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Abstract. We give a relation of new kind between certain character val-
ues of symmetric groups, which was found in investigating a curious phe-
nomenon in irreducible characters of symmetric groups. We also investigate
a relation between our result and Bemstein’s creation operators for Schur
functions, and consider analogous relations for projective characters of sym-
metric groups through creation operators for Schur $Q$-functions.

概要．対称群の指標についてのとある現象を説明しようという試みから発見
された，指標の間の新しい関係式について説明する．また，その関係式と対称
関数の生成作用素との関連を示し，Schur $Q$-関数の生成作用素を通して我々
の得た関係式での射影指標での類似が得られることをみる．

1 Introduction
Irreducible characters of symmetric groups are an interesting subject in com-
binatorial representation theory. In examining the character tables of sym-
metric groups, we noticed a curious correspondence between the irreducible
character values of $S_{n}$ at transpositions and the degrees of the irreducible
characters of $S_{n-2}$ for $n\leq 7$ , which is exhibited in \S 2.2. As is mentioned
there, this phenomenon is not, at least directly, explained by applying the
Murnaghan-Nakayama formula to remove a 2-cycle. We found a different
formula (see Theorem 2.2) which explains this phenomenon. Our formula,
like Murnaghan-Nakayama formula, “removes a cycle” from an irreducible
character value; namely, given a partition $\lambda$ of $n$ and a partition $\mu$ of $n-m,$
it expresses $\chi_{\lambda}(\mu\cup(m))$ as a linear combination of $\chi_{\kappa}(\mu)(|\kappa|=n-m)$ with
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coefficients $\pm 1$ ; but it only works if $\mu$ has no parts divisible by $m$ . Here
$\chi_{\lambda}(v)$ denotes the value of the irreducible character of $S_{n}$ indexed by $\lambda$ at a
partition of cycle type $v$ . This formula can be further generalized as in Re-
mark at the end of \S 2. We also found that the operators describing the linear
combinations in our formula can be written in a form similar to Bernstein’s
creation operators for Schur functions (see Theorem 5) and, by replacing
these creation operators by those for Schur $Q$-functions, we can obtain an
analogue of our formula for “projective characters” of symmetric groups.

These results form a part of master’s thesis [5] by the author. In this
abridged presentation, details of the proof are omitted, but some explanations
are added. For the omitted proofs and additional results for Brauer algebras
and walled Brauer algebras, please refer to [5] for the moment (the full version
may be published elsewhere).
Acknowledgement: $I$ would like to thank Prof. Satoshi Naito for giving
me the opportunity to give this talk.

2 Irreducible characters of symmetric groups
2.1 Preliminaries
A sequence of positive integers $\lambda=$ $(\lambda_{1}, \ldots , \lambda_{l})$ with $\lambda_{1}\geq\cdots\geq\lambda_{l}>0$ is
called a partition. $l$ is called the length of $\lambda$ and denoted by $\ell(\lambda)$ . The terms
$\lambda_{i}$ are called the parts of this partition. We write $|\lambda|$ for $\lambda_{1}+\cdots+\lambda_{l}$ , and
if $|\lambda|=n$ then $\lambda$ is called a partition of $n$ and $n$ is called the size of $\lambda$ . The
empty sequence is the unique partition of $0$ (or of length $0$ ) and is denoted by
$\emptyset$ . We sometimes write nonempty partitions in multiplicative form: $4^{2}31^{3}$

stands for the partition (4, 4, 3, 1, 1, 1), for example.
Let $S_{n}$ denote the symmetric group over $n$ letters. It is well known that,

over a field of characteristic zero, the isomorphism classes of irreducible linear
representations of $S_{n}$ are indexed by the partitions of $n$ . In this paper, we
use objects called maya diagrams rather than partitions to index irreducible
representations of symmetric groups.

Definition 2.1. $A$ maya diagram is a sequence of integers $[x_{1}, x_{2}, \ldots]$ with
$x_{1}>x_{2}>\cdots$ and $x_{i}=-i$ for $i\gg 1.$

We write maya diagrams with $[]$ and partitions with $()$ (or with no paren-
theses if they are in multiplicative form), in order to avoid confusion between
these two kinds of objects.

