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We study the existence of weak solutions of stochastic Navier-Stokes equa-
tion on a two-dimensional torus, which appears in a variational problem. We
construct its weak solutions due to an approximation by a sequence of solu-
tions of equations with enlarged viscosity terms and then by showing an a priori
estimate for them.

1 Introduction
Navier-Stokes equations perturbed by some random force, stochastic Navier-
Stokes equations, have been studied by many authors. In this paper we discuss
the initial value problem of the following type of stochastic Navier-Stokes equa-
tion for the velocity field $u=u(t, x)=(u^{1}(t, x), u^{2}(t, x));t\geq 0,$ $x=(x_{1}, x_{2})$

and the pressure term $p=p(t, x)$ on a two-dimensional torus $\mathbb{T}^{2}=[0,2\pi]^{2}$ :

$\frac{\partial u^{i}}{\partial t}+\sum_{j=1}^{2}(u^{\dot{\mathcal{J}}}\frac{\partial u^{i}}{\partial x_{j}}+\sqrt{2\mu}\frac{\partial u^{i}}{\partial x_{j}}.j(t))-\mu\Delta u^{i}+\frac{\partial p}{\partial x_{i}}=0,$ $t>0,$ $i=1,2$ , (1)

with the incompressibility condition:

divu $\equiv\sum_{j=1}^{2}\frac{\partial u^{j}}{\partial x_{j}}=0,$ $t>0,$ $x\in \mathbb{T}^{2}$ , (2)

under the initial condition:

$u(0, x)=u_{0}(x) , x\in \mathbb{T}^{2}$ , (3)

where $\mu>0$ is a constant and $\dot{B}(t)=\frac{d}{dt}B(t)$ is a formal derivative of the two
dimensional Brownian motion $B(t)=(B^{1}(t), B^{2}(t))$ . We solve the equation
(1) - (3) in the class of $u$ ’s satisfying $\int_{\mathbb{T}^{2}}udx=0$ . We assume that $u_{0}$ is a
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V-valued deterministic function where $V$ $=W^{1,2}(\mathbb{T}^{2};\mathbb{R}^{2})\cap H,$ $W^{1,2}(\mathbb{T}^{2};\mathbb{R}^{2})$

denotes the usual $\mathbb{R}^{2}$-valued Sobolev space and $H$ is the family of $\mathbb{R}^{2}$-valued
square integrable functions on $\mathbb{T}^{2}$ which are of divergence free and have mean
zero, that is,

$H=\{u\in L^{2}(\mathbb{T}^{2};\mathbb{R}^{2})|divu=0, \int_{T^{2}}udx=0\},$

where $divu$ is defined in a distribution sense.
The equation (1) $-(3)$ appears in a certain variational problem (see [13]).

The solution of the equation (1) - (3) will be defined in a weak sense. The aim
of this paper is to show the existence of the weak solution of (1) - (3) under
a suitable assumption on the initial condition, which will be described in later
section.

Several authors have discussed the existence of solutions of stochastic Navier-
Stokes equations which fulfill the coercivity condition ([4], [10], [14]). Note that
(1) does not satisfy the coercivity condition. This means that we cannot directly
apply their results to our equation. Also, note that (1) is derived from the
following Stratonovich equation which is of Euler type:

$\frac{\partial u^{i}}{\partial t}+\sum_{j=1}^{2}(u^{j}\frac{\partial u^{i}}{\partial x_{j}}+\sqrt{2\mu}\frac{\partial u^{i}}{\partial x_{j}}o\dot{B}^{j})+\frac{\partial p}{\partial x_{i}}=0, i=1,2$. (4)

