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ABSTRACT. In terms of Bruhat graphs, we establish two combinatorial inequal-
ities on $q=1$ values of $KL$ polynomials for crystallographic Coxeter systems:
(1) We give a lower bound of their $q=1$ values by graph-theoretic distance. (2)
We show a sufficient condition for a Bruhat interval to be rationally singular by
our new idea, “final intervals” as an application of Deodhar’s inequality.
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1. INTRODUCTION

What can we say about q $=$ 1 specialization of Kazhdan-Lusztig (KL) polyno-
mials from a combinatorial perspective, particularly in terms of Bruhat graphs?
This was a motivation of our work. Let us begin with some background.

Kazhdan and Lusztig introduced a family of polynomials in 1979 to study Schu-
bert varieties as well as Verma modules. They conjectured [14] that q $=$ 1 spe-
cialization of these polynomials express multiplicity of composition factors of cer-
tain Verma modules (KL conjecture). Soon later, Beilinson-Bernstein [1] and
Brylinski-Kashiwara [7] gave proofs from rather geometric and representation-
theoretic points of view.

Combinatorics of KL polynomials” have grown little by little in the 1990s and
2000s. One direction is Dyer’s idea, Bruhat $graph_{\mathcal{S}}$ ; This graph encodes crucial
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information of Bruhat order structure as an Eulerian poset together with certain
extra edge relations (which do not appear in Hasse diagram). Brenti and Dyer
each developed this idea to enumerate label-rising Bruhat paths under reflection
orders by $R$- and $\tilde{R}$-polynomials; see [5, 6] and [9, 10], for example.

The aim of this article is to establish two kinds of combinatorial inequalities of
$KL$ polynomials (Theorems 4.4 and 6.10) in terms of Bruhat graphs for crystal-
lographic Coxeter systems; Our approach is a numerical point of view, somewhat
different from Brenti and Dyer. First, Theorem 4.4 gives a lower bound of $P_{uw}(1)$

values in terms of graph-theoretic distance. Second, Theorem 6.10 shows a suffi-
cient condition for a Bruhat interval to be rationally singular with our new idea,
“final intervals” as an application of Deodhar’s inequality. Proofs are elementary
throughout.

Notation. We follow common notation in the context of Coxeter groups as books
Bj\"orner-Brenti [3] and Humphreys [12]. By $(W, S)$ (or simply $W$ ) we mean a
Coxeter system with length function $\ell$ . Unless otherwise specified, $u,$ $v,$ $w$ are
elements of $W$ and $e$ is the unit. Let $T= \bigcup_{w\in W}w^{-1}Sw$ denote the set of reflections.
Write $uarrow w$ if $w=ut$ for some $t\in T$ and $\ell(u)<\ell(w)$ . Define Bruhat order
$u\leq w$ if there exist $v_{1},$

$\ldots,$
$v_{n}\in W$ such that $uarrow v_{1}arrow\cdotsarrow v_{n}=w$ . For

$u\leq w$ , let $[u, w]def=\{v\in W|u\leq v\leq w\}$ denote a Bruhat interval. Often
$\ell(u, w)^{d}=^{ef}\ell(w)-\ell(u)$ abbreviates the length of intervals.

Convention. Furthermore, we assume that $W$ is crystallographic. This is to
ensure the validity of Facts 3.2, 3.3 and 5.3.

2. BRUHAT GRAPHS

We begin with Bruhat graphs, our main idea. Recall that $uarrow w$ means $w=ut$
for some $t\in T$ and $\ell(u)<\ell(w)$ .

Definition 2.1. The Bruhat graph of $W$ is a directed graph for vertices $w\in W$

and for edges $uarrow w$ . By a Bruhat path we always mean a directed path such as
$uarrow v_{1}arrow\cdotsarrow v_{n}=w.$

Often, we consider also the induced subgraph for each subset $X\subseteq W.$

Figure 1 illustrates an example. Observe that the underlying graph is 3-regular;
every vertex is incident to 3 edges. We will come back to this idea later.

3. KL POLYNOMIALS

We now introduce $KL$ polynomials following [3, Section 5.1]; See $loc.cit$ . for
$R$-polynomials which we do not define here.