There is an easy correspondence between maya diagrams and partitions,
by $(\lambda_{1}, \cdots, \lambda_{l})\mapsto[\lambda_{1}-1, \lambda_{2}-2, \ldots]$ and $[x_{1}, x_{2}, \ldots]\mapsto(x_{1}+1, x_{2}+2, \cdots)$
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here partitions are identffied with infinite sequences obtained from them
1 attaching infinitely many zeroes. The maya diagram corresponding to
partition $\lambda$ under these bijections is also denoted by $\lambda$ , but we believe

$lat$ this causes no confusion. The notion of size is also defined for maya
agrams through the correspondence above: if $|\lambda|=n$ , the corresponding
$\llcorner aya$ diagram $[x_{1}, x_{2}, \ldots]$ satisfies $\sum_{i}(x_{i}+i)=n.$

Let $F$ be a $\mathbb{C}$-vector space having the set of all maya diagrams as a basis.
We also define a charged maya diagram as a sequence of integers $[x_{1}, x_{2}, \ldots]$

ith $x_{1}>x_{2}>\cdots$ and $x_{i+1}=x_{i}-1$ for $i\gg 1$ . Let $\tilde{F}$ be a vector space
$rer\mathbb{C}$ having the set of all charged maya diagrams as a basis.

.emark. The spaces $F$ and $\tilde{F}$ are sometimes called an infinite or semi-
finite wedge space ([2, 3]): in that case $[x_{1}, x_{2}, \ldots]$ is denoted as $v_{x1}\wedge v_{x2}\wedge$

(Charged) maya diagrams are often depicted by drawing infinitely many
$)xes$ numbered. . .

$,$
$-2,$ $-1,0,1,$ $\ldots$ in a row and drawing circles in the

$)xes$ corresponding to $x_{1},$ $x_{2},$ $\ldots$ . For example, $[3, 0, -1, -4, -5, -6, \ldots]$

$arrow(4,2,2))$ corresponds to the following picture:
The partition corresponding to a maya diagram can be read directly from

$\iota e$ picture of the maya diagram: counting the number of blanks on the left
each circle gives the parts of the partition.
We sometimes use sequences $[x_{1}, x_{2}, \ldots]$ which satisfy $x_{i}=-i$ (or $x_{i+1}=$

$-1)$ for $i\gg 1$ but are not necessarily decreasing. In such case we consider
$\iota em$ as elements of $F$ (or $\tilde{F}$ respectively) by the rule $[. . . , i, \ldots,j, \ldots]+$

. . , $j,$
$\ldots,$

$i,$ $\ldots]=0$ (in particular, sequences with duplicate terms are equal
$\}$ zero).

Let $\chi_{\lambda}$ denote the irreducible character of a symmetric group indexed by
maya diagram or a partition $\lambda.$

We say an element $w\in S_{n}$ has cycle type $\mu=(\mu_{1}, \cdots, \mu_{l})$ if $w$ is a
$\wedge$oduct of disjoint cycles with length $\mu_{1}\geq\mu_{2}\geq\ldots\geq\mu_{l}\geq 1$ . It is well
lown that two elements in $S_{n}$ are conjugate if and only if they have the
me cycle type. Let $\chi_{\lambda}(\mu)$ $:=\chi_{\lambda}(w)$ for $w\in S_{n}$ with cycle type $\mu.$

Then well-known formulae of Frobenius’ and Murnaghan’s essentially
ate the following, under the present setting:

heorem 2.1. $Forr\in \mathbb{Z}$ , define a $\mathbb{C}$ -linear map $A_{r}:Farrow F$ by $A_{r}[x_{1}, x_{2}, \ldots, ]=$

$;_{i\geq 1}[x_{1}, x_{2}, \ldots, x_{i}-r, \ldots]$ for a maya diagram $[x_{1}, x_{2}, \ldots]$ (note that only
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finitely many summands on the right-hand side are nonzero). Then for a
maya diagram $\lambda$ and a partition $\mu=(\mu_{1}, \cdots, \mu_{l})$ with $|\lambda|=|\mu|=n,$

$A_{\mu}\lambda:=A_{\mu_{1}}\cdots A_{\mu\downarrow}\lambda=\chi_{\lambda}(\mu)\emptyset.$

2.2 $A$ motivating phenomenon
The following tables show the irreducible character values of symmetric
groups $S_{n}$ through $n=2$ to 6. Here the rows correspond to irreducible char-
acters and the columns correspond to conjugacy classes. (Here we indexed
rows by partitions rather than maya diagrams, because they need much less
space to write down. )

Table 2.1: character tables of symmetric groups.

