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ABSTRACT. In this paper we utilize a recent block construction due to McNulty and Weigert
[25] and provide a new and more transparent proof of some of the results of Butson [3],
Dawson [7] and de Launey and Dawson [8] on Butson-type complex Hadamard matrices.
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1. INTRODUCTION

This paper is based on the talk given at a RIMS Symposium on Research on finite groups
and their representations, vertex operator algebras, and algebraic combinatorics, RIMS, Ky-
oto, January 7-10, 2013.

Hadamard matrices, real or generalized, have many applications in mathematics and quan-
tum information theory. $A$ real Hadamard matrix $H$ of order $n$ is an $n\cross n$ matrix with
$(-1,1)$ entries, such that $HH^{T}=nI$ holds, where $I$ is the identity matrix. Thus the
rows and columns of such a matrix are pairwise orthogonal. $A$ real Hadamard matrix is
normalized, if the entries in its first row and column are all 1. Deciding the existence of
real Hadamard matrices is a long standing open problem in combinatorics. The Hadamard
conjecture asserts that for every doubly even $n$ there exist a real Hadamard matrix. The
difficulty of this conjecture lead to the study of various generalizations of real Hadamard
matrices, including weighing matrices [20], modular Hadamard matrices [22] and complex
Hadamard matrices [30]. Studying these more general problems will hopefully shed some
light to this famous unresolved conjecture. Investigating the existence and structural prop-
erties of complex Hadamard matrices by the physicists community resulted in a number of
exciting new developments in this field very recently [24], $[25]$ . In particular, the concept of
mutually unbiased basis [13] turned out to be a valuable tool constructing new weighing and
Hadamard matrices [15].

In this paper we study a class of complex Hadamard matrices, which were introduced by
Butson in 1951 [3]. A Butson-type complex Hadamard matrix $H$ of order $n$ is an $n\cross n$ matrix
whose all entries are some complex qth root of unity, satisfying $HH^{*}=nIwhere*$ denotes
the Hermitian transpose. We denote these matrices by $BH$ $(n, q)$ . $A$ complex Hadamard
matrix may be thought of as the limiting case $qarrow\infty$ of the $BH$ $(n, q)$ matrices. We say that
the entries of such a matrix are unimodular.
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It is well known that $BH$ $(n,4)$ matrices lead to the construction of real Hadamard ma-

trices of order $2n$ . This result has substantially been improved in a breakthrough paper by
Compton, Craigen and de Launey [4] who pointed out that $BH$ $(n, 6)$ matrices without any
$(-1,1)$ entries lead to the construction of real Hadamard matrices of order $4n$ . Determining
the exact relation between $BH$ $(n, q)$ and real Hadamard matrices seems to be a challenging,
yet extremely rewarding assignment.

It is worthwhile noting that Butson-type complex Hadamard matrices also have current
applications in frame theory [2], [29] and coding theory [1], [14], among other things [19].

The goal of this paper is to shed new light onto some classical constructions of Butson-type
complex Hadamard matrices. We use a new, non-trivial block construction due to McNulty
and Weigert [25] and give a short proof to the existence of $BH$ $(2p,p)$ matrices for all primes
$p$ . Then we show how these ideas can be used to settle the existence of $BH$$(4p,p)$ matrices.
We believe that our approach is more transparent that of Dawson’s [7].

It is known that if $p$ is a prime number and a $BH$ $(n,p)$ matrix exists then $n=tp$ for
some positive integer $t[2],$ $[33]$ . However, determining those values $t$ for which there exists
a $BH$ $(tp,p)$ matrix is already unresolved for $p=2$ . The best asymptotic result in the real
case is due to Livinskyi [23], whose methods were influenced by work of Craigen [6], de
Launey [10] and Seberry [31]. The analogous asymptotic result in the Butson case is due to
de Launey and Dawson [8].

The outline of this paper is as follows. In Section 2 we first recall some number theoretic
tools essential to our results and then discuss some properties of mutually unbiased bases.
In Section 3 we present a construction of $BH$$(4p,p)$ matrices which then will subsequently
be generalized in Section 4. To improve the readability of the main text, two rather large
matrices were moved to the Appendix.