Fact 3.1. There exists a unique family of polynomials $\{P_{uw}(q)|u, w\in W\}\subseteq \mathbb{Z}[q]$

(Kazhdan-Lusztig polynomials) such that
(1) $P_{uw}(q)=0$ if $u\not\leq w,$
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FIGURE 1. Bruhat graph of a dihedral interval

(2) $P_{uw}(q)=1$ if $u=w,$
(3) $\deg P_{uw}(q)\leq(\ell(u, w)-1)/2$ if $u<w,$
(4) if $u\leq w$ , then

$q^{\ell(u,w)}P_{uw}(q^{-1})= \sum_{u\leq v\leq w}R_{uv}(q)P_{vw}(q)$ ,

(5) $P_{uw}(0)=1$ if $u\leq w,$

(6) if $u\leq w,$ $\mathcal{S}\in S$ and $wsarrow w$ , then $P_{uw}(q)=P_{us,w}(q)$ .

In what follows, our discussion goes with a fixed element $w\in W$ in mind. Then
we investigate behavior of $P_{uw}(q)$ ’s with $u$ running over the lower interval $[e, w].$

To emphasize this context, we use notation $X(w)def=[e, w]$ . By slight abuse of
language, we refer to $X(w)$ even as a Bruhat graph.

Now recall two key facts under the assumption $W$ to be crystallographic:
Fact 3.2 (Nonnegativity [13, Corollary 4]). All $co$efficients of $KL$ polynomials in
$W$ are nonnegative.

To state another fact, we need this notation: For $f=a_{0}+a_{1}q+\cdots+a_{c}q^{C},$ $g=$
$b_{0}+b_{1}q+\cdots+b_{d}q^{d}\in \mathbb{N}[q](c=\deg f, d=\deg g)$ , define a partial order $f\leq g$ if
$a_{i}\leq b_{i}$ for all $i$ (hence $c\leq d$).

Fact 3.3 (Monotonicity [4, Corollary 3.7]). Suppose $u\leq v\leq w$ in $W$ . Then
$P_{uw}(q)\geq P_{vw}(q)$ .

In other words, fixing $w$ as the second index, the function $P_{-,w}(q)$ : $X(w)arrow \mathbb{N}[q]$

is weakly monotonically decreasing. Actually, there is a convenient criterion for
strict monotonicity:
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Proposition 3.4. Let $u<v\leq w$ . Then $P_{uw}(q)>P_{vw}(q)\Leftrightarrow P_{uw}(1)>P_{vw}(1)$ .

Proof. Suppose $u<v\leq w$ . Then we have the inequality $P_{uw}(q)\geq P_{vw}(q)$ as
assumed above. Say $P_{uw}(q)=1+b_{1}q+\cdots+b_{d}q^{d},$ $P_{vw}(q)=1+a_{1}q+\cdots+a_{d}q^{d}$

with $0\leq a_{i}\leq b_{i}$ for all $i$ . If $P_{uw}(q)>P_{vw}(q)$ , then $a_{j}<b_{j}$ for some $j(1\leq j\leq d)$ .
Then

$P_{uw}(1)-P_{vw}(1)=(b_{1}-a_{1})+\cdots+(b_{j}-a_{j})+\cdots+(b_{d}-a_{d})>0$

and vice versa. $\square$

Consequently, $P_{-,w}(1)$ : $X(w)arrow \mathbb{N}$ is also weakly monotonically decreasing.

Definition 3.5. Let $u\in X(w)$ . Say $[u, w]$ is mtionally singular if $P_{uw}(1)>1.$

Say it is mtionally smooth if $P_{uw}(1)=1.$

Remark 3.6. We borrowed such terminology from geometry of Schubert varieties;
see Billey-Lakshmibai [2] for this theory.

Definition 3.7. Rational smooth and singular vertices of $X(w)$ are
$X_{1}(w)=\{u\in X(w)|P_{uw}(1)=1\}$ and $X_{2}(w)=\{u\in X(w)|P_{uw}(1)>1\}.$

4. MAIN THEOREM 1

In this section, we prove Theorem 4.4. Before that, we need several definitions
and facts.

Definition 4.1. An edge $uarrow v$ in $X(w)$ is strict if $P_{uw}(1)>P_{vw}(1)$ .

