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- SPECIAL LAGRANGIAN SUBMANIFOLDS
INVARIANT UNDER THE ISOTROPY ACTION OF
SYMMETRIC SPACES OF RANK TWO

KBRAILRZEER TR &4 B (Kaname Hashimoto)
Osaka City University Advanced Mathematical Institute

1. INTRODUCTION

Special Lagrangian submanifold in Calabi-Yau manifolds play an im-
portant role in the explanation of Mirror symmetry. They are exam-
ples of calibrated submanifolds, appearing in Harvey and Lawson ([1]),
which generalizes the concept of volume minimizing property of com-

‘plex submanifolds of Kaher manifolds. Let M be a Calabi-Yau mani-
fold with a complex volume form 2. Then naturally Re (2 is a calibra-
tion on M, and a calibrated submanifold is called a special Lagrangian
submanifold. For examples, Joyce constructed many interesting exam-
ples of special Lagrangian submanifolds in C™, using various methods.
In particular, cohomogeneity one special Lagrangian submanifolds are
constructed using moment map techniques.

" The cohomogeneity one actions on spheres have been classified by
Hsiang and Lawson ([2]). Every cohomogeneity one action on S™ is
orbit equivalent to the isotropy representation of a Riemannian sym-
metric space of rank 2. »

A compact hypersurface NV in the unit standard sphere S™ is homo-
geneous if it is obtained as an orbit of a compact connected subgroup
of SO(n + 1). It is well known that any homogeneous hypersurface
in S™ can be obtained as a principal orbit of the isotropy representa-
tion of a Riemannian symmetric space of rank 2 ([2]). A homogeneous
hypersurface N in S™ is a hypersurface with constant principal cur-
vatures, which is called isoparametric ([13]). Then the number g of
distinct principal curvatures must be 1, 2, 3, 4 or 6 ([13], [8] and see

9], [10] for general isoparametric hypersurfaces). Denote by (my, my)
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the multiplicities of its principal curvatures. The isotropy representa-
tion of a Riemannian symmetric space G/K of rank 2-induces a group
action of K on S™ and thus 7*S™ in a natural way. In the cases of
g = 1, 2 such group actions of SO(p) x SO(n+1—p) (1 <p<n)are
induced on 7*5™. We classified cohomogeneity one special Lagrangian
submanifolds in 7*S™ under the group actions ([5]).

In this paper we shall discuss the construction of cohomogeneity
one special Lagrangian submanifolds in the case when ¢ = 1, 2, 3,
4 and G/K is of classical type. We refer Halgason’s textbook ([7])

TABLE 1. Homogeneous hypersurfaces in spheres

g (G,K) miy, Mo dim N
1| (8'x SO(n+1),50(n)) n—1 n—1

2| (SO(p+1)xSO(n+1-p), |[p—Ln—p| n—-1

SO(p) X SO(n — p))

3 (SU(3),S0(3)) 1,1 3

3 (SU(3) x SU(3),SU(3)) 2,2 6

3 (SU(6), Sp(3)) T 44 12

3 (Be,F2) 8,8 24

4 (SO(5) x SO(5),SO(5)) 2,2 8

41 (SO(2+m),SO(2) x SO(m))| 1,m—2 |2m—2
41 (SUR2+m),S{U2)xU(m)))| 2,2m -3 |4m — 2
41 (Sp(2+m),Sp(2) x Sp(m)) | 4,4m -5 |8m — 2
4 (SO(10),U(5)) 4,5 18

41 (Es,U(1) x Spin(10)) 6,9 30

6 (G4, SO(4)) 1,1 6

6 (Gg X Gg, Gg) 2, 2 12

for the general theory of Riemannian symmetric space. Let M be
a simply connected semisimple Riemannian symmetric space. If G
is the identity component of the full group of isometrics of M, then
G acts transitively on M and we can write M = G/K, where K is
the isotropy subgroup of G at a point p € M. Since S is simply
connected and G is connected, K is also connected. If g = ¢ @ p is the
canonical decomposition of g associated to the symmetric pair (G, K),
then the isotropy representation of K on T,M is equivalent to the
adjoint representation of K on p. The isotropy representation of G/K



at p is a Lie group homomorphism Ad, : K — SO(p). So a K-orbit
through X € p is denoted by Ad,(K)X.

