting a pair of a simple turning point and a simple pole(left),

a pair of simple poles (right).

Since $X$ and $F$ are Borel summable, the front part

$(( \frac{dx}{dq})^{-1/2})_{B}(q, y)*\frac{X_{B}^{*n}(q,y)}{n!}*\frac{F_{B}^{*m}(y)}{m!}$

is holomorphic in a strip region containing the positive real axis. Since we know well

about $\phi_{B}$ (see e.g., [11], [10]), for this single term, we can see continuability avoiding

singularities, disconitinuity at a singularity, etc. Then by summing up with respect to
$m$ and $n$ (with care on convergence), we see continuablity etc. also for $\psi_{B}(q, y)$ .

Remark. $\phi_{B}(x_{0}(q), E_{0}, y)$ has infinitely many singularites in the $y$-plane with real

period $2\pi E_{0}$ , and with Borel summability we can analyze all singularities through trans-

formation. Thus Borel summability of transformation is important in the analysis of
fixed singularities.

Remark. In this paper, we considered only two simple turning points problem. On
the other hand, simple poles (of $Q$) are known to play a role similar to simple turning

points ([6], [7]), and a pair of a simple turning point and a simple pole, or a pair of
simple poles causes fixed singularities as well (cf. Figure 3). The former one can be

treated in the same manner as a pair of simple turning points. However the latter one
is difficult to treat with. Also, a sole simple turning point makes a pair in some sense,

generating a loop of Stokes line (cf. Figure 4), and this has the same difficulty.
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Figure 4. $A$ loop of Stokes line ending a sole simple tuming point.
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