The following is the key idea for the proof of Theorem 4.4 (author’s recent result
[15, Theorem 8.2] $)$ .

Lemma 4.2. If $P_{uw}(1)>1$ , then there exists a strict edge $uarrow v$ in $X(w)$ .

Since Bruhat order is the transitive closure of edge relations, this result is useful
to give a lower bound of $P_{uw}(1)$ in terms of graph-theoretic distance as we recall
now.

Definition 4.3. Let $G$ be a finite directed graph. For a vertex $u$ and a nonempty
subset $A$ of vertices of $G$ , define a directed-graph-theoretic distance between the
vertex and the subset as

dist $(u, A)= \min\{d\geq 0|uarrow v_{1}arrow v_{2}arrow\cdotsarrow v_{d}\in A\}.$

In particular, dist $(u, A)=0\Leftrightarrow u\in A.$

Now consider the case for $G=X(w)$ and $A=X_{1}(w)$ . Then such distance gives
a lower bound of $P_{uw}(1)$ :

Theorem 4.4. Let $u\in X(w)$ . Then we have
$P_{uw}(1)\geq$ dist $(u, X_{1}(w))4+1.$
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FIGURE 2. distance between a singular vertex $u$ and rationally
smooth vertices
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Pmof. For convenience, let $d=$ dist $(u, X_{1}(w))$ . If $u$ is rationally smooth, then we
have $d=0$ ; So the assertion is obvious. Suppose $u$ is singular. Lemma 4.2 implies
that there exists a strict edge $uarrow v_{1}$ in $X(w)$ . If $v_{1}\in X_{1}(w)$ , then $d=1$ so that
$P_{uw}(1)\geq 2=d+1$ . If not, find another strict edge from $v_{1}$ in $X(w)$ , say $v_{1}arrow v_{2}.$

We can repeat this procedure at least $d=$ dist $(u, X_{1}(w))$ times by definition. Thus
the path $uarrow v_{1}arrow v_{2}arrow\cdotsarrow v_{d}$ in $X(w)$ (with all strict edges) induces $d$ strict
inequalities of positive integers

$P_{uw}(1)>P_{v_{1}w}(1)>\cdots>P_{v_{d}w}(1)\geq 1.$

Conclude that $P_{uw}(1)\geq d+1.$ $\square$

5. RATIONAL SINGULARITIES AND $DEODHAR’ S$ INEQUALITY

This section recalls some definitions and facts on Deodhar’s inequality for the
discussion in the next section.

Definition 5.1. Let $u\leq w$ . Set
$\overline{N}(u, w)=\{v\in W|uarrow v\leq w\}$ and $\overline{\ell}(u, w)=|\overline{N}(u, w)|.$

5

177



FIGURE 3. an irregular Bruhat graph

That is, $\overline{N}(u, w)$ is the neighborhood of the bottom vertex on the Bruhat graph
of $[u, w];\overline{\ell}(u, w)$ is the number of those outgoing edges.

Definition 5.2. The defect of $[u, w]$ is $df(u, w)=\overline{\ell}(u, w)-\ell(u, w)$ .

The defect turns out to be always nonnegative:

Fact 5.3 (Deodhar’s inequality [11]). df$(u, w)\geq 0.$

Definition 5.4. Say $[u, w]$ is rationally singular if $df(x, w)>0$ for some $x\in[u, w].$

Say it is mtionally smooth if $df(x, w)=0$ for all $x\in[u, w]$ . Also, we say $u$ is
rationally singular (smooth) under $w$

” for convenience.

This definition is indeed equivalent to Definition 3.5 (in crystallographic cases);
see [2, Section 13.2].

Figure 3 shows the Bruhat graph of [1324, 3412] in the symmetric group $S_{4}$ . It
has the positive defect: df(1324, 3412) $=1=4-3$ . Observe that this graph is
irregular because the bottom vertex is incident to four edges while middle vertices
are incident to only three; About regularity of Bruhat graphs, here is a significant
result of Carrell-Peterson [8]:

Fact 5.5. Let $[u, w]$ be a Bruhat interval. Then the following are equivalent:
(1) It is rationally smooth.
(2) Its Bruhat graph is $\ell(u, w)$-regular.