2. PRELIMINARIES

We begin this section with fixing some notation. Throughout this paper $p$ is a prime
number, and we denote by $(_{\overline{p}})$ the Legendre symbol. We denote by $i=\sqrt{-1}$ the complex
imaginary unit and introduce a scaling factor $\sigma_{p}$ , which depends only on the prime number
$p$ as follows:

(1) $\sigma_{p}:=\frac{1}{\sqrt{p}}(-i)^{1/2-(\frac{-1}{p})/2}=\{\begin{array}{ll}1/\sqrt{p} if p\equiv 1(mod 4)-i/\sqrt{p} if p\equiv 3(mod 4)\end{array}$

Henceforth 7 will refer to the complex conjugate of $z\in \mathbb{C}$ . Further, we use the following
notation: for a prime number $p$ and for any $z\in \mathbb{C}$ we define the exponential function
as $e_{p}(z);=e^{\frac{2\pi I}{p}z}$ With this notation the Fourier matrix can be described as $[\dot{F}_{p}]_{i,j}=$

$e_{p}((i-1)(j-1))$ , which is a well-known example of $BH$ $(p,p)$ matrices.
Next we recall some standard facts from number theory which will be needed later. We

refer the reader to the monograph [18] for details.
Gauss proved that if $p\geq 3$ is a prime number, then

(2) $\sum_{k=1}^{p}e_{p}(k^{2})=\{\begin{array}{ll}\sqrt{p} if p\equiv 1(mod 4)i\sqrt{p} if p\equiv 3(mod 4)\end{array}$

$\mathbb{R}om$ this, it is easy to derive the following.
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Lemma 2.1 (Quadratic Gauss sum). Let $p\geq 3$ be a prime number, $(a, b)\in \mathbb{Z}_{p}^{*}\cross \mathbb{Z}_{p}$ . Then

$\sum_{k=1}^{p}e_{p}(ak^{2}+bk)=p\overline{\sigma_{p}}(\frac{a}{p})e_{p}(-2^{p-3}a^{p-2}b^{2})$ .

Proof. We use (2) and proceed by completing the square as follows:

$\sum_{k=1}^{p}e_{p}(ak^{2}+bk)=e_{p}(-2^{p-3}a^{p-2}b^{2})\sum_{k=1}^{p}e_{p}(a(k+2^{p-2}a^{p-2}b)^{2})$

$=p \overline{\sigma_{p}}(\frac{a}{p})e_{p}(-2^{p-3}a^{p-2}b^{2})$ . $\square$

The following is a deep result due to Andr\’e Weil.

Theorem 2.2 (Weil, [32]). Let $p\geq 3$ be a prime number. For any integer $m$ satisfying
$1\leq m\leq p-1$ and for distinct $a_{1},$ $a_{2},$

$\ldots,$
$a_{m}\in \mathbb{Z}_{p}$ , we have

(3) $| \sum_{k=1}^{p}\prod_{i=1}^{m}(\frac{k+a_{i}}{p})|\leq(m-1)\sqrt{p}.$

The next result is interesting in its own, and will be a key ingredient to our construction.

Proposition 2.3 (cf. Hudson [16]). Let $p$ be a prime number. There exists a quadratic
residue $r\in \mathbb{Z}_{p}$ such that

$( \frac{r}{p})=-(\frac{r+3}{p})=(\frac{r+6}{p})=-(\frac{r+8}{p})=-(\frac{r+11}{p})=(\frac{r+16}{p})=1,$

if and only if $p\in\{7,29,31,41,47,59,61\}$ or $p\geq 71.$

The argument is somewhat standard. We follow the one presented in [16].

Proof. It is easy to verify the statement for all primes $p<71$ . Therefore we can assume that
$p\geq 71$ . Let us define the quantity

$S= \sum_{r=1}^{p-17}((\frac{r}{p})+1)((\frac{r+3}{p})-1)((\frac{r+6}{p})+1)$

$\cross((\frac{r+8}{p})-1)((\frac{r+11}{p})-1)((\frac{r+16}{p})+1)$ .

