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Abstract

A positive $n$ is called a balancing number if

$1+2+\cdots+(n-1)=(n+1)+(n+2)+\cdots+(n+r)$

for some positive integer $r$ . Several authors investigated balancing
numbers and their various generalizations. The goal of this paper is
to survey some interesting properties and results on balancing and
generalized balancing numbers.

1 Introduction
In [3] A. Behera and G. K. Panda gave the notion of balancing number.

Definition 1 ([3]). $A$ positive integer $n$ is called a balancing number if

$1+2+\cdots+(n-1)=(n+1)+(n+2)+\cdots+(n+r)$

for some positive integer $r$ . This number is called the balancer correspond-
ing to the balancing number $n$ . The $mth$ term of the sequence of balancing
numbers is denoted by $B_{m}.$

Remark 1. It $i_{\mathcal{S}}$ clear from Definition that the following statements are
equivalent to each other:

$\bullet$ $n$ is a balancing number,
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$\bullet$
$n^{2}$ is a triangular number $(i.e.$ $n^{2}=1+2+\cdots+k$ for some $k\in \mathbb{N})$ ,

$\bullet$ $8n^{2}+1$ is a perfect square.

It is easy to see that 6, 35, and 204 are balancing numbers with balancers
2, 14 and 84, respectively.

2 Properties of balancing numbers

2.1 Generating balancing numbers

In [3] A. Behera and G. K. Panda proved other interesting properties about
balancing numbers. Let us consider the following functions:

(1) $F(x)=2x\sqrt{8x^{2}+1}$

(2) $G(x)=3x+\sqrt{8x^{2}+1}$

(3) $H(x)=17x+6\sqrt{8x^{2}+1}$

They proved that these functions always generate balancing numbers.

Theorem 1 ([3]). For any balancing number $n,$ $F(n),$ $G(n)$ , and $H(n)$ are
also balancing numbers.

Remark 2. Using the theorem above we get that if $n$ a balancing number,
then $G(F(n))=6n\sqrt{8n^{2}+1}+16n^{2}+1$ is an odd balancing number, because
$F(n)$ is always even and $G(n)$ is odd when $n$ is even.

For generating balancing numbers they proved the following theorems.

Theorem 2 ([3]). If $n$ is any balancing number, then there is no balancing
number $k$ such that $n<k<3n+\sqrt{8n^{2}+1}.$

They proved that a balancing number can also be generated by two bal-
ancing numbers.

Theorem 3 ([3]). If $n$ and $k$ are balancing numbers, then

(4) $f(n, k)=n\sqrt{8k^{2}+1}+k\sqrt{8n^{2}+1}$

is also a balancing number.

116



2.2 $A$ recurrence relation and other properties
In [3] they proved that the balancing numbers fulfill the following recurrence
relation

$B_{m+1}=6B_{m}-B_{m-1} (m>1)$

where $B_{0}=1$ and $B_{1}=6$ . Using this recurrence relation they get interesting
relations between balancing numbers. They proved the following elementary
result.

Theorem 4 ([3]). For any $m>1$ we have

$\bullet B_{m+1}B_{m-1}=(B_{rn}+1)(B_{m}-1)$ ,

$\bullet$ $B_{m}=B_{k}B_{m-k}-B_{k-1}B_{m-k-1}$ for any positive integer $k<m,$

$\bullet B_{2m}=B_{m}^{2}-B_{m-1}^{2},$

$\bullet B_{2m+1}=B_{m}(B_{m+1}-B_{m-1})$ .

He proved another interesting result about the greatest common divisor
of balancing numbers.

Theorem 5 ([25]). If $m$ and $k$ are natural numbers then

$gcd(B_{m}, B_{k})=B_{(m,k)}.$

2.3 Fibonacci and Lucas balancing numbers
In [21] K. Liptai gave a few results about special type of balancing numbers.
Let us consider the definition below:

Definition 2 ( $[21]$ and [22]). We call a balancing number $a$ Fibonacci or a
Lucas balancing number if it is a Fibonacci or a Lucas number, too.

Using this definition and companion polynomial of $B_{m}$ K. Liptai proved
that the balancing numbers are solutions of a Pell’s equation.

Theorem 6 ([21]). The terms of the second order linear recurrence $R(6, -1,1,6)$
are the solutions of the equation

$x^{2}-8y^{2}=1$

for some integer $z.$
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There is also a connection between Fibonacci or Lucas numbers and Pell’s
equation. The following theorem is due to D. E. Ferguson:

Theorem 7 ([7]). The only solutions of the equation

$x^{2}-5y^{2}=\pm 4$

are $x=\pm L_{m},$ $y=\pm F_{m}(n=0,1,2\ldots)$, where $L_{m}$ and $F_{m}$ are the $mth$

terms of the Lucas and Fibonacci sequences, respectively.