Consequently, if we find some vertex incident to more than $\ell(u, w)$ edges, then
immediately $[u, w]$ is rationally singular. We apply this idea for the proof of The-
orem 6.10.

6. MAIN THEOREM 2

In this section, we prove Theorem 6.10 with some new idea, “final intervals”
assuming $W$ is finite.
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FIGURE 4. a final interval

. :

Definition 6.1. For $I\subseteq S$ , let $W_{I}$ be the standard parabolic subgroup generated
by $I$ and $uW_{I}$ the right $I$-coset containing $u.$

Fact 6.2 (Distinguished coset representative of maximal length). Each $uW_{I}$ has
a unique element $x$ such that for all $v\in uW_{I}$ , we have $v\leq x.$

Denote this element by $x= \max uW_{I}.$

Definition 6.3. An interval $[u, w]$ is (right) final if there exists $I\subseteq S$ such that
$w= \max uW_{I}.$

Example 6.4. All right weak edges $uarrow us$ are final by definition. More inter-
esting cases are rank 2 cosets (dihedral intervals); Figure 4 shows an example of
a final interval in such a coset (we omitted some edges and heads for simplicity).
Observe that some final intervals might share the bottom element as in Figure 5.

Proposition 6.5. Let $[u, w]$ be a final Bruhat interval, say $w= \max uW_{I}$ with
$I\subseteq S(neces\mathcal{S}$arilyI $\subseteq\{s\in S|wsarrow w\})$ . Then there exists a directed path
$uarrow us_{1}arrow u\mathcal{S}_{1}\mathcal{S}_{2}arrow\cdotsarrow us_{1}s_{2}\cdots s_{n}=w$ such that $s_{i}\in I$ for all $i.$

Proof. By definition of a final interval, there exists $x\in W_{I}$ such that $ux=w.$
Choose a reduced expression $x=s_{1}s_{2}\cdots s_{n}$ with $s_{i}\in I$ for all $i.$ $\square$

Lemma 6.6. $A$ final interval $[u, w]$ is rationally smooth.

Pmof. Choose a directed path from $u$ to $w$ as in the previous proposition. Then
$P_{uw}(q)=P_{us_{1},w}(q)=P_{us_{1}s_{2},w}(q)=\cdots=P_{us_{1}s_{2}\cdots s_{n},w}(q)=P_{ww}(q)=1$ since
$ws_{i}arrow w$ for all $i.$ $\square$

It follows that $\overline{\ell}(u, w)=\ell(u, w)$ thanks to Deodhar’s inequality.
7
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FIGURE 5. final intervals sharing the bottom

Definition 6.7. Let $v\in[u, w]$ . Say $v$ is a final vertex of $[u, w]$ if $[u, v]$ is final.

Definition 6.8. Let $[u, w]$ be an interval of odd length $\geq 3.$ $A$ final vertex $v$ of
$[u, w]$ is half if $\ell(u, v)=(\ell(u, w)+1)/2.$

Definition 6.9. $A$ pair $(v_{1}, v_{2})$ of final vertices of $[u, w]$ is disjoint if
$\overline{N}(u, v_{1})\cap\overline{N}(u, v_{2})=\emptyset.$

Theorem 6.10. If there exists a pair $(v_{1}, v_{2})$ of half and disjoint final vertices in
$[u, w]$ , then $[u, w]$ is mtionally singular.

The idea is to show the existence of more than $\ell(u, w)$ edges incident to $u$ in
$[u, w]$ . Then, Deodhar’s inequality guarantees that $[u, w]$ is rationally singular.