Examining these character tables, one may notice that column 1n of the
table for $S_{n}$ “re-appears” in column $21^{n}$ of the table for $S_{n+2}$ : for exam-
ple, the irreducible characters of $S_{3}$ have degrees 1, 2, 1 respectively, while
the irreducible characters of $S_{5}$ have values 1, 2, 1, $0,$ $-1,$ $-2,$ $-1$ on its con-
jugacy class consisting of transpositions. This is more obvious in $(S_{4}, S_{6})$

and $(S_{5}, S_{7})$ : irreducible characters of $S_{4}$ and $S_{5}$ have degrees 1, 3, 2, 3, 1 and
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1, 4, 5, 6, 5, 4, 1 respectively, which clearly appear as irreducible character val-
ues of $S_{6}$ and $S_{7}$ on transpositions (the whole character table of $S_{7}$ is not
presented here because it’s too large, but Table 2.2 shows its column for the
transpositions. ).

Table 2.2: “transposition columns” of character tables of $S_{7}$ and $Ss.$

However, as one can see, the relationship does not hold for $S_{6}$ and $S_{8}$ : in
fact, if the “re-appearance” above is to hold for $S_{n}$ and $S_{n+2}$ , then we must
have $2p(n)\leq p(n+2)$ , but this does not hold for sufficiently large $n$ . Still, it
is natural to seek for some explanation, since this correspondence certainly
holds up to $S_{5}$ and $S_{7}.$

We easily see that Murnaghan’s formula does not give, at least directly,
the explanation we expect. For example, for the character values of $S_{6}$ on
transpositions what Murnaghan’s formula gives is as follows:

$\chi_{6}(21^{4})=\chi_{4}(1^{4})=1,$

$\chi_{51}(21^{4})=\chi_{31}(1^{4})=3,$

$\chi_{42}(21^{4})=\chi_{4}(1^{4})+\chi_{2^{2}}(1^{4})=1+2=3,$

$\chi_{41^{2}}(21^{4})=\chi_{21^{2}}(1^{4})-\chi_{4}(1^{4})=3-1=2$ , and
$\chi_{3^{2}}(21^{4})=\chi_{31}(1^{4})-\chi_{2^{2}}(1^{4})=3-2=1.$

So the one-to-one correspondence is not nicely explained by Murnaghan’s
formula.
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2.3 Main result
Here we are going to state our first main result, which explains the re-
appearance phenomenon above.

Let $m>1$ be an integer and $k$ be an integer. We define a $\mathbb{C}$-linear
operator $\phi_{k}^{(m)}$ : $Farrow F$ by

$\phi_{k}^{(m)}([x_{1}, x_{2}, \ldots])=(\sum_{a_{0},\ldots,a_{m-1}}[a_{m-1}, a_{m-2}, \ldots, a_{0}, x_{1}, x_{2}, \ldots])-m$ (1)

for a maya diagram $[x_{1}, x_{2}, \ldots]$ , where the sum is over all $m$-tuples of integers
$(a_{0}, \ldots, a_{m-1})$ with $a_{i}\equiv i(mod m)$ and $a_{0}+\cdots+a_{m-1}=(0+\cdots+(m-1))-$
km. $H_{\sim}ere$ the $-m$ on the right-hand side is defined as a $\mathbb{C}$-linear operator
$-m:Farrow F$ by $[x_{1}, x_{2}, \ldots]-m=[x_{1}-m, x_{2}-m, \ldots]$ for a maya diagram
$[x_{1}, x_{2}, \ldots]$ , which was applied to the sum in order that the right-hand side
to lie in $F$ . Note that the sum above is essentially finite, since if some of the
integers $a_{i}$ are too small then $[a_{m-1}, a_{m-2}, \ldots, a_{0}, x_{1}, x_{2}, \ldots]$ must have some
duphcate terms.

Our first result can now be stated as follows:

Theorem 2.2. Let $\lambda$ be a maya diagram of size $n$ and let $\mu$ be a partition
of $n-m$ which does not have any multiple of $m$ as its part. Then we have

$\chi_{\lambda}(\mu\cup(m))=\chi_{-\phi(\lambda)}(\mu)$ .

Here $\mu\cup(m)$ means the partition obtained by appending a part $m$ to $\mu,$

$\phi=\phi_{1}^{(m)}$ , and the notation $\chi_{\kappa}(\nu)ha\mathcal{S}$ been extended for $\kappa\in F$ linearly in $\kappa.$

口

Example. Let $\lambda=[3,0, -1, -4, -5, -6, \ldots]rightarrow(4,2,2)$ and $m=2$ . Then

$\phi(\lambda)=(\begin{array}{lll}\Sigma [a_{1},a_{0},3,0,-1,-4,-5,-6,. ]a_{0}\equiv 0,a_{1}\equiv 1(mod2)a+a=-1 \end{array})-2$

$=([1, -2,3,0, -1, -4, -5, -6, \ldots]+[-3,2,3,0, -1, -4, -5, -6, \ldots])-2$

$=([3,1,0, -1, -2, -4, -5, -6, \ldots]-[3,2,0, -1, -3, -4, -5, -6, \ldots])-2$

$=[1, -1, -2, -3, -4, -6, -7, -8, \ldots]-[1,0, -2, -3, -5, -6, -7, -8, \ldots]$

$rightarrow(2,1,1,1,1)-(2,2,1,1)$ .
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$\urcorner$igure 2 $.1$ : the original diagram $\lambda$ and the nonzero terms in the sum in the definition of $\phi(\lambda)$ (the circles

corresponding to the integers $a_{i}$ are shaded).

