Notes on liftable vector fields

Yusuke Mizota＊

Abstract

We introduce the author＇s research about an estimate for the highest degrees of liftable vector fields and the module of liftable vector fields for non－singular mono－germs and function mono－germs of one variable．

1 Introduction

In this paper，we introduce the author＇s research about liftable vector fields． Let \mathbb{K} be \mathbb{R} or \mathbb{C} ．In this paper，suppose that all mappings are smooth（that is， of class C^{∞} if $\mathbb{K}=\mathbb{R}$ or holomorphic if $\mathbb{K}=\mathbb{C}$ ）．

The notion of liftable vector fields was introduced by Arnol＇d［1］for studying bifurcations of wave front singularities．As results and applications of liftable vector fields，Bruce and West［2］obtained diffeomorphisms preserving a crosscap to classify functions on it，and Houston and Littlestone［4］obtained generators for the module of vector fields liftable over the generalized cross cap to find \mathcal{A}_{e}－codimension 1 maps from \mathbb{C}^{n} to \mathbb{C}^{n+1} ．Houston and Atique［3］classified $v \mathcal{K}$－codimension 2 maps on the generalized crosscap to apply to a classification of \mathcal{A}_{e}－codimension 2 maps from \mathbb{C}^{n} to \mathbb{C}^{n+1} ．Nishimura［8］characterized the minimal number of generators for the module of vector fields liftable over a finitely determined multigerm of corank at most one satisfying a special condi－ tion when $n \leq p$ ．

In previous work［6］，the author showed that we can find polynomial vector fields liftable over f if f is a polynomial multigerm and gave an estimate for the highest degrees of liftable vector fields．The highest degree of polynomial vector field ξ means maximum of that of component functions of ξ ．Let $[x]$ be the greatest integer not exceeding x ．Lift (f) denotes the module of vector fields liftable over f ．We proved the following theorem．

Theorem $1.1([6])$ ．Let $f:\left(\mathbb{K}^{n}, S\right) \rightarrow\left(\mathbb{K}^{p}, 0\right)(n<p)$ be a polynomial multi－ germ．Then，there exists a non－zero polynomial vector field in $\operatorname{Lift}(f)$ such that

[^0]the highest degree is at most
$$
N=[\sqrt[p-n]{(\alpha+1)(p-1)!}]+1
$$
where
\[

$$
\begin{gathered}
\alpha=r\left(\frac{p \cdot 2^{n}-n}{n!}\right)(D+n-1)^{n}, \quad r=|S| \\
D=\max \left\{D_{i} \mid i \in\{1,2, \ldots, r\}\right\}, \quad D_{i}=\max \left\{\operatorname{deg}\left(X_{j} \circ f_{i}\right) \mid j \in\{1,2, \ldots, p\}\right\}
\end{gathered}
$$
\]

The proof of Theorem 1.1 also gives a method to find a non-zero element of $\operatorname{Lift}(f)$. However, we can usually take values of N that are much lower than those calculated in Theorem 1.1. Therefore, we needed to improve this estimate. In [7], a better estimate for the highest degrees of liftable vector fields was discoverd when $n=1$. It is the following result. Let $\lceil x\rceil$ be the smallest integer greater than or equal to x.

Theorem $1.2([7])$. Let $f:(\mathbb{K}, S) \rightarrow\left(\mathbb{K}^{p}, 0\right)(p \geq 2)$ be a polynomial multigerm which contains no branch of zero map. Then there exist a non-zero polynomial vector field of $\operatorname{Lift}(f)$ such that the highest degree is at most

$$
N=\max \{\lceil\sqrt[p-1]{(A p-A)(p-1)!}-\sqrt[p]{p!}\rceil, 1\}
$$

and the highest degree of a corresponding lowerable vector field for f_{i} is at most

$$
D_{i} N-D_{i}+1
$$

where

$$
A=\sum_{i=1}^{r} D_{i}, \quad D_{i}=\max \left\{\operatorname{deg}\left(X_{j} \circ f_{i}\right) \mid j \in\{1, \ldots, p\}\right\}
$$

This paper is organized as follows. In Section 2, we explain various definitions, basic facts and examples implying difference of estimates between Theorem 1.1 and Theorem 1.2. In Section 3 the sketch of proof of Theorem 1.2 is described. In Section 4 and 5, topics about the module of liftable vector fields are given. The number of generators for the module of vector fields liftable over a non-singular mono-germ is identified in Section 4. Theorem 1.1 and Theorem 1.2 claims that there exist non-zero polynomial vector fields liftable over f when f is a polynomial. It is natural to ask whether there exist non-zero polynomial liftable vector fields when f is not a polynomial. In Section 5 we investigate the module of vector fields liftable over a function germ of one variable and also consider this problem.