Let G/K be an (n+ 1)-dimensional rank 2 symmetric space of com-
pact type. Define an Ad,(K)-invariant inner product of p from the
Killing from of g. Then the vector space p can be identified with R?+!
with respect to the inner product. Let a be a maximal abelian sub-
space of p. Since for each X € p there is an element £ € K such that
Ad,(K)X € a, every orbit in p under K meets p. The unit hypersphere
in p is denoted by S™. Since the action of K on p is an orthogonal rep-
resentation, an orbit Ad,(K )X is a submanifold of the hypersphere S™
in p. For a regular element H € a N S™, we obtain a homogeneous
hypersurface N = Ad,(K)H C S™ C p = R™"'. Conversely, every
homogeneous hypersurfaces in a sphere is obtained in this way ([2]).

2. CALABI-YAU MANIFOLDS AND SPECIAL LAGRANGIAN
SUBMANIFOLDS

We shall review some definitions and basic notions of Calabi-Yau
manifolds and special Lagrangian submanifolds. See [4] for details.

There are several different definitions of Calabi-Yau manifolds. In
this paper, we use the following definition.

Definition 2.1. Let n > 2. An almost Calabi- Yau n-fold is a quadru-
ple (M, J,w, ) such that (M, J,w) is a Kihler manifold of complex
dimension n with a complex structure J and a Kéhler form w, and ©
is a nonvanishing holomorphic (7, 0)-form on M. In addition, if w and
2 satisfy

(1) T (1t (E)Q AQ,

n! 2
then we call (M, J,w, Q) a Calabi- Yau n-fold.

If w and Q satisfy (1), then the Kéhler metric g of (M, J,w) is Ricci-
flat. Its holonomy group Hol(gy) is a subgroup of SU(n), and this is
another definition of a Calabi-Yau manifold.

A closed p-form ¢ on a Riemannian manifold (M, g) is called a cali-
bration if |y < voly for any oriented p-plane V C T, M for all z € M.
A p-dimensional submanifold N of M is said to be calibrated by a cal-
ibration ¢ if @|r,;y = volg,y for all z € N.
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Remark 2.2. The constant factor in (1) is chosen so that Re(eY~Q)
is a calibration for any 6 € R.

Definition 2.3. Let (M, J,w,Q) be a Calabi-Yau n-fold and L be a
real n-dimensional submanifold of M. Then, for § € R, L is called
a special Lagrangian submanifold of phase § if it is calibrated by the
calibration Re(evV=1Q).

Harvey and Lawson gave the following alternative characterization
of special Lagrangina submanifolds.

Proposition 2.4 ([1]). Let (M,J,w,Q) be a Calabi-Yau n-fold and
L be a real n-dimensional submanifold of M. Then L is a special La-
grangian submanifold of phase 0 if and only ifw|r = 0 and Im(eV~Q)|,
=0. ’ '

3. STENZEL METRIC AND MOMENTA MAPS

We briefly recall the Stenzel metric on 7*S™. We denote the cotan-
gent bundle of the n-sphere S* = SO(n + 1)/SO(n) by T*S" =
{(z,€) e R** x R*™ | ||z|| = 1, (z, &) = 0} . We identify the tangent
bundle and the cotangent bundle of S™ by the Riemannian metric on
S™. Since any unit cotangent vector of S™ can be translated to another
one, the Lie group SO(n+ 1) acts on T*S™ with cohomogeneity one by
g9-(x,€) = (gx, g€) for g € SO(n+1). Let @™ be a complex quadric in
- C**! defined by

Q" = {z =(z1,...,%n41) € C™*!

n+1
E =13,
i=1

The Lie group SO(n+1, C) acts on Q™ transitively, hence Q™ = SO(n-+
1,C)/SO(n,C). According to Szoke ([12]), we can identify T*S™ with
Q" through the following diffeomorphism:

&:1"S" 3 (x,&) — wcosh(][€]]) + VTS sinh(||¢]]) € Q™.

€11

The diffeomorphism & is equivariant under the action of SO(n + 1).
Thus we frequently identify T*S™ with Q’f. Then consider a holomor-
phic n-form Qg;, given by

1, . ‘ .
5d(zf+z§+---+zi+1—1)/\Qgtz:dzl/\..‘/\dzn+1.