Note that each term in the sum is either $0$ or $-64$ , therefore if $S<0$ then clearly exists
an integer $1\leq r\leq p-17$ as claimed. After expanding the brackets we can rearrange the
terms by collecting together products of Legendre symbols with the same number of factors.
We use the notation $S$ $:=\{0,3,6,8,11,16\}$ and we denote a nonempty subset $\mathcal{A}\subseteq S$ by
$\mathcal{A}=\{a_{1}, a_{2}, \ldots, a_{|\mathcal{A}|}\}$ . We have

$S= \sum_{r=1}^{p-17}(-1)+|\mathcal{A}|\geq 1\sum_{\mathcal{A}\subseteq S}(-1)^{\xi(\mathcal{A})}\sum_{r=1}^{p-17}\prod_{i=1}^{|\mathcal{A}|}(\frac{r+a_{i}}{p})$ ,
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where $\xi(\mathcal{A})$ denotes either $0$ or 1. We complete the sums by adding up the missing 17 terms
and, after using the triangle inequality, we apply Weil’s estimate (3) to conclude that for
each nonempty $\mathcal{A}\subseteq S$

$|(-1)^{\xi(A)} \sum_{r=1}^{p-17}\prod_{i=1}^{|A|}(\frac{r+a_{i}}{p})|\leq(|\mathcal{A}|-1)\sqrt{p}+17$

holds. Therefore

$|S+p-17| \leq\sum_{i=1}^{6}(\begin{array}{l}6i\end{array})((i-1)\sqrt{p}+17)=1071+129\sqrt{p}.$

If $S<17-p$ then $S<0$ follows. Otherwise, if $S\geq 17-p$ then for $p\geq 18757$ we find that
$S\leq 1088+129\sqrt{p}-p<0.$

It remains to be seen that all primes in the range $71\leq p<18757$ satisfy the claim. This
can be easily verified by computers. $\square$

After these number theoretic preliminaries we now turn to the discussion of mutually
unbiased bases. Two orthonormal bases of $\mathbb{C}^{d},$ $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$ , are called mutually unbiased, if
for every $e\in \mathcal{B}_{1}$ and $f\in \mathcal{B}_{2}$ we have $|\langle e,$ $f\rangle|=1/\sqrt{d}.$ $A$ collection of orthonormal bases
$\mathcal{B}_{1},$ $\mathcal{B}_{2},$

$\ldots,$
$\mathcal{B}_{k}$ are called (pairwise) mutually unbiased, if any two of them are unbiased.

Mutually unbiased bases form a fundamental concept in quantum tomography [13]. We
note that it is a major open problem to decide the maximum number of pairwise mutually
unbiased bases of non prime power orders [13], [24].

Throughout this paper we identify these bases with matrices of size $d$ whose column vectors
are the respective basis vectors. In this terminology, two unitary matrices $K$ and $L$ of size
$d$ are unbiased if and only if $\sqrt{d}K^{*}L$ is a complex Hadamard matrix.

Next we recall a construction of a complete set of mutually unbiased bases in prime orders.
We denote by $D$ the following diagonal matrix once and for all:

(4) $D$ $:=$ diag $[e_{p}(0^{2}), e_{p}(1^{2}), \ldots, e_{p}((p-1)^{2})].$

Lemma 2.4 (See e. g. [17]). Let $p$ be a prime number and $D$ as in (4). Then the set
$\{I_{p}, \frac{1}{\sqrt{p}}F_{p}, \frac{1}{\sqrt{p}}DF_{p}, \ldots, \frac{1}{\sqrt{p}}D^{p-1}F_{p}\}$ forms a collection of $p+1$ mutually unbiased bases in $\mathbb{C}^{p}.$