2 Preliminary

Let S be a subset of \mathbb{K}^{n}. A map germ $f:\left(\mathbb{K}^{n}, S\right) \rightarrow\left(\mathbb{K}^{p}, 0\right)$ is called a multigerm. If S is a singleton, f is called a mono-germ. Let C_{S} (resp., C_{0}) be the set of
function germs $\left(\mathbb{K}^{n}, S\right) \rightarrow \mathbb{K}$ (resp., $\left(\mathbb{K}^{p}, 0\right) \rightarrow \mathbb{K}$), and let m_{S} (resp., m_{0}) be the subset of C_{S} (resp., C_{0}) consisting of function germs $\left(\mathbb{K}^{n}, S\right) \rightarrow(\mathbb{K}, 0)$ (resp., $\left.\left(\mathbb{K}^{p}, 0\right) \rightarrow(\mathbb{K}, 0)\right)$. The sets C_{S} and C_{0} have natural \mathbb{K}-algebra structures. A multigerm $f:\left(\mathbb{K}^{n}, S\right) \rightarrow\left(\mathbb{K}^{p}, 0\right)$ can be defined by $\left(f_{1}, f_{2} \ldots, f_{r}\right)$, where $f_{i}:\left(\mathbb{K}^{n}, 0\right) \rightarrow\left(\mathbb{K}^{p}, 0\right)$. Each f_{i} is called a branch. In this paper, for a multigerm $f:\left(\mathbb{K}^{n}, S\right) \rightarrow\left(\mathbb{K}^{p}, 0\right)$ defined by $\left(f_{1}, f_{2} \ldots, f_{r}\right)$ with $f_{i}:\left(\mathbb{K}^{n}, 0\right) \rightarrow\left(\mathbb{K}^{p}, 0\right)$, we consider S to be a set consisting of r distinct points.

For a map germ $f:\left(\mathbb{K}^{n}, S\right) \rightarrow \mathbb{K}^{p}$, let $\theta_{S}(f)$ be the set of germs of vector fields along f. The set $\theta_{S}(f)$ has a natural C_{S}-module structure and is identified with the direct sum of p copies of C_{S}. Put $\theta_{S}(n)=\theta_{S}\left(\mathrm{id}_{\left(\mathbb{K}^{n}, S\right)}\right)$ and $\theta_{0}(p)=$ $\theta_{\{0\}}\left(\operatorname{id}_{\left(\mathbb{K}^{p}, 0\right)}\right)$, where $\mathrm{id}_{\left(\mathbb{K}^{n}, S\right)}\left(\operatorname{resp} ., \mathrm{id}_{\left(\mathbb{K}^{p}, 0\right)}\right)$ is the germ of the identity mapping of $\left(\mathbb{K}^{n}, S\right)$ (resp., $\left(\mathbb{K}^{p}, 0\right)$). For a multigerm $f:\left(\mathbb{K}^{n}, S\right) \rightarrow\left(\mathbb{K}^{p}, 0\right)$, following Mather [5], we define $t f$ and ωf as

$$
\begin{array}{ll}
t f: \theta_{S}(n) \rightarrow \theta_{S}(f), & t f(\eta)=d f \circ \eta \\
\omega f: \theta_{0}(p) \rightarrow \theta_{S}(f), & \omega f(\xi)=\xi \circ f
\end{array}
$$

where $d f$ is the differential of f. Following Wall [9], we put $T \mathcal{R}_{e}(f)=t f\left(\theta_{S}(n)\right)$ and $T \mathcal{L}_{e}(f)=\omega f\left(\theta_{0}(p)\right)$.