We use the following method to show existence of a solution. First we construct
a solution of the equation (1) - (3) with the diffusion term $\mu\triangle u$ replaced by
$\frac{2+\delta}{2}\mu\triangle u$ for each $\delta>0$ by the Galerkin’s method. This is possible since the
modified equation satisfies the coercivity condition for each $\delta>0$ . In the sec-
ond step, we take the limit $\deltaarrow 0$ to construct a weak solution of our equation
by showing a uniform estimate which implies the tightness of the distributions
$\mathcal{L}(u_{n}^{\delta})$ of the solutions $(u_{n}^{\delta})_{\delta\in(0,1],n\geq 1}$ of the approximating finite dimensional
equation in a certain proper functional spaces. Similar approach can be found in
a construction of weak solutions of two-dimensional stochastic Euler equations
([2], [3], [5], [6]). The cases of a bounded domain with Dirichlet boundary condi-
tion, an unbounded domain and the periodic boundary condition are discussed
in [2], [5] and [6], respectively. The case with the stochastic term containing
$\nabla u$ as in our equation is not studied in these papers. Our method does not
directly apply for higher dimensional case. Indeed, by applying It\^o’s formula
for $|u_{n}^{\delta}(t)|_{H}^{2}$ , we obtain the following estimate :

$\sup_{n\geq 1,\delta>0}\{E\{|u_{n}^{\delta}(t)|_{H}^{2}\}+\delta\mu\int_{0}^{t}E\{||u_{n}^{\delta}(s)||_{V}^{2}\}ds\}<\infty.$

This does not imply that $(u_{n}^{\delta}(t))_{\delta>0}$ has a strongly convergent subsequence in
H. However, on the two-dimensional torus, we can show such statement relying
on the identity:

$\sum_{j=1}^{2}\int_{T^{2}}\frac{\partial(u\cdot\nabla u)}{\partial x_{j}}\cdot\frac{\partial u}{\partial x_{j}}dx=0$ , for $u\in C_{\sigma}^{\infty}$ , (5)
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where $C_{\sigma}^{\infty}$ is a family of infinitely differentiable $\mathbb{R}^{2}$-valued functions which are
of divergence free and have mean zero, that is,

$C_{\sigma}^{\infty}=\{u\in C^{\infty}(\mathbb{T}^{2};\mathbb{R}^{2})|divu=0, \int_{T^{2}}udx=0\}.$

This equation has an important role on solving our problem. Concerning two-
dimensional deterministic Euler equations, energy and enstrophy are conserved
quantities (see also [1]). Let us remark that our equation is considered to have
enstrophy conservation since the term which is in front of the noise of (4) is the
first order differential operator. The key properties for showing existence are
the equation (5) and the form of the stochastic term of (4).

2 Derivation of our equations
As stated in the last section, our equation is considered to be derived from

a certain variational problem. In this section, we want to introduce this idea
briefly. We denote by Di$ff(R^{n})$ the family of volume preserving diffeomorphisms
of $R^{n}$ . Let $\Phi(t)=(\Phi_{1}(t), \cdots, \Phi_{n}(t)),$ $t\in[O, 1]$ be an integral curve which takes
values in $Diff(R^{n})$ . Suppose that $\Psi^{0},$ $\Psi^{1}\in Diff(R^{n})$ are given. In this setting,
let us consider the following action functional $J$ :

$J( \Phi)=\int_{0}^{1}\int_{R^{n}}\sum_{j=1}^{n}|\frac{\partial\Phi_{j}(t,x)}{\partial t}|^{2}dxdt$ , (6)

under the initial and terminal condition: $\Phi(0)=\Psi^{0}$ and $\Phi(1)=\Psi^{1}$ , respec-
tively. Then, it is known that the time derivative

$u(t, x)=(u^{1}(t, x), \cdots, u^{n}(t, x))=(\frac{\partial\tilde{\Phi}_{1}}{\partial t}(t,\tilde{\Phi}^{-1}(t, x)),$
$\cdots,$

$\frac{\partial\tilde{\Phi}_{n}}{\partial t}(t,\tilde{\Phi}^{-1}(t, x))$ ,

of a stationary point $\tilde{\Phi}(t, x)=(\tilde{\Phi}_{1}(t, x), \cdots,\tilde{\Phi}_{n}(t, x))$ of $J$ satisfies the Euler
equation:

$\{\begin{array}{ll}\frac{\partial u}{\partial t}+(u\cdot\nabla)u+\nabla p=0, t>0, x\in R^{n},divu=0, t>0, x\in R^{n},\end{array}$ (7)

where $p=p(t, x)$ is the pressure term, see [13] for example.
Later, in [13], the case where the integral curve appearing above is af-

fected by some random force is studied, that is, for an $n$-dimensional Brow-
nian motion $B=(B^{1}, \cdots, B^{n})$ defined on a probability space $(\Omega, \mathcal{F}, P)$ and
$\Psi^{0},$ $\Psi^{1}\in Diff(R^{n})$ , a.s., the following random action functional $J_{B}$ is intro-
duced:

$J_{B}( \Phi)=\int_{R^{n}}\int_{0}^{1}\sum_{j=1}^{n}|\frac{\partial\Phi_{j}(t,x)}{\partial t}+\sqrt{2\mu}\frac{dB_{t}^{j}}{dt}|^{2}dxdt$, (8)
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where $\Phi(0,\omega)=\Psi^{0}(\omega)$ and $\Phi(1,\omega)=\Psi^{1}(\omega)$ . By proceeding similarly to the
deterministic case,

$u(t, x, \omega)=(u^{1}(t, x,\omega), \cdots, u^{n}(t, x,\omega))$

$=( \frac{\partial\overline{\Phi}_{1}^{B}}{\partial t}(t,\tilde{\phi}^{-1}(t, x),\omega),$ $\cdots,$
$\frac{\partial\overline{\Phi}_{n}^{B}}{\partial t}(t,\tilde{\phi}^{-1}(t, x),\omega))$ , $t>0,$ $x\in R^{n},$ $\omega\in\Omega,$

would satisfy

$\{\begin{array}{l}\frac{\partial(u^{i}+\sqrt{2\mu}\dot{B}^{i})}{\partial t}+\sum_{j=1}^{n}(u^{j}\frac{\partial u^{i}}{\partial x_{j}}+\sqrt{2\mu}\frac{\partial u^{i}}{\partial x_{j}}o\dot{B}^{j})+\frac{\partial p}{\partial x_{i}}=0, i=1, \cdots, n,divu=0,\end{array}$

(9)

where $\overline{\Phi}^{B}$ is the random stationary point of $J_{B}$ :

$\overline{\Phi}^{B}(t, x,\omega)$

$=(\overline{\Phi}_{1}^{B}(t, x,\omega)+\sqrt{2\mu}\dot{B}^{1}(t,\omega), \cdots,\overline{\Phi}_{n}^{B}(t, x,\omega)+\sqrt{2\mu}\dot{B}^{n}(t,\omega))$ .

Note that the notation $0$ appearing in the stochastic term means the Stratonovich
sense. It is seen in [13] that if there exists a weak solution $u(t,x,\omega)$ of the equa-
tion (9) with the initial value $u_{0}\in W^{1,2}(R^{n};R^{n})$ satisfying $divu_{0}=0$ , its
expectation $\overline{u}(t, x)=\int_{\Omega}u(t, x,\omega)P(d\omega)$ satisfies the following Reynolds equa-
tion:

$\{\begin{array}{ll}\frac{\partial\overline{u}}{\partial t}-\mu\Delta\overline{u}+(\overline{u}\cdot\nabla)\overline{u}+\nabla p=-\overline{(u-\overline{u})\cdot\nabla)(u-\overline{u})}, t>0, x\in R^{n},div\overline{u}=0, t>0, x\in R^{n},\end{array}$

However, the existence of the weak solution of (9) is not shown in [13]. Note
that a Stratonovich integral can be rewritten into an It\^o integral by using the
following well-known formula (see [13]):

$\int_{0}^{t}\frac{\partial u^{i}}{\partial x_{j}}(s)\circ dB^{j}(s)=\int_{0}^{t}\frac{\partial u^{i}}{\partial x_{j}}(s)dB^{j}(s)+\frac{1}{2}\langle\langle M_{\frac{\partial u^{i}}{\partial x_{j}}}, B^{j}\rangle\rangle(t)$ ,

where
$M_{\frac{\partial u^{i}}{\partial x_{j}}}$

denotes the martingale part determined uniquely by the decompo-

sition of the process $\frac{\partial u^{i}}{\partial x_{j}}$ and $\langle\langle M_{\frac{\partial u^{i}}{\partial xj}},$