Proof. It is clear that each of the matrices are unitary and hence, the identity matrix $I_{p}$

is unbiased to all further matrices. It remains to be seen that for all $a\in \mathbb{Z}_{p}^{*}$ the product
$\frac{1}{\sqrt{p}}F_{p}^{*}D^{a}F_{p}$ describes a complex Hadamard matrix, i. e. its entries are unimodular. We use
Lemma 2.1 to compute the $(i,j)$th entry of the matrix $F_{p}^{*}D^{a}F_{p}$ . In particular, we get

(5) $[F_{p}^{*}D^{a}F_{p}]_{i,j}= \sum_{k=1}^{p}e_{p}(a(k-1)^{2}+(j-i)(k-1))=p\overline{\sigma_{p}}(\frac{a}{p})e_{p}(-2^{p-3}a^{p-2}(j-i)^{2})$ .

$\square$

Remark 2.5. From (5) it follows that the entries of the matrix $\sigma_{p}F_{p}^{*}D^{a}F_{p}$ are either pth roots
of unity, or their negative, depending on the number $a\in \mathbb{Z}_{p}^{*}.$

The generalized Kronecker product (also called as $Dit\dot{a}$ ’s construction [12]) is a funda-
mental method obtaining parametric families of complex Hadamard matrices of composite
orders.
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Lemma 2.6. Let $H=[h_{ij}]_{i,j=1}^{n}$ be a complex Hadamard matrix of order $n$ and $L_{1},$ $L_{2},$
$\ldots,$

$L_{n}$

be complex Hadamard matrices of order $m$ . Then the following block matrix

$M=H\otimes[L_{1} L_{2} . . . L_{n}]:=\{\begin{array}{llll}h_{11}L_{1} h_{12}L_{2} \cdots h_{1n}L_{n}h_{21}L_{1} h_{22}L_{2} h_{2n}L_{n}\vdots \ddots \vdots h_{n1}L_{1} h_{n2}L_{2} \cdots h_{nn}L_{n}\end{array}\}$

is a complex Hadamard matrix of order $mn.$

Proof. It is clear that all entries of $M$ are unimodular. The identity $MM^{*}=mnI_{mn}$ follows
immediately upon block-multiplication. $\square$

We conclude this section with our final ingredient, which is a remarkable generalization of
Lemma 2.6.

Proposition 2.7 (McNulty-Weigert, [25]). Let $H=[h_{ij}]_{i,j=1}^{n}$ be a complex Hadamard matrix
of order $n,$ $K_{1},$ $K_{2},$

$\ldots,$
$K_{n}$ and $L_{1},$ $L_{2},$

$\ldots,$
$L_{n}$ be unitary matrices of order $m$ , such that $K_{i}$

is unbiased to $L_{j}$ for all $i,j=1,2,$ $\ldots,$
$n$ . Then the matrix

$M=\sqrt{m}\{\begin{array}{llll}h_{11}K_{1}^{*}L_{1} h_{12}K_{1}^{*}L_{2} \cdots h_{1n}K_{1}^{*}L_{n}h_{21}K_{2}^{*}L_{1} h_{22}K_{2}^{*}L_{2} h_{2n}K_{2}^{*}L_{n}\vdots \ddots \vdots h_{n1}K_{n}^{*}L_{1} h_{n2}K_{n}^{*}L_{2} \cdots h_{nn}K_{n}^{*}L_{n}\end{array}\}$

is a complex Hadamard matrix of order $mn.$

Proof. On the one hand the unbiasedness condition ensures that all entries are unimod-
ular. On the other hand the identity $MM^{*}=mnI_{mn}$ follows immediately upon block-
multiplication. Thus the array describes a complex Hadamard matrix. $\square$

3. THE EXISTENCE OF BH$(4p, p)$ MATRICES

McNulty and Weigert have successfully constructed various new and interesting examples
of $BH$ $(n, q)$ matrices of small orders [25]. Among other things they have essentially redis-
covered the following classical theorem of Butson. We include this here as a trivial warm-up
result.