For a multigerm $f:\left(\mathbb{K}^{n}, S\right) \rightarrow\left(\mathbb{K}^{p}, 0\right)$, a vector field $\xi \in \theta_{0}(p)$ is said to be liftable over f if $\xi \circ f \in I^{\prime} \mathcal{R}_{e}(f) \cap^{\prime} T^{\prime} \mathcal{L}_{e}(f)$. The set of vector fields liftable over f is denoted by $\operatorname{Lift}(f)$. Note that $\operatorname{Lift}(f)$ has a natural C_{0}-module structure. Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ (resp., $\left(X_{1}, \ldots, X_{p}\right)$) be the standard local coordinates of \mathbb{K}^{n} (resp., \mathbb{K}^{p}) at the origin. Sometimes $\left(x_{1}, x_{2}\right)$ (resp., $\left(X_{1}, X_{2}\right)$) is denoted by (x, y) (resp., (X, Y)) and (x_{1}, x_{2}, x_{3}) (resp., $\left(X_{1}, X_{2}, X_{3}\right)$) is denoted by (x, y, z) (resp., (X, Y, Z)). We see easily that

$$
\xi=\left(\psi_{1}\left(X_{1}, X_{2}, \ldots, X_{p}\right), \cdots, \psi_{p}\left(X_{1}, X_{2}, \ldots, X_{p}\right)\right) \in \operatorname{Lift}(f)
$$

where $\psi_{j}:\left(\mathbb{K}^{p}, 0\right) \rightarrow \mathbb{K}(j=1,2, \ldots, p)$, if and only if for every $i \in\{1, \ldots, r\}$ there exist a vector field

$$
\eta_{i}=\left(\phi_{i, 1}\left(x_{1}, x_{2}, \ldots, x_{n}\right), \ldots, \phi_{i, n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)
$$

where $\phi_{i, k}:\left(\mathbb{K}^{n}, 0\right) \rightarrow \mathbb{K}(k=1,2, \ldots, n)$, such that $\xi \circ f_{i}=d f_{i} \circ \eta_{i}$ i. e.

$$
\begin{aligned}
& \left(\begin{array}{c}
\psi_{1}\left(X_{1}, X_{2}, \ldots, X_{p}\right) \\
\vdots \\
\psi_{p}\left(X_{1}, X_{2}, \ldots, X_{p}\right)
\end{array}\right) \circ f_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
= & \left(\begin{array}{ccc}
\frac{\partial\left(X_{1} \circ f_{i}\right)}{\partial x_{1}} & \ldots & \frac{\partial\left(X_{1} \circ f_{i}\right)}{\partial x_{n}} \\
\vdots & & \vdots \\
\frac{\partial\left(X_{p} \circ f_{i}\right)}{\partial x_{1}} & \ldots & \frac{\partial\left(X_{p} \circ f_{i}\right)}{\partial x_{n}}
\end{array}\right)\left(\begin{array}{c}
\phi_{i, 1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
\vdots \\
\phi_{i, n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{array}\right) .
\end{aligned}
$$

We call this η_{i} a lowerable vector field for f_{i} corresponding to ξ.

Example 2.1. Let $f:(\mathbb{K}, 0) \rightarrow\left(\mathbb{K}^{2}, 0\right)$ be given by $f(x)=\left(x^{2}, x^{3}\right)$. Then, it can be seen easily that the following vector fields are liftable over f :

$$
\binom{2 X}{3 Y},\binom{2 Y}{3 X^{2}}
$$

The forms of vector fields liftable over a polynomial multigerm are complicated generally.

Example 2.2. Let $f:(\mathbb{K}, S) \rightarrow\left(\mathbb{K}^{2}, 0\right)$ be given by $f_{1}(x)=\left(x^{2}, x^{3}\right), f_{2}(x)=$ $\left(x^{3}, x^{2}\right)$. Then, it is known [8] that the following vector fields are liftable over f :

$$
\left(-6 X^{2} Y^{2}+6 X Y\right) \frac{\partial}{\partial X}+\left(-9 X Y^{3}+5 X^{3}+4 Y^{2}\right) \frac{\partial}{\partial Y}
$$

In fact,

$$
\begin{aligned}
& \binom{-6 X^{2} Y^{2}+6 X Y}{-9 X Y^{3}+5 X^{3}+4 Y^{2}} \circ f_{1}=\binom{-6 x^{10}+6 x^{5}}{-9 x^{11}+9 x^{6}}=\binom{2 x}{3 x^{2}}\left(-3 x^{9}+3 x^{4}\right) \\
& \binom{-6 X^{2} Y^{2}+6 X Y}{-9 X Y^{3}+5 X^{3}+4 Y^{2}} \circ f_{2}=\binom{-6 x^{10}+6 x^{5}}{-4 x^{9}+4 x^{4}}=\binom{3 x^{2}}{2 x}\left(-2 x^{8}+2 x^{3}\right)
\end{aligned}
$$

holds.
The following property is very fundamental and important.
Proposition 2.3. We assume $g=t \circ f \circ s$, which t and s are diffeomorphisms (that is, f is \mathcal{A}-equivalent to g). Then,

$$
\xi \in \operatorname{Lift}(f) \Rightarrow d t \circ \xi \circ t^{-1} \in \operatorname{Lift}(g)
$$

This means that only diffeomorphism of the target of f affects liftable vector fields of g. In addition, we will see that only that of the sourse affects lowerable vector fields in the proof.