Note that the summands with $(a_{0}, a_{1})\neq(-2,1),$ $(2, -3)$ vanish: to avoid
luplicate terms one must have $a_{0},$ $a_{1}\geq-3$ so you only have to check
$a_{0},$ $a_{1})=(-2,1),$ $(0, -1),$ $(2, -3).$ Fkom this we have $\chi_{42^{2}}(\mu\cup(2))=-\chi_{21^{4}}(\mu)+$

$c_{2^{2}1^{2}}(\mu)$ for a partition $\mu$ with all parts $0$dd. Note that this is different from
,he one given by Murnaghan’s formula, i.e. $\chi_{42^{2}}(\mu\cup(2))=\chi_{2^{3}}(\mu)-\chi_{41^{2}}(\mu)+$

$c_{42}(\mu)$ (although the latter is valid for any partition $\mu$).

Now, Theorem 2.2 with $m=2$ and $\mu=(1, \ldots, 1)$ explains the phe-
lomenon, as shown in Table 2.3. In fact, it can be shown that if $m=2$ then
,he sum in $\phi(\lambda)$ has at most $r-1$ nonzero terms for $|\lambda|<2r^{2}$ . So with $r=2,$
$t$ can be seen that $\chi_{\lambda}(21^{*})$ can be expressed in the form $\pm\chi_{\overline{\lambda}}(1^{*})$ (or zero)
or a single diagram $\overline{\lambda}$ if $|\lambda|\leq 7.$

The proof of Theorem 2.2 depends on proving the following two things:
i $)$ $\phi$ commutes with $A_{l}(m\nmid l)$ , and (ii) $-\phi(\lambda)=A_{m}\lambda$ for maya diagrams $\lambda$

$)f$ size $m$ . In fact, with (i) and (ii) we can show the theorem as

$\chi_{\lambda}(\mu\cup(m))\emptyset=A_{m}A_{\mu}\lambda=-\phi(A_{\mu}\lambda)=A_{\mu}(-\phi(\lambda))=\chi_{-\phi(\lambda)}(\mu)\emptyset.$

$\{^{\urcorner}or$ the details of the proof, see [5].

{emark. It can also be shown that $[A_{rm}, \phi_{k}^{(m)}]=m\phi_{k+r}^{(m)}$ holds. This will
rield a recurrence formula for $\chi_{\lambda}(\mu)$ for $\mu$ with more than one part divisible
$)ym$ , in terms of operators $\phi_{k}^{(m)}$ . For example, it can be shown that one has

$\chi_{\lambda}(\mu\cup m^{k})=-\sum_{i=0}^{k-1}(-m)^{i}(k -1i) \chi_{\phi_{i+1}^{(m)}(\lambda)}(\mu\cup m^{k-1-i})$

or a maya diagram $\lambda$ of size $n$ and a partition $\mu$ of size $n-km$ without any
$)art$ divisible by $m.$
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Table 2.3: The expansions of the character values $\chi_{\lambda}(21^{n})$ given by Theorem 2.2 with $m=2$ and
$\mu=(1, \ldots, 1)$ . (Here $f^{\lambda}$ stands for $\chi_{\lambda}(1^{|\lambda|})$ . )
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3Relation with Bernstein operator
Let $\Lambda$ denote the ring of symmetric functions in the variables $X_{1},$ $X_{2},$

$\ldots$ :
$\Lambda=\mathbb{Z}[e_{1}, e_{2}, \ldots]=\mathbb{Z}[h_{1}, h_{2}, \ldots]$ where $e_{r}= \sum_{i_{1}<\ldots<i_{r}}X_{i_{1}}\cdots X_{i_{r}}$ and $h_{r}=$

$\sum_{i_{1}<\ldots\leq i_{r}}X_{i_{1}}\cdots X_{i_{r}}$ . We define $h_{0}=e_{0}=1$ and $h_{r}=e_{r}=0$ for $r<0$ . Let
$H(u\overline{)}$ $:= \sum_{n\geq 0}h_{n}u^{n}=\prod_{i\geq 1}\frac{1}{1-X_{i}u}$ and $E(u)$ $:= \sum_{n>0}e_{n}u^{n}=\prod_{i\geq 1}(1+X_{i}u)$

be their generating functions. Let $p_{r}= \sum_{i\geq 1}X_{i}^{r}\overline{(}r\geq 1$ ). We denote the
Schur function by $s_{\lambda}$ ([4, \S I.3]). In this paper, the index of a Schur function
may be either a partition, written in parentheses, or a maya diagram, written
in brackets.