The Stenzel metric is a complete Ricci-flat Kahler metric on Q™ defined
by wste = V/—100u(r?), where r* = ||z||> = 7' 2% and u is a
smooth real-valued function satisfying the differential equation

d

dt(U,(t)) = c¢n(sinht)”! (c>0)
- where U(t) = u(cosht). The Kéhler form wg;, is exact, that is, wg,, =
dagt, where agy, := —Im(Ou(r?)). ‘

Let K be a compact connected Lie subgroup of SO(n + 1) with Lie

algebra . Then the group action of K on Q™ is Hamiltonian with
respect 10 wgst, and its moment map p : Q" — ¢ is given by

(2) {u(2), X) = ase(Xz) = d/(|[2l*)(J2, Xz) (2 € Q"X €¥).

Choose a subset ¥ of T*S™ such that every K-orbit in 7*S™ meets
). In general assume that K has the Hamiltonian group action on a
symplectic manifold M. We define the center of £ to be Z(#) = {X €
| Ad* (k)X = X (Vk € K)}. Tt is easy to see that the inverse image
p~1(c) of ¢ € ¢ is invariant under the group action of K if and only if
¢ E Z(¥).

Proposition 3.1. Let L be a connected isotropic submanifold, i.e.,
wlr =0, of M invariant under the action of K. Then L C u~(c¢) for
some ¢ € Z(¥).

Proposition 3.2. Let L be a connected submanifold of M invariant
under the action of K. Suppose that the action of K on L is of cohomo-
geneity one (possibly transitive). Then L is an isotropic submanifold,
i.e., wlp =0, if and only if L C p~(c) for some ¢ € Z(¥*).

For the group action of K induced by the isotropy representatlon of
G/K, the moment map formula (2) becomes

® w2) = (12 VLT ~ 2|2 X, Y] ek = e

for each Z = X +/—1Y € Q" C p© =2 C**! with X,Y € p = R,
Now we consider only the case where the inverse image p=!(0) of

0 € €. In the same way as [2], the orbit space of K-action on p1(0) can

be explicitly parametrized by a complex coordinate 7 = t++/—1¢, € C.

4. MAIN RESULTS

In [5] we studied in detail and classified cohomogeneity one special
Lagrangian submanifolds in 7*S™ under the group action of SO(p) x
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SO(n+1-p) (1 < p<n). In these cases, we give explicit descriptions
of the special Lagrangian submanifolds in terms of ordinary differen-
tial equations and determine the diffeomorphism type of the principal
orbits. These special Lagrangian submanifolds are generically smooth,
but in some degenerate cases they are singular and we explicitly de-
scribe the form of the singularities. We observe the asymptotic behav-
ior of the ends and singularities of special Lagrangian submanifolds in
T*S™. |

In this section, by generalizing the arguments of [5], we provide a
construction of cohomogeneity one special Lagrangian submanifolds in
T*S™ under the group action induced by the isotropy representation of
a Riemannian symmetric space G/K of rank 2.

4.1. Case g = 1.
4.1.1. (8T x SO(n+1),80(n)).

Theorem 4.1. Let 7 be a regular curve in the complex plane C. Define
a curve o in ut(0) NO(X) by

o(s) = (cosT(s),sin7(s),0,...,0).

Then the K-orbit L = K - o through o is a Lagrangian submanifold in
Q™. Moreover, the smooth part of L is a special Lagrangian submanifold
of phase 6 if and only if T satisfies

(4) Im (eﬂ?r'(s)(sin T(s))ﬁ—l) ~0.
4.2. Case g = 2.
4.2.1. (SO(p+1) x SO(n+1—p),SO(p) x SO(n+ 1 — p)).

Theorem 4.2. Let T be a regular curve in the complex plane C. Define
a curve o in pH(0)N®(X) by

o(s) = (cos1(s),0,...,0,sin7(s),0,...,0).

Then the K-orbit L = K - o through o is a Lagrangian submanifold in
Q™. Moreover, the smooth part of L is a special Lagrangian submanifold
of phase 6 if and only if T satisfies :

(5) Im (e‘/__wT’(s)(cos 7(s))?~!(sin T(S))q—l) = 0.

4.3. Case g = 3.



4.3.1. (G,K) = (SU(3),50(3)). We consider the case of (G, K) =
(SU(3),S0(3)). We denote by g and ¢ the Lie algebras of G and K
respectively. The canonical decomposition of g is given by g = ¢ & p,
where ‘

t=s50(3) and p={V-1X e M3(R)|'X =X, TrX =0}.