Proof. There exists $\eta \in \theta_{S}(n)$ such that

$$
\xi \circ f=d f \circ \eta .
$$

Then, the following holds:

$$
\begin{aligned}
\left(d t \circ \xi \circ t^{-1}\right) \circ g & =d t \circ \xi \circ t^{-1} \circ(t \circ f \circ s) \\
& =d t \circ(\xi \circ f) \circ s \\
& =d t \circ(d f \circ \eta) \circ s \\
& =d(t \circ f) \circ \eta \circ s \\
& =d\left(g \circ s^{-1}\right) \circ \eta \circ s \\
& =d g \circ\left(d s^{-1} \circ \eta \circ s\right)
\end{aligned}
$$

Thus, $d t \circ \xi \circ t^{-1} \in \operatorname{Lift}(g)$.

We compare estimates of Theorem 1.1 and Theorem 1.2 using examples.
Example 2.4. When $n=1$ and $p=2$, by Theorem 1.1

$$
N=3 r D+2
$$

For $f(x)=\left(x^{2}, x^{3}\right)$, since $r=1$ and $D=3$, we get $N=11$. On the other hand, when $p=2$ by Theorem 1.2

$$
N=\lceil A-\sqrt{2}\rceil
$$

Since $A=3$, we get $N=2$. In fact, the highest degree of the following liftable vector fields are 1 and 2 respectively;

$$
\binom{2 X}{3 Y},\binom{2 Y}{3 X^{2}}
$$

Example 2.5. For $f:(\mathbb{K}, S) \rightarrow\left(\mathbb{K}^{2}, 0\right)$ given by $f_{1}(x)=\left(x^{2}, x^{3}\right), f_{2}(x)=$ $\left(-x^{3}, x^{2}\right), f_{3}(x)=\left(x^{2}-x^{3}, x^{2}+x^{3}\right)$, since $r=3$ and $D=3$, by Theorem 1.1 $N=29$. On the other hand, by Theorem 1.2 since $A=9$, we get $N=8$. In fact, the following vector field are liftable over f and the highest degree is 6 ;

$$
\begin{aligned}
& \left(-15 X^{6}-45 X^{5} Y-45 X^{4} Y^{2}+19 X^{3} Y^{3}+4 X^{2} Y^{4}\right. \\
& -4 X^{5}-64 X^{4} Y+45 X^{3} Y^{2}+41 X^{2} Y^{3}+57 X Y^{4} \\
& -7 Y^{5}+4 X^{4}-12 X^{3} Y-8 X^{2} Y^{2}+52 X Y^{3} \\
& \left.-14 Y^{4}+8 X^{3}-16 X^{2} Y\right) \frac{\partial}{\partial X} \\
& +\left(-10 X^{5} Y-30 X^{4} Y^{2}-38 X^{3} Y^{3}+18 X^{2} Y^{4}+6 X Y^{5}\right. \\
& +8 X^{5}-8 X^{4} Y-46 X^{3} Y^{2}+34 X^{2} Y^{3}+24 X Y^{4} \\
& +56 Y^{5}-4 X^{4}+6 X^{3} Y-26 X^{2} Y^{2}-10 X Y^{3} \\
& \left.+28 Y^{4}+12 X^{2} Y-20 X Y^{2}\right) \frac{\partial}{\partial Y} .
\end{aligned}
$$

Example 2.6. When $n=1$ and $p=3$, by Theorem 1.1

$$
N=\lceil\sqrt{2(5 r D+1)}\rceil
$$

For $f:(\mathbb{K}, S) \rightarrow\left(\mathbb{K}^{3}, 0\right)$ given by $f_{1}(x)=\left(x^{3}, x^{4}, x^{5}\right), f_{2}(x)=\left(x^{4}, x^{5}, x^{3}\right), f_{3}(x)=$ (x^{5}, x^{3}, x^{4}), we get $r=3$ and $D=5$. Therefore, $N=13$. On the other hand, when $p=3$ by Theorem 1.2

