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Abstract

In our previous papers we gave a system of partial differential equations describing a surface
germ including two continuous families of circular arcs, and an estimate of the dimension of
its solution space. In this paper we prove that this system of partial differential equations of
fifth-order reduces to a finite system of ordinary differential equations of fifth-order.

Let $f(x, y)$ be a $C^{5}$-class real valued function defined in a neighborhood of $(0,0)\in \mathbb{R}^{2}$

satisfying

$f(O, O)=f_{x}(0,0)=f_{y}(0,0)=f_{xy}(0,0)=0, f_{xx}(0,0)-f_{yy}(0,0)\neq 0.$

If a surface germ $z=f(x, y)$ at the origin of $\mathbb{R}^{3}$ generically includes $\ell$ continuous families
of circular arcs for an integer $\ell\geq 1$ , then by our previous results in [1], [2], [3] we obtain
the following system of equations:
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Here $Z(T),$ $N(T),$ $R(T),$ $K(T)$ , which will be given later, are the polynomials of $T$ whose
coefficients are also polynomials of $\nabla f,$ $\nabla^{2}f,$ $\nabla^{3}f,$ $\nabla^{4}f$ . Further $\{t_{k};k=1, \ldots, \ell\}$ are
non-zero, real, simple and distinct roots of $Z(t)|_{x=y=0}=0$ , and $\{T_{k};k=1, \ldots, \ell\}$ are
analytic functions of $\nabla f,$ $\nabla^{2}f,$ $\nabla^{3}f,$ $\nabla^{4}f$ defined by the equation $Z(T;x, y)=0$ . As
the well-known solutions of these system; that is, the surfaces including two continuous
families of circles, we have Darboux cyclides [5]:

$\alpha(\sum_{i=1}^{3}x_{i}^{2})^{2}+(\sum_{i=1}^{3}x_{i}^{2})\sum_{i=1}^{3}\beta_{i}x_{i}+\sum_{i,j=1}^{3}\gamma_{ij}x_{i}x_{j}+\sum_{i=1}^{3}\delta_{i}x_{i}+\epsilon=0,$

where $(x_{1}, x_{2}, x_{3})=(x, y, z)$ and $\alpha,$
$\beta_{i},$

$\gamma_{ij},$
$\delta_{i},$ $\epsilon$ are real constants for $i,j=1,2,3$ . Ac-

cording to N. Takeuchi [6], any Darboux cyclide with generic coefficients $\alpha,$
$\beta_{i},$

$\gamma_{ij},$
$\delta_{i},$

$\epsilon$

includes just two or six continuous families of circles off the umbilical points, which
constitute a discrete subset if the surface is neither a sphere nor a plane. Further, any
Darboux cyclide includes just 1–6 continuous families of circles off the umbilical points.
These results are a generalization of R. Blum’s result [7]. On the other hand, in [8],
[9], H. Pottmann, H. L. Shi, F. Nilov and M. Skopenkov found a surface which is not a
cyclide, but includes 2 continuous families of circles:

$(x^{2}+y^{2}+z^{2})^{2}-4y^{2}z^{2}-4x^{2}=0.$

Here $y=$Const., or $z=Const$ . becomes circles. Indeed, we can rewrite this as follows:

$x=\pm\sqrt{1-y^{2}}\pm\sqrt{1-z^{2}}.$

Further they proved the following as Theorem 3.4 of [9]:

Theorem 0.1. Let $\Phi$ be a smooth closed surface in $\mathbb{R}^{3}$ homeomorphic to either a
sphere or a torus. If through each point of the surface one can $dmw$ at least 4 distinct
circles fully contained in the surface (and continuously depending on the point)
then the surface is a cyclide.

They used Takeuchi’s idea on intersection numbers of fundamental groups and a
classical theorem on the relationship between cospherical circles and cyclides. So the
proof relies on the global information of the surface. On the other hand their counter
example is not a closed surface, but a surface with singularities. At the same time, they
gave a conjecture:

3 distinct continuous families of circles $\Rightarrow$ cyclides.