Then the isotropy representation of K is defined by Ad,(k)X = kX'k
for k € SO(3) and X € p. We define an inner product on p by
(X,Y) = —Te(XY) for X,Y € p. Let

a1
a1+ a2+ as = 0,
I ) { .
a4 { ( %2 a1, ay,03 € R }
as
Then a is a maximal abelian subspace of p. The group action of K =

SO(3) is naturally induced on the complex quadric Q* in p© = {Z €
My(C) |7 = 2, TvZ = 0} |

Theorem 4.3. Let T be a regqular curve in the complex plane C. Define
a curve o in u~(0) N ®(T) by

o(s) =

. 2cosT(s)
78 ( — cosT(s) + v/3sin7(s)

Then the K-orbit L = K - o through a curve o is a cohomogeneity
one Lagrangian submanifold under the group action of K in Q*.. Con-
versely, such a cohomogeneity one Lagrangian submanifold in Q* is
obtained in this way. Moreover, L is a special Lagrangian submanifold
of phase 6 if and only if T satisfies |

6)  Im (e\/__wv"(s)(3cosz 7(s) — sin 7(s)) sinr(s)) —0.

43.2. (G,K) = (SU(3) x SU(3),SU(3)). We consider the case of

(G,K) = (SU(3) x SU(3),SU(3)). The canonical decomposition of,

g is given by g = ¢ & p, where
t={(X,X) | X €5u(3)}

and
p={(X,—X) | X €s5u(3)} = su(3).

) €a®.
—cosT(s) —+/3sinT(s)/
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Since p is linearly isomorphic to su(3), we identify them. Then the
linearly isotropy representation of K is defined by Ad,(k)X = kX'
for k € SU(3) and X € p. We define an inner product on p by
(X,Y) = —Tr(XY) for X,Y € p =su(3). Let

aq v
a1+ az +asg = 0
T SV | S
¢ { ( o a) ay,ag,a3 €R }
3

Then a is a maximal abelian subspace of p. The group action of K =
SU(3) is naturally induced on Q7 in p© = s1(3, C).

Theorem 4.4. Let T be a regqular curve in the complex plane C. Define
a curve o in p~H(0) N O(X) by

o(s) =

] 2 cosT(s)
— ( —cos7(s) + v/3sinT(s) ) €a®.
V6 | —cos7(s) — v/3sin7(s)

Then the K-orbit L = K - o through a curve o is a cohomogeneity
one Lagrangian submanifold under the group action of K in Q7. Con-
versely, such a cohomogeneity one Lagrangian submanifold in Q7 is
obtained in this way. Moreover, L is a special Lagrangian submanifold
of phase 0 if and only if T satisfies

(7) Im (e‘/:m‘r’(s)(3 cos? 7(s) — sin® 7(s))*(sin 7'(3))2) = 0.

4.3.3. (G,K) = (SU(6),Sp(3)). We consider the case of (G,K) =
(SU(6), Sp(3)). The canonical decomposition of g is given by g = t®p,
where ‘

t = su(6)
and
P= {( é _XX ) | X € su(n),Y € o(n,(C)},
Then
pC = { (“21 “22) ‘ Vi1, Vag € sl(n, C), Vig, V1 € o(n,(C)},

We define an inner product on p by (X,Y) = —Tr(XY) for X,Y € p.
Then the isotropy representation of K is defined by Ad,(k)X = kX'k



for k € Sp(3) and X € p. Let

ay ’
B —(H O B a1+ a4+ ag = 0,
a—{ 1(0 H)‘H( @2 )7 (Ll,(,l,g,ageR }
: as }
Then a is a maximal abelian subspace of p. The group action of K =
Sp(3) is naturally induced on Q' in p®.

Theorem 4.5. Let 1 be a regular curve in the complex plane C. Define

a curve o in p(0) NB(X) by o(s) = /1 (g [2) € a®, where

] (2 cos 7(s) )
H=— —cosT(s) +V/3sinT(s) :
V6 o8 (s (e
—cos7(s) — v/3sin7(s)
Then the K-orbit L = K - ¢ through a curve o is a cohomogeneity
one Lagrangian submanifold under the group action of K in Q. Con-
versely, such a cohomogeneity one Lagrangian submanifold in Q% is
obtained in this way. Moreover, L is a special Lagrangian submanifold
of phase 0 if and only if T satisfies

®) Im@fﬂﬂ@@mﬁﬂ@—aﬁﬂgwmn@m):o
4.4. Case g = 4.