$B^{j}\rangle\rangle$ the quadratic variation determined

by two processes
$M_{\frac{\partial u^{l}}{\partial xj}}$

and $B^{j}$ . Thus, by applying this formula with respect

to the interchange between those two integrals to our equations, the follow-
ing stochastic Navier-Stokes equation appears with an It\^o integral: for each
$i=1,$ $\cdots,$ $n,$

$\{\begin{array}{l}\frac{\partial u^{i}}{\partial t}+\sqrt{2\mu}\ddot{B}_{t}^{i}+\sum_{j=1}^{n}(u^{j}\frac{\partial u^{i}}{\partial x_{j}}+\sqrt{2\mu}\frac{\partial u^{i}}{\partial x_{j}}\dot{B}_{t}^{j})-\mu\Delta u^{i}+\frac{\partial p}{\partial x_{i}}=0,divu=0,\end{array}$ (10)
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In our argument, we only study the equation (10) on a two-dimensional torus
$T^{2}$ , in which we disregard the term $\ddot{B}^{i}(t),$ $i=1,2$ . This is reasonable because
$\sum_{i=1}^{2}\int_{T^{2}}\ddot{B}^{i}(t)\phi^{i}(x)dx$ formally vanishes under the assumption that if we con-
sider the class of functions whose integral is equal to zero, that is, $\int_{T^{2}}\phi(x)dx=0$

for any smooth vector field $\phi$ with $div\phi=0.$

Concerning equations derived from this type of variational problems, there is
a result studied by [8]. They study a variational problem of diffusion processes
with values in the group of volume preserving diffeomorphisms (which differs
from ours) and show that Navier-Stokes equations by taking the expectation for
associated random critical point. In our case and [13], stochastic Navier-Stokes
equations is obtained.

3 Concept of solutions
In this section, we formulate our problem and prepare for some notations. We
denote the inner product of $H$ by $\langle\cdot,$ $\cdot\rangle$ , that is,

$\langle u, v\rangle=\sum_{j=1}^{2}\int_{T^{2}}u^{j}(x)v^{j}(x)dx, u, v\in H,$

and the norm of $H$ by $|\cdot|_{H}$ . We also denote the inner product of V by $\langle\langle\cdot,$ $\cdot\rangle\rangle,$

that is,

$\langle\langle u, v\rangle\rangle=\sum_{j=1}^{2}\langle\frac{\partial u}{\partial x_{j}}, \frac{\partial v}{\partial x_{j}}\rangle, u, v\in V,$

and the norm of V by $||\cdot||v$ . RecaIl that $V=W^{1,2}(\mathbb{T}^{2};\mathbb{R}^{2})\cap H$ and

$W^{1,2}(\mathbb{T}^{2};\mathbb{R}^{2})=\{u\in L^{2}(\mathbb{T}^{2};\mathbb{R}^{2})|\frac{\partial u}{\partial x_{j}}\in L^{2}(\mathbb{T}^{2};\mathbb{R}^{2}) ,j=1,2\},$

where $\frac{\partial u}{\partial x_{j}}$ , $j=1,2$ are defined in a distribution sense. Let $A$ be the linear
operator with domain $D(A)=W^{2,2}(\mathbb{T}^{2};\mathbb{R}^{2})\cap V$ such that

$A:D(A)arrow H, Au=-\mu \mathbb{P}\triangle u,$

where $W^{2,2}(\mathbb{T}^{2};\mathbb{R}^{2})$ is the Sobolev space consisting of all $u\in L^{2}(\mathbb{T}^{2};\mathbb{R}^{2})$ such
that $\frac{\partial u}{\partial x_{j}}\in W^{1,2}(\mathbb{T}^{2};\mathbb{R}^{2})$ for $j=1,2$ and $\mathbb{P}$ is the projection onto H. Let us set
$\mathbb{Z}_{0}^{2}=\mathbb{Z}^{2}\backslash \{(0,0)\}$ . For each $k=(k_{1}, k_{2})\in \mathbb{Z}_{0}^{2}$ , we define