We consider on $\Lambda$ , as usual, the Hall inner product $\langle\cdot,$ $\cdot\rangle$ : $\Lambda\cross\Lambdaarrow \mathbb{Z}$

by $\langle s_{\lambda},$ $s_{\mu}\rangle=\delta_{\lambda\mu}$ for partitions $\lambda,$
$\mu$ . Let $f^{\perp}$ denote the adjoint operator of

the multiplication by $f$ with respect to this inner product, say: $\langle f^{\perp}(g),$ $h\rangle=$

$\langle g,$ $fh\rangle.$

Using the Schur functions and the Hall inner product, Theorem 2.1 can
be stated as $p_{\mu_{1}}^{\perp}\cdots p_{\mu\downarrow}^{\perp}s_{\lambda}=\chi_{\lambda}(\mu)([4, \S I.7])$ , which is in fact much closer to
the original Frobenius formula.

Bernstein’s creation operator is defined as follows:

Definition 3.1. For $n\in \mathbb{Z},$

$B_{n}= \sum_{i\geq 0}(-1)^{i}h_{n+i}e_{i}^{\perp}$
(2)

where $h_{n+i}$ denotes the multiplication opemtor by $h_{n+i}$ . Note that, even
though the expression above is an infinite sum, only finitely many terms give
nonzero image when applied to each $f\in\Lambda.$

Bernstein operators have the following property ([4, \S I.5, Example 29]):

Proposition 3.1. For a partition $\lambda=(\lambda_{1}, \ldots, \lambda_{l})$ ,

$B_{\lambda_{1}}\cdots B_{\lambda_{l}}(1)=s_{\lambda}.$

This is still valid for a general integer sequence $\lambda$ if we interpret Schur
functions indexed by integer sequences which is nondecreasing or having non-
positive parts as $s_{(\cdots,i,j,\cdots)}=-s_{(\cdots,j-1,i+1,\cdots)}$ . In our maya-diagram setting,
this implies

$B_{n}(s_{[x1},)=S_{[n,xx,\ldots]-1}$ , (3)

or, for $\lambda$ a maya diagram,
$B_{n}(\mathcal{S}_{\lambda})=s_{b_{n}\lambda},$

where $b_{n}\lambda=\tilde{b}_{n}\lambda-1$ with $\tilde{b}_{n}$ defined just before the proof of theorem
2.2. Thus we have $B_{a_{m-1}}\cdots B_{a0}s_{[x_{1},x,\ldots]}2=\mathcal{S}_{[-m,x2}a_{m-1}-1,\ldots,a0-m,x1-m,\ldots$] $=$
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$s_{[a_{m}-1+m-1,\ldots,a0,x1,x_{2},\ldots]-m}$ , and so if we identify $F$ with $\Lambda_{\mathbb{C}}=\Lambda\otimes \mathbb{C}$ by iden-
tifying each maya diagram $\lambda$ with the Schur function $s_{\lambda}$ we get

$\phi_{k}^{(m)}=\sum B_{a_{m-1}}\cdots B_{a_{0}}$ (4)

where sum runs over all $m$-tuples $(a_{0}, \ldots, a_{m-1})$ with $a_{i}\equiv 0(mod m)$ and
$a_{0}+\cdots+a_{m-1}=-km.$

We have the following Bernstein-operator like expression for $\phi_{k}^{(m)}$ :

Theorem 3.1. For $m\geq 1$ and $n\in \mathbb{Z}$ we have

$\phi_{-n}^{(m)}=\sum_{i\geq 0}(-1)^{i}(h_{n+i}\circ p_{m})(e_{i}\circ p_{m})^{\perp}$
(5)

where - $\circ p_{m}$ denotes the plethysm with the m-th power sum: $(f\circ p_{m})(\{X_{i}\})=$

$f(\{X_{i}^{m}\})$ . $\square$

This can be shown by using the equation $B(u_{1}) \cdots B(u_{m})=\prod_{p<q}(1-$

$u_{p}^{-1}u_{q})\cdot H(u_{1})\cdots H(u_{m})E^{\perp}(-u_{1}^{-1})\cdots E^{\perp}(-u_{m}^{-1})$ $([4, \S I.5,$ Example $29])$ : us-
ing a primitive m-th root of unity $\omega$ , summing the equation for all $(u_{1}, \ldots, u_{m})=$

$(\omega^{j_{1}}u, \ldots, \omega^{j_{m}}u)(j_{1}, \ldots,j_{m}\in \mathbb{Z}/m\mathbb{Z})$ gives the desired result. For the details
of the proof, see [5].