$$
N=\lceil 2 \sqrt{A}-\sqrt[3]{6}\rceil
$$

Since $A=15$, we get $N=6$. In fact, the following vector field are liftable over f and the highest degree is 5 ;

$$
\begin{aligned}
& \left(12 X^{3}+18 X^{4}-12 X^{2} Y+12 X^{3} Y+18 X^{4} Y+6 X^{2} Y^{2}-\right. \\
& 6 X^{3} Y^{2}+18 X Y^{3}-18 X^{2} Y^{3}+6 Y^{4}+18 X^{3} Z-6 X Y Z- \\
& 12 X^{2} Y Z-6 X^{3} Y Z-18 X Y^{2} Z-18 X^{2} Y^{2} Z+12 Y^{3} Z+ \\
& 6 X Y^{3} Z+18 Y^{4} Z-6 X^{2} Z^{2}-18 X^{3} Z^{2}-18 X Y Z^{2}- \\
& 6 X^{2} Y Z^{2}-18 Y^{2} Z^{2}+12 X Z^{3}+6 X^{2} Z^{3}+6 Y Z^{3}- \\
& \left.12 Y^{2} Z^{3}-6 Z^{4}+12 X Z^{4}\right) \frac{\partial}{\partial X}+ \\
& \left(-8 X^{4}+16 X^{2} Y+16 X^{3} Y+24 X^{4} Y-8 X Y^{2}+8 X^{2} Y^{2}+\right. \\
& 16 X^{3} Y^{2}+16 X Y^{3}-8 Y^{4}-8 X^{2} Z+8 X Y Z+16 X^{2} Y Z+8 X^{3} Y Z- \\
& 8 X Y^{2} Z-24 X^{2} Y^{2} Z-16 Y^{3} Z-16 X Y^{3} Z-24 X^{3} Z^{2}+ \\
& 8 Y Z^{2}-16 X^{2} Y Z^{2}-8 Y^{2} Z^{2}-16 X Z^{3}-8 X^{2} Z^{3}+8 Y Z^{3}+ \\
& \left.32 X Y Z^{3}-8 Z^{4}\right) \frac{\partial}{\partial Y}+ \\
& \left(10 X^{4} Y+10 X Y^{2}+10 X^{2} Y^{2}+30 X^{3} Y^{2}+10 X Y^{3}+\right. \\
& 10 X^{2} Y^{3}+20 Y^{4}+10 X^{2} Z+20 X^{3} Z-20 X Y Z+10 X^{2} Y Z+ \\
& 10 X^{3} Y Z+10 X Y^{2} Z-30 X Y^{3} Z-10 Y^{4} Z-10 X^{3} Z^{2}- \\
& 10 Y Z^{2}-20 X Y Z^{2}-40 X^{2} Y Z^{2}-20 Y^{2} Z^{2}-30 X Y^{2} Z^{2}- \\
& \left.10 Y^{3} Z^{2}-10 X^{2} Z^{3}-10 Y Z^{3}+30 Y^{2} Z^{3}+20 Z^{4}+10 X Z^{4}\right) \frac{\partial}{\partial Z} .
\end{aligned}
$$

3 The sketch of proof of Theorem 1.2

We want non-negative integers N and $N_{i}^{\prime}(i=1,2, \ldots, r)$ such that we can find a coefficient vector

$$
\left(a_{1}^{(0,0, \ldots, 0)}, a_{1}^{(1,0, \ldots, 0)}, \ldots, a_{p}^{(0,0, \ldots, N)}, a_{1,0}, a_{1,1}, \ldots, a_{r, N_{r}^{\prime}}\right) \neq 0
$$

such that for every $i \in\{1,2, \ldots, r\}$, the following polynomial equation with respect to the variable x_{1} holds:

$$
\begin{aligned}
& \left(\begin{array}{c}
\sum_{d=0}^{N}\left(\sum_{i_{1}+\cdots+i_{p}=d} a_{1}^{\left(i_{1}, i_{2}, \ldots, i_{p}\right)} \prod_{h=1}^{p} X_{h}^{i_{h}}\right) \\
\vdots \\
\sum_{d=0}^{N}\left(\sum_{i_{1}+\cdots+i_{p}=d} a_{p}^{\left(i_{1}, i_{2}, \ldots, i_{p}\right)} \prod_{h=1}^{p} X_{h}^{i_{h}}\right)
\end{array}\right) \circ f_{i} \\
& =\left(\begin{array}{c}
\frac{\partial\left(X_{1} \circ f_{i}\right)}{\partial x_{1}} \\
\vdots \\
\frac{\partial\left(X_{p} \circ f_{i}\right)}{\partial x_{1}}
\end{array}\right)\left(a_{i, 0}+a_{i, 1} x_{1}+\cdots+a_{i, N_{i}^{\prime}} x_{1}^{N_{i}^{\prime}}\right),
\end{aligned}
$$