Our method is based on elementary analysis and differential equations, and so it is very
different from their approach based on algebraic geometry.
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\S 1. Our previous results

Definition 1.1 (The Key Polynomial $Z(T)$ ). Let $z=f(x, y)$ be a $C^{4}$-claes function
defined in a neighborhood of $(0,0)\in \mathbb{R}^{2}$ . Put the Taylor coefficients of $f$ at $(x, y)$ as
follows:

$\{\begin{array}{l}a:=f_{x}(x, y) , b:=f_{y}(x, y) ,c_{0}:=\frac{1}{2}f_{xx}(x, y) , c_{1}:=f_{xy}(x, y) , c_{2}:=\frac{1}{2}f_{yy}(x, y) ,d_{0}:=\frac{1}{3!}f_{xxx}(x, y) , d_{1}:=\frac{1}{2!}f_{xxy}(x, y) ,d_{2}:=\frac{1}{2!}f_{xyy}(x, y) , d_{3}:=\frac{1}{3!}f_{yyy}(x, y) ,e_{0}:=\frac{1}{4!}f_{xxxx}(x, y) , e_{1}:=\frac{1}{3!}f_{xxxy}(x, y) , e_{2}:=\frac{1}{2!^{2}}f_{xxyy}(x, y) ,e_{3}:=\frac{1}{3!}f_{xyyy}(x, y) , e_{4}:=\frac{1}{4!}f_{yyyy}(x, y) .\end{array}$

Then we define some polynomials and the key polynomial $Z(T)$ in $T$ as follows:

$C(T)=c_{0}+c_{1}T+c_{2}T^{2}, D(T)=d_{0}+d_{1}T+d_{2}T^{2}+d_{3}T^{3},$

$E(T)=e_{0}+e_{1}T+e_{2}T^{2}+e_{3}T^{3}+e_{4}T^{4},$

$R(T)=(b^{2}+1)T^{2}+2abT+a^{2}+1,$

$S(T)=D(T)R(T)-2(bT+a)C(T)^{2},$

$K(T)=R’(T)C(T)-R(T)C’(T) , W(T)=bS(T)+C(T)K(T)$ ,

$Z(T)\equiv Z(T;x, y)$

$:=K(T)^{2}(R(T)E(T)-C(T)^{3})+R(T)K(T)D(T)(D’(T)R(T)$

$-3(b^{2}+1)TD(T))+D(T)^{2}R(T)[-ab(2K(T)+TK’(T))$

$-2(a^{2}+1)(b^{2}+1)C(T)+((a^{2}+1)c_{2}+(b^{2}+1)c_{0})R(T)]$

$+2R(T)C(T)[(bT+a)\{D(T)K’(T)C(T)+D(T)K(T)C’(T)$

$-D’(T)K(T)C(T)\}-bD(T)C(T)K(T)]$

$+4C(T)^{4}(bT+a)\cross\{((a^{2}-1)c_{2}+(b^{2}+1)c_{0})(bT+a)$

$- \frac{1}{2}ac_{1}R’(T)+2a(c_{2}-c_{0})-bc_{1}\},$

where $C’(T)=\partial_{T}C(T),$ $R’(T)=\partial_{T}R(T)$ etc.

Then the following theorems were obtained in [1], [2], [3].

Theorem 1.2. Let $z=f(x, y)$ be a $C^{5}$ -function defined in a neighborhood $U_{\delta_{0}}=$

$\{(x, y);x^{2}+y^{2}<\delta_{0}^{2}\}(\delta_{0}>0)$ satisfying

(1.1) $f(O, O)=0, f_{x}(0,0)=0, f_{y}(0,0)=0, f_{xy}(0,0)=0,$
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(1.2) $c_{2}(0,0)-c_{0}(0,0)= \frac{1}{2}(f_{yy}(0,0)-f_{xx}(0,0))\neq 0.$

Then we have the following (i), (ii).
(i) Let $t(x, y),$ $s(x, y)$ be real-valued continuous functions defined in a neighborhood of
$(0,0)$ such that, for some $\delta>0$ and any $(x_{0}, y_{0})\in U_{\delta}$ , the set

(1.3) $M\cap\{y-y_{0}=t(x_{0}, y_{0})(x-x_{0})+s(x_{0}, y_{0})(z-f(x_{0}, y_{0}))\}$

coincides with a circle in a neighborhood of $(x_{0}, y_{0}, f(x_{0}, y_{0}))$ . Assume that $t(O, 0)\neq 0$

and that $Z’(t(O, 0);0,0)\neq 0.$

Consider a continuous function

(1.4) $T(x, y):= \frac{t(x,y)+f_{x}(x,y)s(x,y)}{1-f_{y}(x,y)s(x,y)}$

defined in a neighborhood of $(0,0)$ . Further assume that $t(x, y),$ $\mathcal{S}(x, y)$ are constant on
each circular arc (1.3). Then, $T(x, y)$ is a $C^{1}$ -function satisfying