Theorem 3.1 (Butson, [2]). Let $p\geq 3$ be a prime number, and let $1<s<p$ be a quadratic
nonresidue modulo $p$ . Then the matrix

$M=\{\begin{array}{ll}I_{p} 00 \sigma_{p}F_{p}^{*}D\end{array}\}[F_{p}F_{p} -D^{s-1}F_{p}D^{s-1}F_{p}]=\{\begin{array}{ll}F_{p} D^{s-1}F_{p}\sigma_{p}F_{p}^{*}DF_{p} -\sigma_{p}F_{p}^{*}D^{s}F_{p}\end{array}\},$

is $a$ $BH$ $(2p,p)$ matrix, where $\sigma_{p}$ and $D$ are described by (1) and (4), respectively.

Proof. Follows immediately from Lemma 2.4, Remark 2.5 and Proposition 2.7. $\square$

Now we proceed further, and consider a $4\cross 4$ real Hadamard matrix $H$ , and apply the
McNulty-Weigert construction to obtain the following result.
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Proposition 3.2. Let $p\geq 3$ be a prime number, and assume that there exists $(\alpha, \beta, \gamma)\in$

$\mathbb{Z}_{p}\cross \mathbb{Z}_{p}\cross \mathbb{Z}_{p}$ such that

$( \frac{\alpha+1}{p})=(\frac{\beta+4}{p})=(\frac{\gamma+9}{p})=1$ , and

$( \frac{\alpha+4}{p})=(\frac{\alpha+9}{p})=(\frac{\beta+1}{p})=(\frac{\beta+9}{p})=(\frac{\gamma+1}{p})=(\frac{\gamma+4}{p})=-1$

holds. Then

(6) $M_{p}(\alpha, \beta,\gamma)=[\sigma_{p}F_{p}^{*}D^{9}F_{p}\sigma_{p}F_{p}^{*}D^{4}F_{p}\sigma_{p}F_{p}^{*}DF_{p}F_{p} -\sigma_{p}F_{p}^{*}D^{\alpha+4}F_{p}-\sigma_{p}F_{p}^{*}D^{\alpha+9}F_{p}\sigma_{p}F_{p}^{*}D^{\alpha+1}F_{p}D^{\alpha}F_{p} -\sigma_{p}F_{p}^{*}D^{\beta+1}F_{p}-\sigma_{p}F_{p}^{*}D^{\beta+9}F_{p}\sigma_{p}F_{p}^{*}D^{\beta+4}F_{p}D^{\beta}F_{p} -\sigma_{p}F_{p}^{*}D^{\gamma+4}F_{p}-\sigma_{p}F_{p}^{*}D^{\gamma+1}F_{p}\sigma_{p}F_{p}^{*}D^{\gamma+9}F_{p}D^{\gamma}F_{p}]$

is $a$ $BH$ $(4p,p)$ matrix, where $\sigma_{p}$ and $D$ are described by (1) and (4), respectively.

Proof. Follows immediately from Lemma 2.4, Remark 2.5 and Proposition 2.7. $\square$

In Table 1 we have exhibited several triplets $(\alpha, \beta, \gamma)$ satisfying the conditions of Propo-
sition 3.2 thus yielding examples of $BH$ $(4p,p)$ matrices.

TABLE 1. Triplets, yielding $BH$ $(4p,p)$ matrices via (6) for several values of $p.$

The following is a special case of a result of Dawson.

Theorem 3.3 (Dawson, [7]). There exists $a$ $BH$ $(4p,p)$ matrix for every prime number $p.$

Proof. The case $p=2$ is trivial, while the sporadic cases, corresponding to $p=3$ and $p=5$

are contained in the Appendix. Table 1 displays further 9 values of $p$ for which the existence
of $BH$ $(4p,p)$ matrices follow via the array described in (6).