Remark. In fact, the properties (i) and (ii) of $\phi$ in the proof of Theorem 2.2
can be also seen from the above expression for $\phi_{n}^{(m)}$

4 An analog for projective characters
A projective representation $\pi=(V, \pi)$ of a group $G$ is a group homomorphism
$\pi$ from $G$ to $PGL(V)$ , the projective general linear group of a vector space $V.$

Two projective representations $(V, \pi)$ and $(W, \rho)$ are said to be projectively
equivalent if there exists a vector space isomorphism $Varrow W$ such that the
induced group isomorphism $f$ : $PGL(V)arrow PGL(W)$ satisfies $f\pi(g)=\rho(g)f$

for all $g\in G$ . Let us call a projective representation $\pi$ nontrivial if $\pi$ is
not projectively equivalent to any representations obtained from a linear
representation of $G$ by composing with $GL(V)arrow PGL(V)$ .

Let $\tilde{S}_{n}$ be the group generated by the generators $s_{1},$ $\ldots,$ $s_{n-1},$ $z$ bound by
the relations:

$\bullet$ $z$ is a central element with $z^{2}=1,$

$\bullet s_{i}^{2}=z,$ $s_{i}s_{j}=zs_{j}s_{i}(|i-j|\geq 2),$ $(s_{i}s_{i+1})^{3}=z.$
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Clearly one has a surjective group homomorphism $\theta$ : $\tilde{S}_{n}arrow S_{n}$ which
sends $z$ to 1 and $s_{i}$ to $(ii+1),$ $i=1,$ $\ldots,$ $n-1$ . This homomorphism has
kernel $\{$ 1, $z\}$ . Since $z$ is in the center of $\tilde{S}_{n}$ and has order 2, its action on
an irreducible representation is either by 1 or by $-1$ . Call an irreducible
representation of $\tilde{S}_{n}$ negative if $z$ acts by $-1$ . Call two representations of
$\tilde{S}_{n}$ being associate of each other if one can be obtained from the other by
tensoring with $sgn\circ\theta$ , where $sgn$ is the $sign$ representation of $S_{n}$ . The
following relationship between the projective representations of $S_{n}$ and the
linear representations of $\tilde{S}_{n}$ is known:

Proposition 4.1 ([1, Chap. 2]). If $n\geq 4$ , Projective isomorphism classes
of nontrivial irreducible projective representations of $S_{n}$ is in one-to-one cor-
respondence with the associate classes of negative irreducible representations
of $\tilde{S}_{n}.$

It is known that the isomorphism classes of negative representations of
$\tilde{S}_{n}$ are indexed by the strict partitions of $n$ $(a$ partition $(\lambda_{1}, \ldots, \lambda_{l})$ is called
strict if $\lambda_{1}>\cdots>\lambda_{l}$ ). Let $\psi_{\lambda}$ denote the irreducible character of $\tilde{S}_{n}$ indexed
by $\lambda.$

If $C$ is a conjugacy class of $S_{n},$ $\theta^{-1}(C)$ is either a single conjugacy class or
the union of two conjugacy classes. In the former case, $g$ and $zg$ are conjugate
for $g\in\theta^{-1}(C)$ and thus negative irreducible characters vanish there. In the
latter case we say that $C$ splits. Conjugacy class $C_{\mu}$ of $S_{n}$ with cycle type $\mu$

splits iff: (i) all parts of $\mu$ are odd (in which case we call $\mu$ all-odd), or (ii) $\mu$

is strict and $C_{\mu}$ consists of odd permutations ([1, Theorem 3.8]). In fact it
is easy to describe the character values explicitly in the case (ii), so we are
interested in the case (i). Let $\psi_{\lambda}(\mu)$ denote the value of $\psi_{\lambda}$ evaluated at an
element $g_{\mu}$ , which is chosen from $\theta^{-1}(C_{\mu})$ so that the character of the “basic
representation” ([1, Chap. 6]) of $\tilde{S}_{n}$ takes a positive value at $g_{\mu}$ . We also let
$\tilde{\psi}_{\lambda}(\mu)=2^{\lceil\frac{\ell(\lambda)-\ell(\mu)}{2}\rceil}\psi_{\lambda}(\mu)$.