where $i_{1}, i_{2}, \ldots, i_{p}$ are non-negative integers. Note that for every $i \in\{1,2, \ldots, r\}$, the highest degree of the left-hand side is at most $N \cdot D_{i}$ and that of the righthand side is at most $N_{i}^{\prime}+D_{i}-1$. By comparing the coefficients of the terms on the both sides, a system of linear equations with respect to

$$
a_{1}^{(0,0, \ldots, 0)}, a_{1}^{(1,0, \ldots, 0)}, \ldots, a_{p}^{(0,0, \ldots, N)}, a_{1,0}, a_{1,1}, \ldots, a_{r, N_{r}^{\prime}}
$$

is obtained. Let the number of unknowns of the system of linear equations be denoted by U and the number of equations by E. We assume that $N \geq 1$ to put

$$
N_{i}^{\prime}=N D_{i}-D_{i}+1
$$

The number of combinations of non-negative integers i_{1}, \cdots, i_{p} such that $i_{1}+$ $\cdots+i_{p}=d$ is

$$
\binom{d+p-1}{d}=\frac{(d+p-1)!}{d!(p-1)!}=\frac{(d+p-1) \cdots(d+1)}{(p-1)!}
$$

Thus, we get

$$
U=p \sum_{d=0}^{N} \frac{(d+p-1) \cdots(d+1)}{(p-1)!}+\sum_{i=1}^{r}\left(N D_{i}-D_{i}+2\right)
$$

and

$$
E \leq p \sum_{i=1}^{r}\left(N D_{i}+1\right)
$$

Here, the folloing formula is known.
Proposition 3.1. For a non-negative integer k,

$$
\sum_{d=1}^{n} d(d+1) \cdots(d+k)=\frac{n(n+1) \cdots(n+k+1)}{k+2}
$$

In addition, the following lemma holds.
Lemma 3.2. For $p \in \mathbb{N}_{\geq 2}$ and $x \in \mathbb{R}_{>0}$,

$$
(x+\sqrt[p]{p!})^{p}<(x+1)(x+2) \cdots(x+p)
$$

Put

$$
A=\sum_{i=1}^{r} D_{i}
$$

By Proposition 3.1 and Lemma 3.2, we get

$$
U-E>\frac{1}{(p-1)!}(N+\sqrt[p]{p!})\left\{(N+\sqrt[p]{p!})^{p-1}-A(p-1)(p-1)!\right\}
$$

Thus, if we put

$$
N=\max \{\lceil\sqrt[p-1]{(A p-A)(p-1)!}-\sqrt[p]{p!}\rceil, 1\}
$$

and

$$
N_{i}^{\prime}=N D_{i}-D_{i}+1
$$

then we can obtain $U-E>0$. This completes the proof.

4 Liftable vector fields for non-singular monogerms

A mono-germ $f:\left(\mathbb{K}^{n}, 0\right) \rightarrow\left(\mathbb{K}^{p}, 0\right)$ is singular if $\operatorname{rank} J f(0)<\min \{n, p\}$ holds, where $J f(0)$ is the Jacobian matrix of f at 0 . A mono-germ $f:\left(\mathbb{K}^{n}, 0\right) \rightarrow\left(\mathbb{K}^{p}, 0\right)$ is non-singular if f is not singular.

We identify the number of generators for $\operatorname{Lift}(f)$ for a non-singular monogerm f.

Proposition 4.1. Let $f:\left(\mathbb{K}^{n}, 0\right) \rightarrow\left(\mathbb{K}^{p}, 0\right)$ be non-singular. Then, the number of generators for $\operatorname{Lift}(f)$ is

$$
\left\{\begin{array}{cc}
n+(p-n)(p-n) & (n<p) \\
p & (n \geq p)
\end{array}\right.
$$

Proof. When $n \geq p$ we know that f is \mathcal{A}-equivalent to the following form :

$$
g\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{p}\right)
$$

Then, we can easily check that $\operatorname{Lift}(g)=C_{0}$. Therefore, the number of generators for $\operatorname{Lift}(f)$ is p.