To find all Fibonacci or Lucas balancing numbers K. Liptai proved that
there are finitely many common solutions of the Pell’s equations above using
a method of A. Baker and H. Davenport.

The main theorem in [21] and [22] are the following:

Theorem 8 ([21] and [22]). There is no Fibonacci or Lucas balancing num-
$ber.$

Remark 3. Using another method L. Szalay got the same result for the
solutions of simultaneous Pell equations in $[34J$. In this method he converted
simultaneous Pell’s equations into a family of Thue equations which ones can
be solved.

3 Generalizations

3.1 $(k, l)$-numerical centers
Definition 3 ([23]). Let $y,$ $k$ and $l$ be fixed $po\mathcal{S}$ itive integers with $y\geq 4.$ $A$

positive integer $x(x\leq y-2)$ is called $a(k, l)$ -power numerical center for $y,$

or $a(k, l)$ -balancing number for $y$ if
$1^{k}+2^{k}+\cdots+(x-1)^{k}=(x+1)^{\iota}+\cdots+(y-1)^{\iota}.$

Remark 4. In $[8J$ R. Finkelstein studied “ The house problem” and introduced
the notion of first-power numerical center which is consistent with notion of
balancing number $B_{m}$ . He proved that infinitely many integers $y$ possess
$(1, 1)$ -power centers and there is no integer $y>1$ with $a(2,2)$ -power numer-
ical center. In his paper, he conjectured that if $k>1$ then there is no integer
$y>1$ with $(k, k)$ -power numerical center. Later in $[32J$ his conjeture was
confirmed for $k=3$ . Recently, Ingram in $[17J$ proved Finkelstein’s conjecture

for $k=5.$
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In [23] the authors proved a general result about $(k, l)$-balancing numbers,
but they could not deal with Finkelstein’s conjecture in its full generality.
Their main results are the following theorems.
Theorem 9 ([23]). For any fixed $p_{0\mathcal{S}}$itive integer $k>1$ , there are only
finitely many positive $pair\mathcal{S}$ of integers $(y, l)$ such that $y$ possesses $a(k, l)-$
power numerical center.

For the proof of this theorem they used a result from [30]. Thus the
previous Theorem is ineffective in case $l\leq k$ in the sense that no upper
bound was made for possible numerical centers except for the cases when
$l=1$ or $l=3.$

Theorem 10 ([23]). Let $k$ be a fixed positive integer with $k\geq 1$ and $l\in$

$\{1,3\}$ . If $(k, l)\neq(1,1)$ , then there are only finitely many $(k, l)$ -balancing
numbers, and these balancing numbers are bounded by an effectively com-
putable constant depending only on $k.$

Remark 5. There are numerical centers, because in $[23J$ authors gave an
example in the case when $(k, l)=(2,1)$ . After solving an elliptic equation by
MAGMA they got three $(2, 1)$ -power numerical centers $x$ , namely 5, 13 and
36.

3.2 $(a, b)$-type balancing numbers
Another generalization is the following by T. Kovacs, K. Liptai and P. Olajos.
Definition 4 ([20]). Let $a,$ $b$ be nonnegative coprime integers. We call a
positive integer $an+b$ an $(a, b)$ -type balancing number if
$(a+b)+(2a+b)+\cdots+(a(n-1)+b)=(a(n+1)+b)+\cdots+(a(n+r)+b)$

$f_{orsom.er\in \mathbb{N}.HereriscalledthebalancerC0Wes}$
numberWedenotethepositiveintegeran $+bbyB_{m}t_{a,b)}^{ondingtothebalancing}ifthisnumberisthe$

$mth$ among the $(a, b)$ -type balancing numbers.
Remark 6. We have to mention that if we use notation $a_{n}=an+b$ then
we get sequence balancing numbers and if $a=1$ and $b=0$ for $(a, b)$ -type
balancing numbers than we get balancing numbers $B_{m}.$

Using the definition the authors get the following proposition:

Lemma 1 (Proposition 1 in [20]). If $B_{m}^{(a,b)}$ is an $(a, b)$ -type balancing number
then the following equation

(5) $z^{2}-8(B_{m}^{(a,b)})^{2}=a^{2}-4ab-4b^{2}$

is valid for some $z\in \mathbb{Z}.$
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3.2.1 Polynomial values among balancing numbers

Let us consider the following equation for $(a, b)$-type balancing numbers

(6) $B_{m}^{(a,b)}=f(x)$

where $f(x)$ is a monic polynomial with integer coefficients. By the previous
Lemma and the result from Brindza ([5]) they proved the following theorem:

Theorem 11 ([20]). Let $f(x)$ be a monic polynomial with integer coefficients,
of degree $\geq 2$ . If $a$ is odd, then for the solutions of (6) we have $\max(m, |x|)<$

$c_{0}(f, a, b)$ , where $c_{0}(f, a, b)$ is an effectively computable constant depending
only on $a,$

$b$ and $f.$

Let us consider a special case of Theorem 11 with $f(x)=x^{l}$ . Using one
of the results from Bennett ([1]) the authors get the following theorem:

Theorem 12 ([20]). If $a^{2}-4ab-4b^{2}=1$ , then there is no perfect power
$(a, b)$ -balancing number.