Hence we can assume that $p$ is a prime number for which Proposition 2.3 applies, and
therefore there exist a quadratic residue $r\in \mathbb{Z}_{p}$ such that the matrix $M_{p}(r-1, r+2, r+7)$ ,
described by formula (6) in Proposition 3.2 is a $BH$$(4p,p)$ matrix, as required. $\square$

4. THE DOUBLY EVEN CASE

The aim of this section is to generalize the methods presented in Section 3 and provide an
asymptotic result for the existence of $BH$ $(np,p)$ matrices for doubly even $n$ (see Theorem 4.1).
The idea is to blow up a real Hadamard matrix $H$ via the McNulty-Weigert construction
with similar ingredients what we used in the construction of (6). Let $H$ be a normalized real
Hadamard matrix of order $n\geq 4$ , and let us consider the following matrix:

(7) $M(r) :=diag[I_{p}, \sigma_{p}F_{p}^{*}D, \sigma_{p}F_{p}^{*}D^{4}, \ldots, \sigma_{p}F_{p}^{*}D^{(n-1)^{2}}]$

$\cross(H\otimes[F_{p}, D^{r}F_{p}, D^{r+(n-1)^{2}}F_{p}, \ldots, D^{r+(n-2)(n-1)^{2}}F_{p}])$ .
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This new array $M(r)$ has the property that (upon multiplying together its defining factors)
the exponents of $D$ are different, so that we can prescribe them to be either quadratic
residues or nonresidues depending on the underlying plus or minus $sign$ inherited from $H.$

To conclude that such a prescribed choice of exponents indeed exist for large $p$ we use
Hudson’s idea combined with Weil’s estimate in exactly the same way as in the $BH$ $(4p,p)$

case.

Theorem 4.1 (cf. [8]). Let $n$ be the order of a real Hadamard matrix, and $p>2^{2n^{2}+1}$ be a
prime number. Then there exist $a$ $BH$ $(np,p)$ matrix.

We remark here that the obtained bound on $p$ is considerably larger than the one given
in [8]. The presented proof here serves illustrative purposes only.

Proof. We assume that $n\geq 4,$ $p>2^{2n^{2}+1}$ and take any normalized real Hadamard matrix $H.$

Our aim is to prove that there exist an $r\in \mathbb{Z}_{p}$ such that the array $M(r)$ , described by (7), is
composed of pth roots of unity. We introduce the following sets $\mathcal{B}$ $:=\{1,4,9, \ldots, (n-1)^{2}\},$

$C$ $:=\{0, (n-1)^{2},2(n-1)^{2}, \ldots, (n-2)(n-1)^{2}\}$, and further $\mathcal{S}$ $:=\{b+c:b\in \mathcal{B}, c\in C\}$

with distinct entries $s_{1},$ $s_{2},$
$\ldots,$ $s_{(n-1)^{2}}$ . Next we define, similarly as before, the quantity

(8) $S= \sum_{r=1}^{p-(n-1)^{3}-1}\prod_{s_{i}\in S}((\frac{r+s_{i}}{p})\pm 1)$ ,

where the plus or minus $sign$ in a factor $( \frac{r+s_{i}}{p})\pm 1$ is uniquely determined by the $sign$

pattern of the underlying real Hadamard matrix $H$ as follows: there are unique indices
$j,$ $k\in\{1,2, \ldots, n-1\}$ such that $s_{i}=b_{j}+c_{k},$ $b_{j}\in \mathcal{B}$ and $c_{k}\in C$ . We choose the plus $sign$

in this factor if and only if the $(1+\sqrt{b_{j}}, 2+c_{k}/(n-1)^{2})$ th entry of $H$ is 1. Otherwise we
choose the minus $sign$ . Therefore, as $H$ is a normalized, $n\geq 4$ doubly even, each term within
$S$ is either $0$ or $2^{(n-1)^{2}}$ Hence, if we could argue that $S>0$ then clearly exists a suitable
integer $r$ for which $M(r)$ is a $BH$ $(np,p)$ matrix.