$e_{k}(x)=\{\begin{array}{ll}\frac{k^{\perp}}{\sqrt{2}\pi|k|,k^{\perp}}\cos(k\cdot x) , k\in(\mathbb{Z}_{0}^{2})_{+},\overline{\sqrt{2}\pi|k|}^{\sin}(k\cdot x) , k\in(\mathbb{Z}_{0}^{2})_{-},\end{array}$

where $(\mathbb{Z}_{0}^{2})_{+}=\{k\in \mathbb{Z}_{0}^{2}|k_{1}>0\}\cup\{k\in \mathbb{Z}_{0}^{2}|k_{1}=0, k_{2}>0\},$ $(\mathbb{Z}_{0}^{2})_{-}=\mathbb{Z}_{0}^{2}\backslash (\mathbb{Z}_{0}^{2})_{+}$

and $k^{\perp}=(k_{2}, -k_{1})$ . Then, $(e_{k})_{k\in \mathbb{Z}_{O}^{2}}\subset C_{\sigma}^{\infty}$ is a trigonometric basis in $H.$
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Furthermore, let us set $\lambda_{k}=\mu|k|^{2}$ for $k\in \mathbb{Z}_{0}^{2}.$ $A$ is a nonnegative self adjoint
linear operator of $H$ and has a compact resolvent. Note that its eigenvalues and
the corresponding eigenfunctions are $(\lambda_{k})_{k\in \mathbb{Z}_{0}^{2}}$ and $(e_{k})_{k\in \mathbb{Z}_{O}^{2}}$ , respectively. We
define the bilinear operator $B$ such that

$B:V\cross Varrow V’, B(v, w)=\mathbb{P}(v\cdot\nabla)w,$

where V’ is the dual space of V. The linear operator $G$ is given by

$G:Varrow L_{H.S}(\mathbb{R}^{2};H) , Gv=\sqrt{2\mu}\mathbb{P}\nabla v,$

where $L_{H.S}(\mathbb{R}^{2};H)$ denotes the family of Hilbert-Schmidt operators from $\mathbb{R}^{2}$ to
H. Note that the adjoint operator $(Gv)^{*}$ of $Gv$ belongs to $L_{H.S}(H;\mathbb{R}^{2})$ and

$(Gv)^{*} \phi=-\sqrt{2\mu}(\langle\frac{\partial\phi}{\partial x_{1}}, v\rangle, \langle\frac{\partial\phi}{\partial x_{2}}, v\rangle)$ for $\phi\in C_{\sigma}^{\infty}.$

We denote by $C_{\sigma,0}^{\infty}$ the family of vector fields $u$ , whose form is of $u= \sum_{k\in Z_{0}^{2}}u_{k}e_{k},$

where each $u_{k}$ is a constant and $u_{k}=0$ except finitely many for $k$ . Clearly, $C_{\sigma,0}^{\infty}$

is a linear subspace of $C_{\sigma}^{\infty}$ . We set $U=W^{k_{0},2}(\mathbb{T}^{2};\mathbb{R}^{2})\cap H,$ $k_{0}>2$ , equipped

with its norm $||u||_{k_{O},2}=( \sum_{k\in \mathbb{Z}_{0}^{2}}|\langle u, e_{k}\rangle|^{2}|k|^{2k_{O}})^{\frac{1}{2}}$ We denote by $U’$ the dual
space of U. The weak form of our equation is formulated as follows:

$\sum_{i=1}^{2}(\int_{T^{2}}u^{i}(t,x)\phi^{i}(x)dx-\int_{T^{2}}u_{0}^{i}(x)\phi^{i}(x)dx)$ (11)

$= \sum_{i,j=1}^{2}\int_{0}^{t}\int_{T^{2}}u^{i}(s, x)u^{j}(s, x)\frac{\partial\phi^{i}(x)}{\partial x_{j}}dsdx$