When $n<p$ we know that f is \mathcal{A}-equivalent to the following form :

$$
h\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}, 0, \ldots, 0\right)
$$

Then, we can check that the following vector fields belong to $\operatorname{Lift}(h)$:

$$
\begin{array}{cc}
\frac{\partial}{\partial X_{i}} & (1 \leq i \leq n) \\
X_{n+i} \frac{\partial}{\partial X_{n+j}} & (1 \leq i, j \leq p-n)
\end{array}
$$

Therefore, we know

$$
\left\langle\frac{\partial}{\partial X_{1}}, \ldots, \frac{\partial}{\partial X_{n}}, X_{n+1} \frac{\partial}{\partial X_{n+1}}, X_{n+2} \frac{\partial}{\partial X_{n+1}}, \ldots, X_{p} \frac{\partial}{\partial X_{p}}\right\rangle_{C_{0}}
$$

is contained in $\operatorname{Lift}(h)$.
Conversely, for $\xi=\left(\psi_{1}\left(X_{1}, X_{2}, \ldots, X_{p}\right), \cdots, \psi_{p}\left(X_{1}, X_{2}, \ldots, X_{p}\right)\right) \in \operatorname{Lift}(h)$, since there exist smooth function germs $\phi_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)(i=1,2, \ldots, n)$ such that

$$
\psi_{i}\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0, \ldots, 0\right)=\left\{\begin{array}{cc}
\phi_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & (1 \leq i \leq n) \\
0 & (n+1 \leq i \leq p)
\end{array}\right.
$$

when $n+1 \leq i \leq p$ there exist smooth function germs $\tilde{\psi}_{i}\left(X_{1}, X_{2}, \ldots, X_{p}\right)(i=$ $1,2, \ldots, p-n$) such that

$$
\begin{aligned}
\psi_{i}\left(X_{1}, X_{2}, \ldots, X_{p}\right) & =\psi_{i}\left(X_{1}, X_{2}, \ldots, X_{n}, 0,0, \ldots, 0\right)+\tilde{\psi_{1}} X_{n+1}+\cdots+\psi_{p-n} X_{p} \\
& =\tilde{\psi}_{1} X_{n+1}+\cdots+\psi_{p-n} X_{p}
\end{aligned}
$$

Therefore, $\xi=\left(\psi_{1}\left(X_{1}, X_{2}, \ldots, X_{p}\right), \cdots, \psi_{p}\left(X_{1}, X_{2}, \ldots, X_{p}\right)\right) \in \operatorname{Lift}(h)$ belongs to

$$
\left\langle\frac{\partial}{\partial X_{1}}, \ldots, \frac{\partial}{\partial X_{n}}, X_{n+1} \frac{\partial}{\partial X_{n+1}}, X_{n+2} \frac{\partial}{\partial X_{n+1}}, \ldots, X_{p} \frac{\partial}{\partial X_{p}}\right\rangle_{C_{0}}
$$

Thus, the number of generators for $\operatorname{Lift}(f)$ is $n+(p-n)(p-n)$. This completes the proof.

When f is singular, characterization of the number of generators for $\operatorname{Lift}(f)$ is essentially difficult (see [8]).

5 Liftable vector fields for function mono-germs of one variable

We investigate $\operatorname{Lift}(f)$ for $n=p=1$.
Proposition 5.1. Let a smooth function $f:(\mathbb{K}, 0) \rightarrow(\mathbb{K}, 0)$ be denoted by $f(x)=\tilde{f}(x) x^{n}$, where $\tilde{f}:(\mathbb{K}, 0) \rightarrow \mathbb{K}$ satisfies $\tilde{f}(0) \neq 0$ and n is an integer greater than 1. Then, $\operatorname{Lift}(f)=\langle X\rangle_{C_{0}}$.
Proof. Since $f(x)=\tilde{f}(x) x^{n}$, we can see easily

$$
f^{\prime}(x)=\tilde{f}^{\prime}(x) x^{n}+n \tilde{f}(x) x^{n-1}
$$

At first we show (\subset). Since $f(0)=f^{\prime}(0)=0$, for $\xi \in \operatorname{Lift}(f) \xi(0)=0$ holds. Therefore, there exists a function $\psi(X)$ such that $\xi(X)=\psi(X) X$. This means $\operatorname{Lift}(f) \subset\langle X\rangle_{C_{0}}$.