(1.5) $Z(T(x, y);x, y)=0,$

(1.6) $( \partial_{x}+T(x, y)\partial_{y})T(x, y)=\frac{2S(T)}{K(T)}.$

Further, $s(x, y),$ $t(x, y)$ are also $C^{1}$ -functions written as

(1.7) $s(x, y)= \frac{S(T)}{W(T)}, t(x, y)=\frac{TK(T)C(T)-aS(T)}{W(T)}.$

(ii) Conversely, let $T(x, y)$ be a real-valued $C^{1}$ -function defined in a neighborhood of
$(0,0)$ satisfying $T(O, 0)\neq 0$ , (1.5) and (1.6). Then, $t(x, y),$ $s(x, y)$ defined by (1.7)
belong to $C^{1}(U_{\delta})$ for a $\delta>0$ , and satisfy that, for any $(x_{0}, y_{0})\in U_{\delta}$ , the set

$M\cap\{y-y_{0}=t(x_{0}, y_{0})(x-x_{0})+s(x_{0}, y_{0})(z-f(x_{0}, y_{0}))\}$

coincides with a circle in a neighborhood of $(x_{0}, y_{0}, f(x_{0}, y_{0}))$ , and that $t(x, y),$ $s(x, y)$
are constant on this circular arc.

Though the equation (1.6) obtained in Theorem 1.2

$( \partial_{x}+T(x, y)\partial_{y})T(x, y)=\frac{2S(T)}{K(T)}$

looks like a first order PDE, this is a fifth-order PDE for $f(x, y)$ because $T$ is an analytic
function of $\nabla f,$ $\nabla^{2}f,$ $\nabla^{3}f,$ $\nabla^{4}f$ through the equation $Z(T)=0$ . Indeed we have the
following:
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Theorem 1.3. Under the conditions in Theorem 1.2, we have

(1.8) $\sum_{j=0}^{5}(\begin{array}{l}5j\end{array})T^{j}\partial_{x}^{5-j}\partial_{y}^{j}f(x, y)=\frac{24N(T)}{R(T)K(T)^{3}},$

where $N(T)$ is a polynomial in $T$ of degree 14 given by

$N(T)=-5R(T)K(T)^{2}E’(T)[R(T)D(T)-2(bT+a)C(T)^{2}]$

$+D(T)^{3}R(T)B_{1}(T)+2D(T)^{2}D’(T)R(T)^{2}B_{2}(T)$

$-D(T)^{2}R(T)^{2}K(T)[(3d_{3}T+d_{2})(5R(T)-(b^{2}+1)T^{2})+(d_{1}T+3d_{0})(b^{2}+1)]$

$+D(T)^{2}B_{3}(T)+2(bT+a)D(T)D’(T)R(T)C(T)B_{4}(T)$

$+10(bT+a)D(T)D”(T)R(T)^{2}K(T)C(T)^{2}+D(T)B_{5}(T)$

$-4(bT+a)D’(T)R(T)K(T)C(T)^{3}[5(bT+a)C’(T)+2bC(T)]$

$+4(bT+a)C(T)^{4}K(T)[3d_{0}B_{6}(T)+d_{1}B_{7}(T)+d_{2}B_{8}(T)-3d_{3}TB_{9}(T)]$

$+4C(T)^{4}B_{10}(T)$ .

Further, $B_{1}(T),$
$\ldots,$

$B_{10}(T)$ are some polynomials in $T,$ $a,$ $b,$ $c_{*}.$

Remark. We omitted the explicit forms of $B_{1}(T),$
$\ldots,$

$B_{10}(T)$ for saving the pages.
The readers can get them in [2], [3], or a file “check-fifth” in our websites:

http: $//www.u$-gakugei. ac. jp$/\sim_{nobuko}/$manyc ircles. html

http: $//$agusta. ms. u-tokyo. ac. jp/microlocal/manycircles. html

Let $M$ : $z=f(x, y)$ be a $C^{5}$-class surface germ whose Taylor expansion at the
origin satisfies conditions (1.1), (1.2) in Theorem 1.2. For an integer $\ell(2\leq\ell\leq 10)$ ,
suppose that there exist $l$ real numbers $\{t_{k}\}_{k=1}^{\ell}$ satisfying $t_{k}\neq 0,$ $Z(t_{k};0,0)=0,$