$+ \sqrt{2\mu}\sum_{i,j=1}^{2}\int_{0}^{t}(\int_{T^{2}}u^{i}(s, x)\frac{\partial\phi^{i}(x)}{\partial x_{j}}dx)dB_{s}^{j}+\mu\sum_{i=1}^{2}\int_{0}^{t}(\int_{T^{2}}u^{i}(s, x)\Delta\phi^{i}(x)dx)ds,$

for all $\phi\in C_{\sigma,0}^{\infty}$ and $t\geq 0$ . Note that the term containing $p$ does not appear in
(11) by the Helmholtz decomposition of $L^{2}(\mathbb{T}^{2};\mathbb{R}^{2})$ .

Our equation (11) is rewritten into

$\{\begin{array}{ll}du(t)+\{Au(t)+B(u(t), u(t))\}dt+Gu(t)dB_{t}=0, t>0,u(0)=u_{0}. \end{array}$ (12)

We give the definition of the weak solution of our equation (12).

Definition 3.1. We say that $\{u(t), B(t)\}_{t\geq 0}$ is a weak solution of the stochastic
Navier-Stokes equation (12) with the initial value $u_{0}$ if

1. $\{u(t)\}_{t\geq 0}$ is an $\mathcal{F}_{t}$ -adapted process on a probability space $(\Omega,\mathcal{F}, P)$ .

2. $u\in L^{2}(0, T;V)\cap L^{\infty}(O, T;H),$ $a.s.$ $forT>0.$
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3. $\{B(t), \{\mathcal{F}_{t}\}\}_{t\geq 0}$ is a two-dimensional Brownian motion on $(\Omega, \mathcal{F}, P)$ .

4. For every $T>0,$ $\phi\in C_{\sigma,0}^{\infty}$ and $a.e.-t\in[0, T],$ $P$-a.s.,

$\langle u(t), \phi\rangle-\langle u_{0}, \phi\rangle=$

$- \int_{0}^{t}\langle A^{*}\phi, u(s)\rangle ds+\int_{0}^{t}\langle B(u(s), \phi), u(s)\rangle ds-\int_{0}^{t}(Gu(s))^{*}\phi dB(s)$ ,

holds.

Let us give a slight remark about the above definition. The weak solution is
meant of itself in a probabilistic meaning, that is, this type of solution is called
a martingale solution as well.

We say the equation (12) satisfies the coercivity condition if the following
Condition 3.1 holds:

Condition 3.1. $([10J)G$ : $Varrow L_{H.S}(\mathbb{R}^{2}, H)$ is continuous and

$2 \langle Av, v\rangle-|Gv|_{L_{H.S}(\mathbb{R}^{2},H)}^{2}\geq\delta\mu||v||_{V}^{2}-\lambda_{0}|v|_{H}^{2}-\rho,$

for all $v\in V$ and for some $\delta\in(0,2],$ $\lambda_{0}\geq 0$ and $\rho\geq 0.$

Our equation (12) does not satisfy Condition 3.1, because

$2\langle Au(t), u(t)\rangle-|Gu(t)|_{L_{H.S}(\mathbb{R}^{2},H)}^{2}=0$ . (13)

Namely, in our case, $\delta=0$ . Our main result is

Theorem 3.1 (Existence of the weak solution). There exists a weak solution
$\{u(t), B(t)\}_{t\geq 0}$ of the stochastic Navier-Stokes equation (12) with the initial
value $u_{0}\in V.$

4 Existence of solutions
The following lemma is essential to prove our theorem.

Lemma 4.1. If $u\in C_{\sigma}^{\infty}$ , then $\langle\langle u,$ $u\cdot\nabla u\rangle\rangle=0$ holds.

Its proof is based on a standard calculation.