Remark 7. There are infinitely many integer solutions of equation $a^{2}-4ab-$

$4b^{2}=1.$

The authors are interested in combinatorial numbers (see also Kov\’acs
[19] $)$ , that is binomial coefficients, power sums, alternating power sums and
products of consecutive integers. For all $k,$ $x\in \mathbb{N}$ let

$S_{k}(x)=1^{k}+2^{k}+\cdots+(x-1)^{k},$

$T_{k}(x)=-1^{k}+2^{k}-\cdot\cdot +(-1)^{x-1}(x-1)^{k},$

$\Pi_{k}(x)=x(x+1)\ldots(x+k-1)$ .
We mention that the degree of $S_{k}(x),$ $T_{k}(x)$ and $\Pi_{k}(x)$ are $k+1,$ $k$ and

$k$ , respectively and $(\begin{array}{l}xk\end{array}),$ $S_{k}(x),$ $T_{k}(x)$ are polynomials with non-integer coef-
ficients. Moreover, in the case when $f(x)=\Pi_{k}(x)$ Theorem 11 is valid but
parameter $a$ is odd.

Let us consider the following equation

(7) $B_{m}^{(a,b)}=p(x)$ ,

where $p(x)$ is a polynomial with rational integer coefficients. In this case
they gave effective results for the solutions of equation (7).

Theorem 13 ([20]). Let $k\geq 2$ and $p(x)$ be one of the polynomials $(\begin{array}{l}xk\end{array}),$ $\Pi_{k}(x)$ ,
$S_{k-1}(x)_{f}T_{k}(x)$ . Then the solutions of equation (6) satisfy $\max(m, |x|)<$

$c_{1}(a, b, k)$ , where $c_{1}(a, b, k)$ is an effectively computable constant depending
only on $a,$

$b$ and $k.$

120



3.2.2 Numerical results

In [20] T. Kov\’acs, K. Liptai and the author completely solve the above type
equations for some small values of $k$ that lead to genus 1 or genus 2 equations.
In this case the equation can be written as

(8) $y^{2}=8f(x)^{2}+1,$

where $f(x)$ is one of the following polynomials. Beside binomial coefficients
$(\begin{array}{l}xk\end{array})$ , we consider power sums and products of consecutive integers, as well.
We have to mention that in their results, for the sake of completeness, they
provide all integral (even the negative) solutions to equation (8).

Genus 1 and 2 equations They completely solve equation (8) for all
parameter values $k$ in case when they can reduce the equation to an equation
of genus 1. We have to mention that a similar argument has been used to solve
several combinatorial Diophantine equations of different types, for example
in [9], [10], [12], [13], [18], [19], [28], [29], [33], [36], [37]. Further they also
solved a particular case $(f(x)=S_{5}(x))$ when equation (6) can be reduced to
the resolution of a genus 2 equation. To solve this equation, they used the
so-called Chabauty method. We have to note that the Chabauty method has
already been successfully used to solve certain combinatorial Diophantine
equations, see e.g. the corresponding results in the papers [6], [11], [14], [15],
[31], [35] and the references given there.

Theorem 14. Suppose that $a^{2}-4ab-4b^{2}=1$ . Let $f(x)\in\{(\begin{array}{l}x2\end{array}),$ $(\begin{array}{l}x3\end{array}),$ $(\begin{array}{l}x4\end{array}),$ $\Pi_{2}(x)$ ,
$\Pi_{3}(x),$ $\Pi_{4}(x),$ $S_{1}(x),$ $S_{2}(x),$ $S_{3}(x),$ $S_{5}(x)\}$ . Then the solutions $(m, x)$ of equa-
tion (6) are those contained in Table 1. For the corresponding parameter
values we have $(a, b)=(1,0)$ in all cases.

Remark 8. In $[20J$ the authors considered some other related equations that
led to genus 2 equations. However, because of certain technical problems, they
could not solve them by the Chabauty method. They determined the “small”
solutions$(i. e. |x|\leq 10000)$ of equation (8) in cases

$f(x)\in\{(\begin{array}{l}x6\end{array}), (\begin{array}{l}x8\end{array}), \Pi_{6}(x), \Pi_{8}(x), S_{7}(x)\}.$

Their conjecture is that that there is no solution for these equations.
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