$Z’(t_{k};0,0)\neq 0$ , and that $M$ includes $\ell$ continuous families of circular arcs associated
with $\{t_{k}\}_{k=1}^{\ell}$ . Let $T_{k}(x, y)$ be the function $T$ corresponding to the non-zero simple root
$t_{k}$ ; that is, $T_{k}(0,0)=t_{k}(k=1, \ldots, \ell)$ . Then $f$ is a solution of the following system of
PDE’s:

(1.9) $\{\begin{array}{l}Z(T_{k}(x, y))=0, T_{k}(0,0)=t_{k},\sum_{j=0}^{5}[Matrix] T_{k}(x, y)^{j}\partial_{x}^{5-j}\partial_{y}^{j}f(x, y)=\frac{24N(T_{k}(x,y))}{R(T_{k}(x,y))K(T_{k}(x,y))^{3}},(1\leq k\leq\ell) .\end{array}$

For $\ell\geq 2$ , this system is an analytic elliptic system of fifth-order equations for $f$ . Indeed,

the k-th equation is an analytic quasi-linear equation with fifth order principal symbol

$(\xi+T_{k}(x, y)\eta)^{5}$

198



KIYOOMI KATAOKA AND NOBUKO TAKEUCHI

$(\xi, \eta are the$ symbols $for \partial_{x}, \partial_{y},$ respectively) , and further each $T_{k}$ is an analytic function
of $\nabla f,$ $\nabla^{2}f,$ $\nabla^{3}f,$ $\nabla^{4}f$ defined by the equation $Z(T_{k};x, y)=0$ for $k=1,$ $\ldots,$

$\ell.$

Theorem 1.4. Let $M$ : $z=f(x, y)$ be a $C^{5+\theta}$ -class surface satisfying (1.1), (1.2)
where $\theta(0<\theta<1)$ is an exponent for H\"older continuity. Suppose that $M$ contains two
continuous families of circles in the sense of (i) of Theorem 1.2, where these families
correspond to two distinct non-zero real simple roots $t_{1},$ $t_{2}$ of $Z(t;0,0)=0$, respectively.
Then, $f$ is an analytic function which is uniquely determined only by the partial deriva-
tives at $(0,0)$ up to 8th-order. In particular, such surface-germs are classified by at most
21 real pammeters $A$ and $B$ , where

$A:=(\partial_{x}^{p}\partial_{y}^{q}f(0,0);2\leq p+q\leq 4, (p, q)\neq(1,1))$ ,
$B:=((\partial_{x}+t_{1}\partial_{y})^{p}(\partial_{x}+t_{2}\partial_{y})^{q}f(0,0);p, q\leq 4,5\leq p+q\leq 8)$ .

\S 2. Our main results

Though the method of power series expansion is useful for getting the solvable con-
dition of system (1.9) with $\ell=2$ for an initial data $(A, B)$ , the calculation is too
complicated even for one or two steps. Hence we need another method. We use one
continuous family of circular arcs for an explicit expression of $M=\{z=f(x, y)\}$ , and
another continuous family of circular arcs for a partial differential equation for $f$ . We
prepare a lemma obtained as Lemma 2.3 in [4]:

Lemma 2.1. Let $x_{0},$ $y_{0},$ $z_{0},$ $U_{1},$ $U_{2},$ $U_{3},$ $V_{1},$ $V_{2},$ $V_{3}$ , and $\lambda$ be real constants satisfying
$U_{3}V_{1}-U_{1}V_{3}\neq 0$ . Consider the following curve with pammeter $t\in \mathbb{R}\cup\{\infty\}$ in $\mathbb{R}^{3}(t=$

$\infty\Leftrightarrow(x, y, z)=(x_{0}, y_{0}, z_{0}))$ :

$x=x_{0}+ \frac{2\lambda(U_{1}+V_{1}t)}{(U_{1}+V_{1}t)^{2}+(U_{2}+V_{2}t)^{2}+(U_{3}+V_{3}t)^{2}},$

$y=y_{0}+ \frac{2\lambda(U_{2}+V_{2}t)}{(U_{1}+V_{1}t)^{2}+(U_{2}+V_{2}t)^{2}+(U_{3}+V_{3}t)^{2}},$

$z=z_{0}+ \frac{2\lambda(U_{3}+V_{3}t)}{(U_{1}+V_{1}t)^{2}+(U_{2}+V_{2}t)^{2}+(U_{3}+V_{3}t)^{2}}.$