44.1. (G,K) = (SO(m + 2),50(2) x SO(m)). We consider the case
of (G, K) = (80(m + 2),50(2) x SO(m)). We denote by g and ¢ the
Lie algebras of G and K respectively. The canonical decomposition of
g is given by g = £ & p, where

, E:{.(g g) , Aeo(2),B€o(m)} |

p:{<j} g)

Since p is linearly isomorphic to M, .,(R), we identify them. We define
an inner product by (X,Y) = Tr(X'Y) for X,Y € M ,(R). Then
the isotropy representation of K is defined by Ad,(k)X = k1 Xk; ! for

k= (kl O> € SO(2) x SO(m + 1) and X € p. We take a maximal

and
X € Mg,m(R)} :

O kg
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abelian subspace of p as

B O H _f{fa 0 0 - 0

_{(JH(J H_(O @()”.0>emmm&.
The group action of K = SO(2) x SO(m) is naturally induced on
Q™! in p© = M, ,(C).

Theorem 4.6. Let T be a regular curve in the complex plane C. Define

a curve o in p~H(0) N &) by o(s) = (—?H g) € a®, where
7 (cos 7(s) 0 0 --- 0
B 0 sint(s) 0 --- 0/)°

Then the K-orbit L = K - o through o is a cohomogeneity one La-
grangian submanifold under the group action of K in @Q*™ 1. Con-
versely, such a cohomogeneity one Lagrangian submanifold in Q*™ ! is
obtained in this way. Moreover, L is a special Lagrangian submanifold
of phase 0 if and only if T satisfies

(9) Im (e‘/‘—w '(8) cos 27 (s)(sin 27(s))™ 2) =0.

44.2. (G,K)=(SU(m+2),S(U(2)xU(m))). We consider the case of
(G,K) =(SU(m+2),S(U(2) x U(m))). The canonical decomposition
of g is given by g = ¢t ® p, where :

{6 9)] s2m)
-{(x

OV
£ {(3 )| rwemac)

We define an inner product by (X,Y) = —Tr(XY) for X,Y € p. Then
the isotropy representation of K is defined by ‘Ad,(k)X = k; X%k, for

k = (g kO) € S(U(2) x U(m)) and X € p. We take a maximal
2 .

abelian subspace of p as

a:{<ﬁ; g)

and .
X
Then

fap 0 0 - 0
H“(o ag 0 --- o)eMz’m(R)}‘
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The group action of K = S(U(2) x U(m)) is naturally induced on
Q4mc1 in pC.

Theorem 4.7. Let T be a regular curve in the complex plane C. Define

a curve o in p~H(0) N ®(X) by o(s) = (_tOH g) € a®, where
7 [ cos 7(s) 0 0 --- 0
B 0 sint(s) 0 --- 0/°

Then the K-orbit L = K - o through a curve o is a cohomogeneity
one Lagrangian submanifold under the group action of K in Q*™ 1.

Moreover, L is a special Lagrangian submanifold of phase 6 if and only

if T satisfies

-~ (10) Im (e‘/_—wT’(s)(cos 27(s))*(sin 27(3))2’”;3) = 0.

4.4.3. (G,K) = (Sp(m + 2), Sp(2) x Sp(m)). We consider the case of
(G,K) = (Sp(m + 2),Sp(2) x Sp(m)). The canonical decomposition
of g is given by g = £ @ p, where

An O B O
O Ay O By

-B; O 4, O
O —Byxn O Ay

A1 € W(2), Ay € u(m),
By € My(C),*By; = By,
B22 — Mm(C)) tBQQ - B22

and
O_ X12 O Yio
B Xy, O -y, O
P= O —Y5 O X
~tY o O —tXy9 O

Then
O ‘/12 O ‘/14
Y O tV '
=1l o0 _w. o VI% iz, Vi Wiz, Wie € My (C)

We define an inner product by (X,Y) = —Tr(XY) for X, Y € p. Then
the isotropy representation of K is defined by Ad,y (k)X = ky Xtk for
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k= (kl O) € Sp(2) x Sp(m) and X € p. Then

O k)
O H O O |
J|-r o o o H:(‘g oo 8)
- O O O H » QZGR
O O —-tH O b %2

is a maximal abelian subspace of p. The group action of K = Sp(2) x
Sp(rn) is naturally induced on Q%™ in pT.