We expand and then rearrange (8) by collecting together products of Legendre symbols
with the same number of factors to obtain

$S= \sum_{r=1}^{p-(n-1)^{3}-1}(-1)^{n(n-1)/2}+|\mathcal{A}|\geq 1\sum_{\mathcal{A}\subseteq S}(-1)^{\xi(\mathcal{A})}\sum_{r=1}^{p-(n-1)^{3}-1}\prod_{i=1}^{|\mathcal{A}|}(\frac{r+a_{i}}{p})$ ,

where $\xi(\mathcal{A})$ denotes either $0$ or 1. We complete the sums by adding up the missing $(n-1)^{3}+1$

terms and, after using the triangle inequality, we apply Weil’s estimate (3) to conclude that
for each nonempty $\mathcal{A}\subseteq S$

$|(-1)^{\xi(A)} \sum_{r=1}^{p-(n-1)^{3}-1}\prod_{i=1}^{|\mathcal{A}|}(\frac{r+a_{i}}{p})|\leq(|\mathcal{A}|-1)\sqrt{p}+(n-1)^{3}+1$

holds. Therefore

$|S-(p-(n-1)^{3}-1)| \leq\sum_{i=1}^{(n-1)^{2}}(\begin{array}{ll}(n -1)^{2} i\end{array})((i-1) \sqrt{p}+(n-1)^{3}+1)$

$=(2^{(n-1)^{2}}-1)((n-1)^{3}+1-\sqrt{p})+2^{(n-1)^{2}-1}(n-1)^{2}\sqrt{p}$
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If $S-(p-(n-1)^{3}-1)\geq 0$ then, as $p\geq(n-1)^{3}+2,$ $S\geq 1$ follows and we are done.
Otherwise, if $S-(p-(n-1)^{3}-1)<0$ we find that

$S\geq p-(2^{n^{2}-2n}(n^{2}-2n-1)+1)\sqrt{p}-2^{(n-1)^{2}}(n^{3}-3n^{2}+3n)$

$>p-2^{n^{2}}\sqrt{p}-2^{n^{2}}>0,$

where the last inequality follows for $p>2^{2n^{2}+1}$ via elementary calculus. $\square$

The bounds exhibited in Theorem 4.1 are admittedly enormous, however, when $n$ is fixed
one can improve upon these considerably by evaluating (8) with computers. Moreover, one
can use several free parameters as exponents in the array (7) similarly to (6) to exhibit
further $BH$ $(np,p)$ matrices with this structure. This approach, however, completely fails
when $p\leq 2n-1,$ ae in this case we simply do not have enough quadratic residues to build
up arrays of this type. Constructing these relatively small dimensional examples seems to
be a non-trivial task in general. See [21], [26] and [27].

Despite all these difficulties, we hope that the methods used in this paper combined with
more sophisticated number theoretic tools and non-trivial computer programming are strong
enough to conclude the existence of $BH$ $(np,p)$ matrices for further (relatively small) values
of doubly even numbers $n$ . The first open case $n=8$ is particularly promising, as here the
existence of $BH$ $(8p,p)$ matrices has been confirmed for $p>19$ in [9]. However, dealing with
the single even case, and in particular determining the existence of $BH$ $(6p,p)$ matrices seems
to require some fundamentally new ideas in the future. Addressing the odd case, where
several non existence results are already known [5], [11], [33] looks even more elusive.
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APPENDIX; A BH(12, 3) AND A BH(20, 5) MATRIX

In this section we exhibit two sporadic examples of BH(4p,p) matrices. For typographic
reasons we display these matrices in $\log$-form”, i.e. the entries $e_{p}(z)$ of the Butson-type
complex Hadamard matrices are replaced by a number z $\in \mathbb{Z}_{p}$ . The first BH(12, 3) matrix
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was found by Seiden [28]. Actually, it is a sporadic example of difference matrices (see [21]):

$S_{12}=[010000020211000000220021000200002111000002002111000220222111022202221111000202222111000022222111000222211111000222211111002220211111000202111111]$

The following $BH$ $(20, 5)$ matrix is a particular example of an infinite family of generalized
Hadamard matrices, discovered by Seberry [27]:

$S_{20}=\ovalbox{\tt\small REJECT} \ovalbox{\tt\small REJECT}$
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