Then, this is a circle contained in a plane

$y-y_{0}= \frac{U_{3}V_{2}-U_{2}V_{3}}{U_{3}V_{1}-U_{1}V_{3}}(x-x_{0})+\frac{U_{2}V_{1}-U_{1}V_{2}}{U_{3}V_{1}-U_{1}V_{3}}(z-z_{0})$

with center

$x_{C}=x_{0}+ \frac{\lambda(U_{1}(V_{2}^{2}+V_{3}^{2})-V_{1}(U_{2}V_{2}+U_{3}V_{3}))}{(U_{2}V_{3}-U_{3}V_{2})^{2}+(U_{3}V_{1}-U_{1}V_{3})^{2}+(U_{1}V_{2}-U_{2}V_{1})^{2}},$
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$y_{C}=y_{0}+ \frac{\lambda(U_{2}(V_{3}^{2}+V_{1}^{2})-V_{2}(U_{3}V_{3}+U_{1}V_{1}))}{(U_{2}V_{3}-U_{3}V_{2})^{2}+(U_{3}V_{1}-U_{1}V_{3})^{2}+(U_{1}V_{2}-U_{2}V_{1})^{2}},$

$z_{C}=z_{0}+ \frac{\lambda(U_{3}(V_{1}^{2}+V_{2}^{2})-V_{3}(U_{1}V_{1}+U_{2}V_{2}))}{(U_{2}V_{3}-U_{3}V_{2})^{2}+(U_{3}V_{1}-U_{1}V_{3})^{2}+(U_{1}V_{2}-U_{2}V_{1})^{2}},$

and mdius

$R= \frac{|\lambda|\sqrt{V_{1}^{2}+V_{2}^{2}+V_{3}^{2}}}{\sqrt{(U_{2}V_{3}-U_{3}V_{2})^{2}+(U_{3}V_{1}-U_{1}V_{3})^{2}+(U_{1}V_{2}-U_{2}V_{1})^{2}}}.$

In this lemma, we put $t=1/v,$ $x_{0}=0,$ $y_{0}=u,$ $z_{0}=z_{0}(u),$ $\lambda=1$ , and

$V_{1}=1, V_{2}=j(u)+k(u)V(u) , V_{3}=V(u)$ ,

$U_{1}=0, U_{2}=k(u)U(u) , U_{3}=U(u)$ .

Then we obtain an expression of a surface $M$ in $\mathbb{R}^{3}$ parametrized by $(u, v)$ as

$x= \frac{2v}{1+(k(u)U(u)v+j(u)+k(u)V(u))^{2}+(U(u)v+V(u))^{2}},$

$y= \frac{2(k(u)U(u)v+j(u)+k(u)V(u))v}{1+(k(u)U(u)v+j(u)+k(u)V(u))^{2}+(U(u)v+V(u))^{2}}+u,$

$z= \frac{2(U(u)v+V(u))v}{1+(k(u)U(u)v+j(u)+k(u)V(u))^{2}+(U(u)v+V(u))^{2}}+z_{0}(u)$ ,

by using 5 analytic functions

$z_{0}(u), j(u), k(u), U(u), V(u)$

of one-variable $u$ . Here, $u$ is the parameter concerning the family of circles, and $v$ is the
parameter for each circle. Since

$M\cap\{x=0\}=\{(0, u, z_{0}(u));u\in \mathbb{R}\},$

$y(u, v)-u=j(u)x(u, v)+k(u)(z(u, v)-z_{0}(u))$ ,

we can choose an almost arbitrary initial curve $M\cap\{x=0\}$ and an almost arbitrary nor-
mal vector $(j(u), -1, k(u))$ to the circle corresponding to $u$ along $M\cap\{x=0\}$ by suitable
choices of functions $z_{0}(u),$ $j(u),$ $k(u)$ . Further the center $(x_{C}(u, v), y_{C}(u, v), z_{C}(u, v))$ of
the circle satisfies

$(x_{C}, y_{C}-u, z_{C}-z_{0}(u))= \frac{1}{U(u)}e_{1}(u)arrow+\frac{V(u)}{U(u)}e_{2}(u)arrow$
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with

$e_{1} arrow(u)=(\frac{-j(u)k(u)}{1+j(u)^{2}+k(u)^{2}},1+j(u)^{2}+k(u)^{2}k(u),1+j(u)^{2}+k(u)^{2})$ ,
$1+j(u)^{2}$