Theorem 4.8. Let 7 be a regular curve in the complex plane C. Define
a curve o in pt(0)NO(X) by
O

| .
QOEO
SO0
QOO

—tH

where

"o cos 7(s) 0 0O --- 0
- 0 sint(s) 0 --- 0/°

Then the K-orbit L = K - o through a curve o is a cohomogeneity one
Lagrangian submanifold under the group action of K in @Q*™!. Con-
versely, such a cohomogeneity one Lagrangian submanifold in Q¥ ! is
obtained in this way. Moreover, L is a special Lagrangian submanifold
of phase 0 if and only if T satisfies

(11) Im (emof'(s)(cos 27(s))*(sin 27(3))4m_5) = 0.

4.4.4. (G,K) = (SO(5) x SO(5), SO(5)). We consider the case of
(G, K) =(S0(5) x SO(5), SO(5)). The canonical decomposition of g
is given by g = ¢ ® p, where

t={(X,X) | X €0(5)} = 0(5)
and o
p={(X,-X) | X € 0(5)}. |

Then p€ = o(5,C). We use the inner product by (X,Y) = —1Tr(XY)
for X, Y € p. Then the isotropy representation of K is defined by
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Ady (k)X = kXk~" for k € SO(5) and X € p. Let

( 0 | )
—Q1 0

a={ (H—~H)| H= 0 a ,a1, a3 € R
—Qa9 0

~

0 )

Then a is a rﬁaximal abelian subalgebra in p. The group action of
K = S0(5) is naturally induced on @ in pC.

Theorem 4.9. Let 7 be a regular curve in the complez plane C. Define
a curve o in p=t(0) N®(X) by o(s) = (H,—H) € a®, where

0 cos 7($)
—cosT(s) 0
H = ‘ 0 sin7(s)
—sin 7(s) 0
| 0

Then the K-orbit L = K - o through a curve o is a cohomogeneity
one Lagrangian submanifold under the group action of K in Q°. Con-
versely, such a cohomogeneity one Lagrangian submanifold in Q° is
obtained in the way. Moreover, L is a special Lagrangian submanifold
of phase 8 if and only if there exists a constant ¢ € R so that T satisfies

(12) Im /7T%7/(5) cos 27(s))*(sin 27(s))2) = 0,

4.4.5. (G,K) = (50(10),U(5)). We consider the case of (G,K) =
(SO(10),U(5)). The canonical decomposition of g is given by g = t®p,

where
B A B EA_  atp ~
{?ﬁ{(_B A) A= A,B—B}_u(5)
and
X Y
o {(5 %) | xres)
Then

p‘c:{G; _”‘//) 60(10,(C)l V,Weo(5,<(:)} |

We define an inner product by (X,Y) = —%Tr(XY) for X,Y € p.
Then the isotropy representation of K is defined by Ad,(k)X = kX'k
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for k € U(5) and X € p. Then

( 0 a 3
0

H O
a = < (() -—f{) ’ H= 0 ag ,a1, a5 €R
—Qa9 0

-~

0

\ /
is a maximal abelian subspace of p. The group action of K = U(5) is
naturally induced on Q'° in p€.

Theorem 4.10. Let T be a regular curve in the complex plane C. De-

fine a curve o in u=1(0) N ®(X) by o(s) = (g _OH) € a®, where
0 cos 7(8)
—cosT(s) 0
H= 0 sin7(s)
: —sin7(s) 0
0

Then the K-orbit L = K - o through a curve o is a cohomogeneity
one Lagrangian submanifold under the group action of K in Q'°. Con-
versely, such a cohomogeneity one Lagrangian submanifold in Q*° is
obtained in this way. Moreover, L is a special Lagrangian submanifold

of phase 0 if and only if T satisfies |
(13) Im (e‘/jer'(s)(cos 27(s))*(sin 27'(3)_)5) =0.

In the forthcoming paper we will study the remaining cases when
G/K are of exceptional type.
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