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ABSTRACT. We consider local and global theta correspondences for $GSp_{4}$ and
$GSO_{4,2}$ . Because of the accidental isomorphism $PGSO_{4,2}\simeq PGU_{22}$ , these
correspondences give rise to those between $GSp_{4}$ and $GU_{2,2}$ for representations
with trivial central characters. Also we characterize representations which
have Shalika period using theta correspondences. In this note, we give results
without a proof, and details will appear in [8].

1. GLOBAL THETA CORRESPONDENCE

Let $F$ be a number field, and we denote its ring of adeles by $\mathbb{A}_{F}$ . Let $E$ be a
quadratic extension of $F$ and $\mathbb{A}_{E}$ its ring of adeles. We choose $d\in F^{\cross}\backslash (F^{\cross})^{2}$ such
that $E=F(\eta)$ with $\eta=\sqrt{d}$ and $\overline{\eta}=-\eta.$

We define the similitude unitary group $GU_{2,2}$ by

$GU_{2,2}(F)=\{g\in GL_{4}(E)|t\overline{g}[Matrix] g=\lambda(g)[Matrix],$ $\lambda(g)\in F^{\cross}\}.$

and the similitude symplectic group $GSp_{4}$ by

$GSp_{4}(F)=GU_{2,2}(F)\cap GL_{4}(F)$ .
Let $GO_{4,2}$ be the similitude orthogonal group defined by

$GO_{4,2}=\{g\in GL_{6}|tgSg=\mu(g)S, \mu(g)\in \mathbb{G}_{m}\}$

where

$S=[Matrix]$

Denote
$GSO_{4,2}=\{g\in GO_{4,2}|\det(g)=\mu(g)^{3}\}.$

Then we note that the group $GSO_{4,2}$ is closely related to $GU_{2,2}$ . Indeed we have
(1.0.1) $PGSO_{4,2}\simeq PGU_{2,2}.$

Then we shall study the global theta correspondence for $(GSp_{4}^{+}, GU_{2,2})$ because of
the accidental isomorphism. Here for an algebra $R$ over $F$ , we denote

$GSp_{4}(R)^{+}=\{g\in GSp_{4}(R)|\lambda(g)=\mu(h)$ for some $h\in GSO_{4,2}(R)\}.$
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Indeed, we give a characterization of automorphic representations which have Sha-
lika period in terms of the global theta correspondence.

Let us define unitary analogue of Shalika period on $GU_{2,2}(\mathbb{A}_{F})$ as follows. Let
$\xi$ be an idele class character of $\mathbb{A}_{F}^{\cross}/F^{\cross}$ Let $(\pi, V_{\pi})$ be an irreducible cuspidal
unitary automorphic representation of $GU$ (2, 2) $(\mathbb{A}_{F})$ with the central character $\omega_{\pi}$

satisfying $\omega_{\pi}|_{A_{F}^{\cross}}=\xi^{-2}$ . Let $\psi$ be a non-trivial additive character of $\mathbb{A}_{F}/F$ , and we
regard $\psi$ as a character of

$N(A_{F})=\{(\begin{array}{ll}1_{2} X0 1_{2}\end{array})|t\overline{X}=X\in Mat_{2\cross 2}(A_{E})\}$

by

$\psi(\begin{array}{ll}1_{2} X0 1_{2}\end{array})=\psi(tr(X(\begin{array}{ll}0 \eta-\eta 0\end{array})))$ .

Then we define the Shalika period of $\varphi\in V_{\pi}$ by

$\int_{A_{F}^{\cross}GL_{2}(F)\backslash GL_{2}(A_{F})}\int_{N(F)\backslash N(A_{F})}\varphi(n(\begin{array}{lll}g 00 detg tg^{-1}\end{array})) \psi(n)\xi(\det g)dndg.$

Further, we can define a period on $GSO_{4,2}(\mathbb{A}_{F})$ which corresponds to Shalika period
with respect to the trivial character from the isomorphism (1.0.1). We also call this
period Shalika period of $GSO_{4,2}.$

Recall that we have the following characterization of irreducible cuspidal au-
tomorphic representation of $GU_{2,2}(\mathbb{A}_{F})$ which have Shalika period, which is an
analogue of Jacquet-Shalika’s theorem [5].