Let $q_{n}= \sum h_{n-i}e_{i}\in\Lambda$ and let $\Gamma$ be the subring of $\Lambda$ generated by
$q_{1},$ $q_{2},$ $q_{3},$ $\ldots$ . It is known that $\Gamma\otimes \mathbb{Q}=\mathbb{Q}[p_{1},p_{3},p_{5},p_{7}, \ldots]$ . We have a
basis $\{Q_{\lambda}\}_{\lambda:strict}$ partition of $\Gamma$ consisting of so-called Schur $Q$ -functions ([1,
Chap. 7], [4, \S III.8] $)$ . As Schur functions carry information about irreducible
characters of linear representations of symmetric groups, Schur $Q$-functions
carry information about projective characters $\psi_{\lambda}$ : in fact, if we define an
inner product $\langle,$ $\rangle$ on $\Gamma$ by $\langle Q_{\lambda},$ $Q_{\mu}\rangle=\delta_{\lambda\mu}2^{\ell(\lambda)}$ for all strict partitions $\lambda$ and $\mu$

and denote the adjoint of the multiplication by $f\in\Gamma$ as $f^{\perp}$ , then for strict
$\lambda$ and all-odd $\mu$ we have $\tilde{\psi}_{\lambda}(\mu)=p_{\mu_{1}}^{\perp}\cdots p_{\mu_{l}}^{\perp}Q_{\lambda}([1, Chap. 8])$ .

As in the Schur-funtion case, Schur $Q$-functions also have creation oper-
ators:
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Proposition 4.2 ([1, Theorem 7.21]). If we define $\mathcal{B}_{n}=\sum_{i\geq 0}(-1)^{i}q_{n+i}q_{i}^{\perp}for$

$n\in \mathbb{Z}$ , then for a strict partition $\lambda$ we have $Q_{\lambda}=\mathcal{B}_{\lambda_{1}}\cdots \mathcal{B}_{\lambda_{l}}(1)$ .

Let $Q_{\alpha}=\mathcal{B}_{\alpha_{1}}\cdots \mathcal{B}_{\alpha_{r}}(1)$ for all $\alpha=(\alpha_{1}, \ldots, \alpha_{r})\in \mathbb{Z}^{r}$ . The operators $\mathcal{B}_{r}$

satisfy $\mathcal{B}_{r}\mathcal{B}_{s}+\mathcal{B}_{S}\mathcal{B}_{r}=2(-1)^{r}\delta_{r,-s}([1,$ Theorem $9.1])$ , and from this one has
“reordering rules” for writing $Q_{\alpha}$ as a linear combination of the functions $Q_{\lambda}$

with strict partitions $\lambda$ :
$\bullet$ If, for some $i\geq 1$ , the subsequence of $\alpha$ consisting of all occurrences of

$\pm i$ is not of the form $i,$ $-i,$ $i,$
$\ldots,$ $-i,$ $ior-i,$ $i,$

$\ldots,$ $-i,$ $i$ , then $Q_{\alpha}=0.$

$\bullet$ Otherwise, there exists a permutation of the sequence $\alpha$ which has the
form $\lambda,$ $-a_{1},$ $a_{1},$

$\ldots,$ $-a_{r},$ $a_{r},$ $0,$
$\ldots,$

$0$ for a strict partition $\lambda$ and positive
integers $a_{1},$

$\ldots,$
$a_{r}$ . In this case $Q_{\alpha}=(-1)^{a_{1}+\ldots+a_{r}}2^{r}\epsilon Q_{\lambda}$ , where $\epsilon$ is the

$sign$ of any permutation which permutes $\alpha$ into the form above while
keeping the order of the terms $\pm i$ for each $i\geq 0$ . (see the example
below).

For example, $Q_{2,-3,0,4,-2,0,3,2}=(-1)\cdot Q_{4,2}$,-3,3,-2,2,0,0 $=4Q_{4,2}$ (see Figure 4.1).

Figure 4.1: $Q_{2,-3,0,4,-2,0,3,2}=sgn(23715846)\cdot Q_{4,2,-3,3,-2,2,0,0}=-Q_{4,2,-3,3}$ ,-2,2,0,0.