$e_{2}(u) arrow=(\frac{-(1+k(u)^{2})}{1+j(u)^{2}+k(u)^{2}},1+j(u)^{2}+k(u)^{2}-j(u),1+j(u)^{2}+k(u)^{2})\cdot$
$j(u)k(u)$

Since $e_{1} arrow(u)\cross e_{2}(u)arrow=\frac{(j(u),-1,k(u))}{j(u)^{2}+k(u)^{2}+1},$ $e_{1}(u),e_{2}(u)arrowarrow$ span the plane

$H:=\{(x, y, z);y=j(u)x+k(u)z\}.$

Hence our parametrization $(x(u, v), y(u, v), z(u, v))$ covers almost arbitrary circular sur-
faces $M$ . Next, we can use $u,$ $v$ as the independent variables instead of $x,$ $y$ . Thus, we
write

$\partial_{x}=m_{1}\partial_{u}+m_{2}\partial_{v}, \partial_{y}=m_{3}\partial_{u}+m_{4}\partial_{v},$

where $m_{1},$ $m_{2},$ $m_{3},$ $m_{4}$ are given as follows:

$m_{1}(u, v):= \frac{y_{v}}{x_{u}y_{v}-x_{v}y_{u}},$

$m_{2}(u, v):=- \frac{y_{u}}{x_{u}y_{v}-x_{v}y_{u}},$

$m_{3}(u, v):=- \frac{x_{v}}{x_{u}y_{v}-x_{v}y_{u}},$

$m_{4}(u, v):= \frac{x_{u}}{x_{u}y_{v}-x_{v}y_{u}}.$

Therefore we can express the fifth-order PDE related to the second continuous family
of circles by using $v$ and the derivatives of $z_{0}(u),j(u),$ $k(u),$ $U(u),$ $V(u)$ up to fifth order.
Finally we get a fifth-order ordinary differential equation for $z_{0}(u),j(u),$ $k(u),$ $U(u),$ $V(u)$

with analytic parameter $v$ . However the calculations are too complicated to obtain any
information about this ordinary differential equation.

Theorem 2.2. Let $M$ : $z=f(x, y)$ be a $C^{5+\theta}$ -class surface satisfying (1.1), (1.2)
where $\theta(0<\theta<1)$ is an exponent for H\"older continuity. Suppose that $M$ contains two
continuous families of circles in the sense of (ii) of Theorem 1.2, where these families
correspond to two distinct non-zero real simple roots $t_{1},$ $t_{2}$ of $Z(t;0,0)=0$ , respectively.
Then, $f$ is described by 5 analytic functions $z_{0}(u),$ $j(u),$ $k(u),$ $U(u),$ $V(u)$ of one-variable

$u$ satisfying

$z_{0}(0)=z_{0}’(0)=V(0)=V’(0)-t_{1}z_{0}"(0)=0, j(0)=t_{1}, U(0)\neq 0,$

and an ordinary differential equation of fifth-order with analytic parameter $v$ :

$\{\begin{array}{l}Z(T_{2}(x, y))=0, T_{2}(0,0)=t_{2},\sum_{j=0}^{5}[Matrix] T_{2}(x, y)^{j}\partial_{x}^{5-j}\partial_{y}^{j}f(x, y)=\frac{24N(T_{2}(x,y))}{R(T_{2}(x,y))K(T_{2}(x,y))^{3}},\end{array}$
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where $x=x(u, v),$ $y=y(u, v),$ $f(x, y)=z(u, v)$ .

Theorem 2.3. Under the same conditions as Theorem 2.2, we have the following
equivalent conditions for 5 analytic functions $z_{0}(u),$ $j(u),$ $k(u),$ $U(u),$ $V(u)$ : There exist
some real polynomials

$P_{\ell}(z_{0}^{(i_{1})}(u),j^{(i_{2})}(u), k^{(i_{3})}(u), U^{(i_{4})}(u), V^{(i_{5})}(u);i_{1}, \ldots, i_{5}=0,1, \ldots, 5)$