Next, we show (\supset). It is sufficient to show $X \in \operatorname{Lift}(f)$. In fact,

$$
\tilde{f}(x) x^{n}=\left(\tilde{f}^{\prime}(x) x^{n}+n \tilde{f}(x) x^{n-1}\right)\left(\frac{\tilde{f}(x) x}{\tilde{f}^{\prime}(x) x+n \tilde{f}(x)}\right)
$$

holds. Thus, Lift $(f) \supset\langle X\rangle_{C_{0}}$. This completes the proof.
This implies that there exist some cases that we can take non-zero polynomial vector fields liftable over f even though f is not a polynomial. Proposition 5.1 does not hold generally for a flat function f. For example, if

$$
f(x)=\left\{\begin{array}{cc}
x^{2} e^{-1 / x} & (x>0) \\
0 & (x=0) \\
x^{2} e^{1 / x} & (x<0)
\end{array}\right.
$$

then X is not liftable. We prove this statement. we show that

$$
X \notin \operatorname{Lift}(f)
$$

At first, since

$$
g(x)=\left\{\begin{array}{cc}
e^{-1 / x} & (x>0) \\
0 & (x \leq 0)
\end{array}\right.
$$

is a C^{∞} function, so is $\mathrm{g}(-\mathrm{x})$. Therefore,

$$
h(x)=\left\{\begin{array}{cc}
e^{-1 / x} & (x>0) \\
0 & (x=0) \\
e^{1 / x} & (x<0)
\end{array}\right.
$$

is a C^{∞} function. Thus, $f(x)=x^{2} h(x)$ is a C^{∞} function.
We assume that $X \in \operatorname{Lift}(f)$. Then, a lowerable vector field $\phi(x)$ for a liftable vector field X must be

$$
\phi(x)=\left\{\begin{array}{cc}
\frac{x^{2}}{2 x+1} & (x>0) \\
a & (x=0) \\
\frac{x^{2}}{2 x-1} & (x<0)
\end{array}\right.
$$

$(a \in \mathbb{R})$. However, $\phi(x)$ is not class of C^{∞}. Thus, $X \notin \operatorname{Lift}(f)$.
On the other hand, we can show that X^{2} is liftable. In fact, we can give a lowerable vector field $\phi(x)$ as follows:

$$
\phi(x)=\left\{\begin{array}{cc}
\frac{x^{4} e^{-1 / x}}{2 x+1} & (x>0) \\
0 & (x=0) \\
\frac{x^{4} e^{1 / x}}{2 x-1} & (x<0)
\end{array} .\right.
$$

It can be seen easily that $\phi(x)$ is class of C^{∞}. Thus, $X^{2} \in \operatorname{Lift}(f)$.
The author does not know examples of f such that there exist no polynomial vector fields liftable over f.

References

[1] V. I. Arnol'd, 'Wave front evolution and equivariant Morse lemma', Commun Pure Appl. Math. 29 (1976) 557-582.
[2] J. W. Bruce and J. M. West, 'Function on a crosscap', Math. Proc. Cambridge Philos. Soc. 123 (1998) 19-39.
[3] K. Houston and R. Wik Atique, ' \mathcal{A}-classification of map-germs via ${ }_{V} \mathcal{K}$ equivalence', arXiv:1302. 1104v1 [math. AG], 2013.
[4] K. Houston and D. Littlestone, 'Vector fields liftable over corank 1 stable maps', arXiv:0905. 0556v1 [math. DG], 2009.
[5] J. Mather, 'Stability of C^{∞} mappings, III. Finitely determined map-germs', Publ. Math. Inst. Hautes Etudes Sci. 35 (1969) 127-156.
[6] Y. Mizota, 'Construction of generators for the module of liftable vector fields', to appear RIMS Kokyuroku Bessatsu.
[7] Y. Mizota, 'Improving an estimate for the highest degrees of liftable vector fields', preprint, 2013.
[8] T. Nishimura, 'Vector fields liftable over finitely determined multigerms of corank at most one', arXiv:1112. 1214v1 [math. DG], 2011.
[9] C. T. C. Wall, 'Finite determinacy of smooth map-germs', Bull. London Math. Soc. 13 (1981) 481-539.

[^0]: ＊Research Fellow DC2 of Japan Society for the Promotion of Science The author was supported by JSPS and CAPES under the Japan－Brazil Research Cooperative Program．
 Graduate School of Mathematics，Kyushu University，744，Motooka，Nishi－ku，Fukuoka 819－ 0395, JAPAN．
 e－mail：y－mizota＠math．kyushu－u．ac．jp