Since the definition of $\mathcal{B}_{n}$ is similar to the definition (2) of the Bernstein
operator, we can consider a $mo$dification of $\mathcal{B}_{n}$ analogous to (5): let $\Phi_{n}^{(m)}=$

$\sum_{i\geq 0}(-1)^{i}(q_{n+i}\circ p_{m})(q_{i}\circ p_{m})^{\perp}:\Gammaarrow\Gamma$ for $m\geq 1$ odd and $n\in \mathbb{Z}$ . Then we
have the following formula for $\Phi_{n}^{(m)}$ analogous to (4):

Theorem 4.1 ([5]). For any $m\geq 1$ odd, we have

$\sum_{n}\Phi_{n}^{(m)}u^{nm}$

$=(1+ij\in \mathbb{Z}$
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where the congruences are modulo $m$ and $\mathcal{B}_{i,j}=\{\begin{array}{ll}\mathcal{B}_{i}\mathcal{B}_{j} (i>j)-\mathcal{B}_{j}\mathcal{B}_{i} (i<j)0 (i=j)\end{array}$ 口

We note that in the product above the coefficient of each $u^{d}$ is well-defined
by the reordering rule above.

Since $\Phi_{-1}^{(m)}$ commutes with $p_{l}^{\perp}(m\nmid l)$ and coincides with a constant
multiple of $p_{m}^{\perp}$ (in fact $-2p_{m}^{\perp}$ ) on degree $m$ part of $\Gamma$ by the same reason as
the remark after Theorem 3.1, we have a corresponding relation for $\tilde{\psi}_{\lambda}(\mu)$ as
in Theorem 2.2. We give an example:

Example.

$\Phi_{-1}^{(3)}Q_{4,3,2}=Q_{1,-4,0,4,3,2}+Q_{4,-4,-3,4,3,2}-Q_{2,-2,-3,4,3,2}+Q_{\underline{-3},4,3,2}$

$=-2Q_{3,2,1}+4Q_{4,2}-4Q_{4,2}+2Q_{4,2}$

$=-2Q_{3,2,1}+2Q_{4,2},$

so we have $\tilde{\psi}_{4,3,2}(\mu\cup(3))=\tilde{\psi}_{3,2,1}(\mu)-\tilde{\psi}_{4,2}(\mu)$ for $\mu$ with no parts divisible by
3. The fact that no other terms appear in $\Phi_{-1}^{(3)}Q_{4,3,2}$ can be seen as follows.
By Theorem 4.1, each term appearing in $\Phi_{-1}^{(m)}Q_{\lambda}$ is of the form $Q_{\alpha,\lambda}$ for
an integer sequence $\alpha$ whose terms modulo $m$ are $0,$ $\pm c_{1},$

$\ldots,$
$\pm c_{p}$ for some

$c_{1},$ $\ldots,$
$c_{p}\in \mathbb{Z}/m\mathbb{Z}\backslash \{O\}$ with $c_{i}\neq\pm c_{j}(i\neq j)$ . In order $Q_{\alpha,\lambda}$ to be nonzero,

$\alpha$ must satisfy for each $i\geq 1,$

$\bullet$ if $i$ appears in $\lambda$ then the terms $\pm i$ appearing in $\alpha$ must be of the form
. . . , $i,$ $-i$ ($iand-i$ alternate), and

$\bullet$ if $i$ does not appear in $\lambda$ then the terms $\pm i$ must appear in $\alpha$ must be
of the form. . . $,$

$-i,$ $i$ ($iand-i$ alternate).

Considering these conditions we get the four terms above.

Theorem 4.1 can be shown by the calculations similar to the ones in the
proof of Theorem 3.1. The main difficulty here is that, unlike the Schur-
function case, the product $\mathcal{B}(\omega^{j_{1}}u)\cdots \mathcal{B}(\omega^{j_{m}}u)$ is not well-defined. For the
details of the proof, see [5].

Remark As operators $\mathcal{B}_{r}$ almost anticommute, it is natural to try construct-
ing, in the same way as the construction of $\phi_{k}^{(m)}$ , an operator $\sum \mathcal{B}_{a_{m-1}}\cdots \mathcal{B}_{a0}$

where the sum runs over all $(a_{0}, \ldots, a_{m-1})\in \mathbb{Z}^{m}$ with $a_{i}\equiv i(mod m)$

$(0\leq i\leq m-1)$ and $\sum a_{i}=(0+\cdots+(m-1))-km$ . It can be shown, by
the same calculation as Theorem 2.2, that if $m=2$ this operator commutes
with all $p_{l}^{\perp}$ ( $l$ : odd) and thus gives a relation of characters. However, this
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operator in fact coincides with $p_{2k-1}^{\perp}$ , and the relation obtained thus coincides
with ordinary recurrence formula given by expanding $p_{l}^{\perp}Q_{\lambda}$ by $Q$-functions
(see eg. [1, Chap. 10]).
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