$(\ell=1, \ldots, L)$ of 30 variables such that

$\{\begin{array}{l}z_{0}(0)=z_{0}’(0)=V(0)=V’(0)-t_{1}z_{0}"(0)=0, j(O)=t_{1},P_{\ell}(z_{0}^{(i_{1})}(u), j^{(i_{2})}(u), k^{(i_{3})}(u), U^{(i_{4})}(u), V^{(i_{5})}(u))=0(\ell=1, \ldots, L)\end{array}$

with $U(O)\neq 0.$

A sketch of the proof of Theorem 2.3. We can rewrite the equations in Theorem
2.2 for $z_{0}(u),$ $j(u),$ $k(u),$ $U(u),$ $V(u)$ as follows:

$\{\begin{array}{l}Z(T_{2})=0,24N(T_{2})-R(T_{2})K(T_{2})^{3}\sum_{j=0}^{5}[Matrix](\partial_{x}^{5-j}\partial_{y}^{j}f)T_{2}^{j}=0,T_{2}(0,0)=t_{2}, j(O)=t_{1},z_{0}(0)=z_{0}’(0)=V(0)=V’(0)-t_{1}z_{0}"(0)=0,\end{array}$

with $U(0)\neq 0$ , where $x=x(u, v),$ $y=y(u, v),$ $f(x, y)=z(u, v)$ . Then we can consider
the first and the second equations as algebraic equations for $T_{2}$ with coefficients in $\mathcal{K}(v)$ ;
$\mathcal{K}(v)$ is the field of rational functions of $v$ with coefficients in the quotient field $\mathcal{K}$ $:=$

Ftac $(\mathcal{O}_{u,0})(\mathcal{O}_{u,0}$ is the integral domain of all the germs at $u=0$ of analytic functions
in $u)$ . In fact, the left sides of the first and the second equations are polynomials in $T_{2}$

of degree 10 and 14, respectively. Put

$X(T) :=24N(T)-R(T)K(T)^{3} \sum_{j=0}^{5}(\begin{array}{l}5j\end{array})(\partial_{x}^{5-j}y_{y}f)T^{j}.$

Then we have $Z(T_{1})=X(T_{1})=0$ , where

$T_{1}= \frac{j(u)+k(u)f_{x}}{1-k(u)f_{y}}\in \mathcal{K}(v)$ .

This is because $M$ : $z=f(x, y)$ includes the first continuous family of circular arcs.
Therefore we have $\tilde{Z}(T),\tilde{X}(T)\in \mathcal{K}(v)[T]$ satisfying $Z(T)=(T-T_{1})\tilde{Z}(T),$ $X(T)=$
$(T-T_{1})\tilde{X}(T)$ . Consequently we get the following equations for $T_{2}$ :

$\tilde{Z}(T_{2})=0, \tilde{X}(T_{2})=0.$
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Since $T_{2}(x(u, v), y(u, v))\in \mathcal{O}_{(u,v)=(0,0)}$ , there exists an irreducible polynomial $Y(T)\in$

$\mathcal{K}(v)[T]$ such that $Y(T)|\tilde{Z}(T),$ $Y(T)|\tilde{X}(T)$ , and $Y(T_{2})=0$ . Put $q:=degree(Y(T))\in$
$\{1,2, \ldots, 9\}$ . Then we have the nine-cases corresponding to $q$ : Applying the Euclidean
algorithm for finding the common divisor to the system $\overline{Z}(T),\tilde{X}(T)$ in $\mathcal{K}(v)[T]$ up
to $(10-q)$-times, we get the vanishing conditions for the remainder term, which are
equations in $\mathcal{K}(v)$ . Hence, finally we obtain some polynomials

$P_{\ell}(z_{0}^{(i_{1})}(u),j^{(i_{2})}(u), k^{(i_{3})}(u), U^{(i_{4})}(u), V^{(i_{5})}(u);i_{1}, \ldots, i_{5}=0,1, \ldots, 5)$

$(\ell=1, \ldots, L)$ such that $P_{\ell}=0(\forall\ell=1, \ldots, L)$ .