Theorem 1.1 (Theorem 4.1 in [1]). With the above notations, the following two
conditions are equivalent:

(1) The Shalika period with respect to $\xi$ does not vanish on the space of $\pi.$

(2) $\pi$ is globally generic and the partial twisted exterior square $L$ -function
$L^{S}(s, \pi, \bigwedge_{t}^{2}\otimes\xi)$ has a simple pole at $s=1.$

By the standard method (e.g. see [2], [11]), we can show that Whittaker period
of the theta lift from $GSp_{4}^{+}(\mathbb{A}_{F})$ to $GSO_{4,2}(\mathbb{A}_{F})$ is expressed by Whittaker period
on $GSp_{4}^{+}(\mathbb{A}_{F})$ . Similarly, it is shown that Whittaker period of the theta lift from
$GSO_{4,2}(\mathbb{A}_{F})$ to $GSp_{4}^{+}(\mathbb{A}_{F})$ is expressed by Shalika period of $GSO_{4,2}$ . Then as in
the well-known case of $(GSp_{4}, GSO_{3,3})$ , we obtain the following characterization of
irreducible cuspidal automorphic representations of $GU_{2,2}(\mathbb{A}_{F})$ which have Shalika
period, via the global theta correspondence.

Theorem 1.2. Let $(\sigma,\grave{V}_{\sigma})$ be an irreducible cuspidal automorphic representation

of $GU_{2,2}(\mathbb{A}_{F})$ with trivial centml character. Then $\sigma$ has Shalika period if and
only if $\sigma=\theta^{*}(\Pi)$ for some generic irreducible cuspidal automorphic representation
$\Pi$ of $GSp_{4}(A_{F})$ with trivial centml character. Here we denote $\sigma=\theta^{*}(\Pi)$ when
$\sigma=\theta(\Pi^{+})$ for some irreducible constituent $\Pi^{+}$ of $\Pi|_{GSp_{4}(A_{F})^{+}}.$

We remark that Takeo Okazaki, motivated by a conjecture of van Geeman and
van Straten, also studied independently the global aspect of this theta correspon-
dence and gave a sketch of proof for the relationship between the non-vanishing of
theta lift and the existence of Shalika period in [9]. Though he did not discuss any
local theory, as far as the author knows.
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2. LOCAL THETA CORRESPONDENCE

Let $F$ be a nonarchimedean local field of characteristic zero. According to the
global case, we can define a local analogue of Shalika period of $GSO_{4,2}.$

We shall consider the local theta correspondence for $(GSp_{4}^{+}(F), GSO_{4,2}(F))$ .
More precisely, we consider a local analogue of characterization given in Theo-
rem 1.2. As a first step for the characterization, we study local theta correspondence
itself.

Theorem 2.1. For the dual pair $(GSp_{4}^{+}, GSO_{4,2})$ , the Howe duality holds over
any nonarchimedean local field of characteristic zero. Moreover, we can compute
explicitly local theta correspondence from $GSp_{4}^{+}(F)$ to $GSO_{4,2}(F)$ .

We note that for a proof of this theorem and an explicit computation of the theta
correspondence, we need classifications of non-supercuspidal irreducible admissible
representations of $GSp_{4}^{+}(F)$ and $GSO_{4,2}(F)$ . The classification for $GSp_{4}^{+}(F)$ is
deduced from that of $GSp_{4}(F)$ and the study of restrictions of irreducible repre-
sentations of $GSp_{4}(F)$ to $GSp_{4}^{+}(F)$ (cf. [3]). On the other hand, the classffication
for $GSO_{4,2}(F)$ is essentially new. We can give the classification using a method in
Sally-Tadic [10] and Konno [6]. Then we can compute the local theta correspon-
dence explicitly as in [4].

Computing twisted Jacquet modules of the extended Weil representation (cf.
[2], [7] $)$ , we obtain a characterization for generic irreducible representations of
$GSO_{4,2}(F)$ , which have Shalika period.

Proposition 2.1. Let $\sigma$ be a generic irreducible representation of $GSO_{4,2}(F)$ .
Then the following conditions are equivalent:

(1) $\sigma$ has Shalika period.
(2) the small theta lift $\theta(\sigma)$ of $\sigma$ to $GSp_{4}^{+}(F)$ is non-zero.
(3) the small theta lift $\theta(\sigma)$ of $\sigma$ to $GSp_{4}^{+}(F)\dot{w}$ generic.

Using explicit computation of local theta lifts from $GSO_{4,2}(F)$ to $GSp_{4}^{+}(F)$ , we
get a n,ecessary condition for essentially tempered representations of $GSO_{4,2}(F)$ to
have Shalika period.

Proposition 2.2. Let $\sigma$ be an irreducible representation of $GSO_{4,2}(F)$ . Suppose
that $\sigma$ is essentially tempered. If $\sigma$ has Shalika period, then $\sigma$ is generic.

From this proposition, we obtain the following local analogue of Theorem 1.2 for
essentially tempered irreducible representations of $GSO_{4,2}(F)$ .

Theorem 2.2. Let $\sigma$ be as in Proposition 2.2. Then $\sigma$ has Shalika period if and
only if $\sigma=\theta(\pi)$ for some generic irreducible representation $\pi$ of $GSp_{4}^{+}(F)$ .
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