Pmof. It is enough to show that $\overline{\ell}(u, w)>\ell(u, w)$ . Let $(v_{1}, v_{2})$ be as above. By
definition of the set $\overline{N}(x, y)$ , we have $\overline{N}(u, w)\supseteq\overline{N}(u, v_{1})\cup\overline{N}(u, v_{2})$ ; this union is
disjoint since $(v_{1}, v_{2})$ is disjoint. Hence

$\overline{\ell}(u, w)=|\overline{N}(u, w)|\geq|\overline{N}(u, v_{1})|+|\overline{N}(u, v_{2})|$

$=\overline{\ell}(u, v_{1})+\overline{\ell}(u, v_{2})$

$=\ell(u, v_{1})+\ell(u, v_{2})$ $($finality $of [u, v_{i}])$

$= \frac{\ell(u,w)+1}{2}+\frac{\ell(u,w)+1}{2}$

$=\ell(u, w)+1.$

$\square$

Example 6.11. Let $u=187654329,$ $w=897654312,$ $v_{1}=876543219$ and $v_{2}=$

198765432 in $W=A_{7}=S_{8}$ . Then we can show that the pair $(v_{1}, v_{2})$ is half
and disjoint final vertices of $[u, w]$ with $v_{1}=uW_{I},$ $v_{2}=uW_{J},$ $I=\{s_{1}, \ldots, s_{7}\},$

$J=\{s_{2}, \ldots, s_{8}\},$
$s_{i}$ adjacent $titi_{8},$ $\ell(u, w)=34-21=13$ (length$=the$
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number of inversions) and $\ell(u, v_{i})=28-21=7$ . Theorem 6.10 guarantees $[u, w]$

is rationally singular $(in fact, P_{uw}(q)=1+q^{6})$ . We obtained permutations $u$ and
$w$ from the construction of arbitrary $KL$ polynomials by Polo [16].

Acknowledgment.
I thank the organizer Professor Satoshi Naito for giving me an opportunity to
talk at Combinatorial Representation Theory and Related Topics, Kyoto RIMS in
October 2012 even with financial support.

REFERENCES
[1] A. Beilinson and J. Bernstein, Localisation de $\mathfrak{g}$ -modules, C.R. Acad. Sci. Paris 292 (1981),

no. 1, 15-18.
[2] S. Billey and V. Lakshmibai, Singular loci of Schubert varieties, Progress in Math. 182,

Birkh\"auser Boston, Inc., Boston, MA, 2000.
[3] A. Bj\"orner and F. Brenti, Combinatorics of Coxeter groups, Graduate Texts in Math. 231,

Springer-Verlag, New York, 2005.
[4] T. Braden and R. MacPherson, From moment graphs to intersection cohomology, Math.

Ann. 321 (2001), no. 3, 533-551.
[5] F. Brenti, A combinatonal formula for Kazhdan-Lusztig polynomials, Invent. Math. 118

(1994), no. 2, 371-394.
[6] –, Combinatonal expansions of Kazhdan-Lusztig polynomials, J. London Math. Soc.

(2) 55 (1997), no. 3, 448-472.
[7] J.-L. Brylinski and M. Kashiwara, Kazhdan-Lusztig conjectures and holonomic systems,

Invent. Math. 64 (1981), no. 3, 387-410.
[8] J. Carrell, The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational

smoothness of Schubert vaneties, Proc. Symp. Pure Math. 56 (1994), 53-61.
[9] M. Dyer, On the Bruhat graph of a Coxeter system, Comp. Math. 78 (1991), no. 2, 185-191.

[10] –, Hecke algebras and shellings of Bruhat intervals, Comp. Math. 89 (1993), no. 1,
91-115.

[11] –, The nil Hecke nng and Deodhar’s conjecture on Bruhat intervals, Invent. Math.
111 (1993), no. 3, 571-574.

[12] J. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Math.
29, Cambridge University Press, Cambridge, 1990.

[13] R. Irving, The socle filtration of a Verma module, Ann. Sci. \’Ecole. Norm. Sup. (4) 21 (1988),
no. 1, 47-65.

[14] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent.
Math. 53 (1979), no. 2, 165-184.

[15] M. Kobayashi, Inequalities on Bruhat graphs, $R$-and Kazhdan-Lusztig polynomials, to ap-
pear in J. of Combin. Theory Ser. A.

[16] P. Polo, Construction of arbitmry Kazhdan-Lusztig polynomials in symmetnc groups, Rep-
resent. Theory (electronic) 3 (1999), 90-104.

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING, DEPARTMENT OF MATHEMATICS,
SAITAMA UNIVERSITY, 255 SHIMO-OKUBO, SAITAMA 338-8570, JAPAN.

$E$-mail address: kobayashiQmath. titech. ac. jp

9

181