An example of successful calculations. Let $M=\{(x(u, v),$ $y(u, v),$ $z(u, v))\}$ be
a $C^{1}$ -surface for $C^{1}$ -functions $z_{0}(u),j(u),$ $k(u),$ $U(u)(>0),$ $V(u)$ . Suppose that at any
point $(x(u_{0}, v_{0}), y(u_{0}, v_{0}), z(u_{0}, v_{0}))\in M$ the tangent plane to $M$ is orthogonal to the
plane including the circle $M\cap\{u=u_{0}\}$ . Indeed, any sphere and any torus are the
examples of such special surfaces. Then we have the following equivalent equations for
$z_{0}(u),j(u),$ $k(u)$ :

$z_{0}’(u)= \frac{-k(u)+j(u)V(u)}{1+j(u)^{2}+j(u)k(u)V(u)},$

$j’(u)= \frac{1}{U(u)(k(u)-j(u)V(u))}(j(u)U(u)^{2}+j(u)^{3}U(u)^{2}+j(u)k(u)^{2}U(u)^{2}$

$+V(u)U’(u)+j(u)^{2}V(u)U’(u)+k(u)^{2}V(u)U’(u)$

$-U(u)V’(u)-j(u)^{2}U(u)V’(u)-k(u)^{2}U(u)V’(u))$ ,

$k’(u)= \frac{-1}{U(u)(k(u)-j(u)V(u))(1+j(u)^{2}+j(u)k(u)V(u))}$

$\cross(-j(u)^{2}k(u)U(u)^{2}-j(u)^{4}k(u)U(u)^{2}-j(u)^{2}k(u)^{3}U(u)^{2}$

$-j(u)U(u)^{2}V(u)-j(u)^{3}U(u)^{2}V(u)-2j(u)k(u)^{2}U(u)^{2}V(u)$

$-j(u)^{3}k(u)^{2}U(u)^{2}V(u)-j(u)k(u)^{4}U(u)^{2}V(u)+U’(u)+2j(u)^{2}U’(u)$

$+j(u)^{4}U’(u)+k(u)^{2}U’(u)+j(u)^{2}k(u)^{2}U’(u)+j(u)k(u)V(u)U’(u)$

$+j(u)^{3}k(u)V(u)U’(u)+j(u)k(u)^{3}V(u)U’(u))$ .

Hence we can take arbitrary $C^{1}$-functions as $U(u)(>0),$ $V(u)$ . On the other hand, N.
Takeuchi proved in “$A$ sphere as a surface which contains many circles. II, J. Geom. 34
(1989), 195-200” that under some global conditions such $M$ is a sphere; for example,
$M$ is a simply connected complete smooth surface, or a compact smooth surface. The
precise versions are as follows:
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(1) Let $M$ be a simply connected complete smooth surface in $E^{3}$ . For each point $p\in M,$

suppose that there exists a circle through $p$ on $M$ which is contained in a normal
plane of $M$ at $p$ . Then $M$ is a sphere.

(2) Let $M$ be a compact smooth surface in $E^{3}$ . For each point $p\in M$ , suppose that
there exists a normal plane $N(p)$ of $M$ at $p$ such that $N(p)\cap M$ is a circle (hence,
any torus is excluded). Then $M$ is a sphere.

References

[1] Kataoka, K. and Takeuchi, N., A system of fifth-order nonlinear partial differential equa-
tions and a surface which contains many circles, $\ovalbox{\tt\small REJECT}\#\Re\#$ と fflEPifflbiの $\lambda 75,f\overline{f_{\backslash }}X\ovalbox{\tt\small REJECT} H\Re \mathfrak{F}\#$

@ 1723, 2011, pp. 142-149.
[2] –, On a system of fifth-order partial differential equations describing surfaces con-

taining two families of circular arcs, Complex Var. Elliptic Equ. 2013, 1-13, iFirst (DOI:
10.1080/17476933.2012.746967).

[3] –, A system of fifth-order partial differential equations describing a surface which
contains many circles, Bull. Sci. Math. 137 (2013), 325-360.

[4] –, The non-integrability of some system of fifth-order partial differential equations
describing surfaces containing 6 families of circles, to appear in RIMS Kokyuroku Bessatsu.

[5] Darboux, G., Prencipes de G\’eom\’etne Analytique, Gauthier-Villars, Paris, 1917.
[6] Takeuchi, N., Cyclides, Hokkaido Math. J. 29 (2000), 119-148.
[7] Blum, R., Circles on surfaces in the Euclidean 3-space, Geometry and Differential Geometry

(R. Artzy and I. Vaisman, eds.), Lecture Notes in Math. 792, Springer, 1980, pp. 213-221.
[8] Pottmann, H., Shi, H. L. and Skopenkov, M., Darboux cyclides and webs from circles,

Comput. Aided Geom. Design 29 (2012), 77-97.
[9] Nilov, F. and Skopenkov, M., A surface containing a line and a circle through each point

is a quadric, to appear in Geom. Dedicata 163 (2013), 301-310.

204