Proof. For any $\mathbb{R}^{2}$-valued function $u$ on $\mathbb{R}^{2}$ which is of divergence free, we
can choose a $C^{2}$ -function $\phi$ on $\mathbb{R}^{2}$ such that $u=\nabla^{\perp}\phi$ holds, where $\nabla^{\perp}\phi=$

$(-\partial_{2}\phi, \partial_{1}\phi)$ and $\partial_{k}\phi$ denotes $\frac{\partial\phi}{\partial x_{k}},$ $k=1,2$ , (see [1]). Then

$\langle\langle u,$ $u\cdot\nabla u\rangle\rangle$ (14)
$=\langle\partial_{1}u,$ $\partial_{1}(u\cdot\nabla u)\rangle+\langle\partial_{2}u,$ $\partial_{2}(u\cdot\nabla u)\rangle$

$=\langle\partial_{1}u,$ $\partial_{1}u\cdot\nabla u\rangle+\langle\partial_{1}u,$ $u\cdot\nabla(\partial_{1}u)\rangle+\langle\partial_{2}u,$ $\partial_{2}u\cdot\nabla u\rangle+\langle\partial_{2}u,$ $u\cdot\nabla(\partial_{2}u)\rangle,$
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holds. The second and the forth terms in the last line of (14) are equal to $0$

due to the incompressibility condition. Therefore, it suffices to show $\langle\partial_{1}u,$ $\partial_{1}u.$

$\nabla u\rangle+\langle\partial_{2}u,$ $\partial_{2}u\cdot\nabla u\rangle=0$ to prove this lemma. Indeed, this is obtained by the
following calculation:

$\langle\partial_{1}u, \partial_{1}u\cdot\nabla u\rangle+\langle\partial_{2}u, \partial_{2}u\cdot\nabla u\rangle$

$= \sum_{j,k,l=1}^{2}\int_{T^{2}}\partial_{l}(\nabla^{\perp}\phi(x))^{k}\partial_{l}(\nabla^{\perp}\phi(x))^{j}\partial_{j}(\nabla^{\perp}\phi(x))^{k}dx=0.$

$\square$

sketch of proof of Theorem 3.1.

Step 1: Approximation by finite dimensional S.D.E. $s$

We denote by $H_{n}$ the linear subspace of $H$ spanned by $\{e_{k}\}_{0<|k|\leq n}$ . Let us
define the linear operator $\Pi_{n}$ as $\Pi_{n}u=\sum_{0<|k|\leq n}(u, e_{k})e_{k},$ $u\in U’$ , where $(\cdot, \cdot)$

is the dual pairing between $U’$ and U. Its restriction to $H$ is the orthogonal
projection onto $H_{n}$ . We set

$A_{\delta}=- \frac{2+\delta}{2}\mu \mathbb{P}\Delta, \delta>0.$

Let $(\Omega, \mathcal{F}, P, \{\mathcal{F}_{t}\}_{t\geq 0})$ be a complete filtered probability space on which a two-
dimensional $\overline{J^{-}}_{t}$ -Brownian motion $\{B_{t}\}_{t\geq 0}$ is defined. We assume that $\mathcal{F}_{0}$ con-
tains the $P$-null sets. Then, we consider the following finite dimensional stochas-
tic differential equations on $H_{n}$ :

$\{\begin{array}{ll}du_{n}^{\delta}(t)+\{A_{\delta}u_{n}^{\delta}(t)+\Pi_{n}B(u_{n}^{\delta}(t), u_{n}^{\delta}(t))\}dt+\Pi_{n}Gu_{n}^{\delta}(t)dB_{t}=0, t>0,u_{n}^{\delta}(0)=\Pi_{n}u_{0}, \end{array}$

(15)

By standard argument, we see that there exists a unique solution $u_{n}^{\delta}$ for any
$\delta>0,$ $n\geq 1$ and $T>0.$

Step 2: $A$ priori estimate

We use It\^o’s formula for $||u_{n}^{\delta}(t)||_{V}^{2}$ and Lemma 4.1. Then, if we assume that $u_{0}$

is a $V$-valued function, we obtain the following uniform estimate:

$\sup_{n\geq 1,\delta>0}E^{P}\{\int_{0}^{T}||u_{n}^{\delta}(t)||_{V}^{2}dt\}<\infty$, (16)

for each $T>0$ . Similarly, by applying It\^o’s formula again, we see

$\sup_{n\geq 1,\delta>0}E^{P}\{\sup_{s\in[0,T]}|u_{n}^{\delta}(s)|_{H}^{2}\}<\infty$, (17)

holds for each $T>0$ . As a result, we obtain
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Lemma 4.2. The following a priori estimates hold:

$\sup_{n\geq 1,\delta>0}E^{P}\{||u_{n}^{\delta}(t)||_{V}^{2}\}\leq||u_{0}||_{V}^{2},$

$\sup_{n\geq 1,\delta>0}E^{P}\{\int_{0}^{T}||u_{n}^{\delta}(t)||_{V}^{2}dt\}<\infty,$

$\sup_{n\geq 1,\delta>0}E^{P}\{\sup_{s\in[0,T]}|u_{n}^{\delta}(s)|_{H}^{2}\}<\infty.$

Step 3: Compactness argument

We use the method of martingale problems to solve our equations. Let $(\delta_{k})_{k\geq 1}$

a sequence satisfying $\delta_{k}\downarrow 0$ as $karrow\infty$ and consider the family of solutions
$(u_{k^{k}}^{\delta})_{k\geq 1}$ of (15). Set

$\Omega_{T}=C([0, T];U’)$ ,

endowed with the $\sup$-norm $||u||_{\Omega_{T}}= \sup_{t\in[0,T]}||u(t)||_{U’}$ and $\mathcal{B}$ the topological
$\sigma$-field on $\Omega_{T}$ . We denote by $\mathcal{B}_{t}$ the $sub-\sigma$-field of $\mathcal{B}$ generated by $u(s),$ $0\leq s\leq t.$

Set

$\mathbb{W}_{T}=\Omega_{T}\cap L^{2}(0, T;H)\cap L_{w}^{2}(0, T;V)\cap C([O, T];H_{\sigma})$ .

where $L_{w}^{2}(0, T;V)$ is the space $L^{2}(0, T;V)$ with its weak topology and $C([O, T];H_{\sigma})$

the space $C([O, T];H)$ with its weak topology. Let us set $P^{k}$ the probability law
of $u_{k}^{\delta_{k}}$ on $\Omega_{T}$ . We denote by $\mathcal{D}$ the family of functions $\Psi$ defined on $\Omega_{T}$ whose
forms are of

$\Psi(u)=\psi(\langle u, \phi_{1}\rangle, \cdots, \langle u, \phi_{n}\rangle)$ ,

for some $n\in \mathbb{N}$ , where $\psi\in C_{0}^{2}(\mathbb{R}^{n})$ and for all $\phi_{i}\in C_{\sigma,0}^{\infty},$ $i=1,$ $\cdots,$ $n$ . We
define a linear operator $\mathcal{L}_{k}$ on $\mathcal{D},$ $k=1,2,$ $\cdots$ , as

$\mathcal{L}_{k}\Psi(u)=\frac{1}{2}\sum_{i,j=1}^{n}\frac{\partial^{2}\psi}{\partial\alpha_{i}\partial\alpha_{j}}(\langle u, \phi_{1}\rangle, \cdots, \langle u, \phi_{n}\rangle)\{(-\Pi_{k}Gu)^{*}\phi_{i}\cdot((-\Pi_{k}Gu)^{*}\phi_{j})^{*}\}$

$+ \sum_{i=1}^{n}\frac{\partial\psi}{\partial\alpha_{i}}(\langle u, \phi_{1}\rangle, \cdots, \langle u, \phi_{n}\rangle)\{\frac{2+\delta_{k}}{2}\mu\langle u, \triangle\phi_{i}\rangle+\langle\Pi_{k}(u\cdot\nabla)\Pi_{k}\phi_{i}, u\rangle\},$

for $\Psi\in \mathcal{D}$ . In these settings, we formulate the martingale problem associated
to our equations.

Definition 4.1. We say that a probability measure $P$ defined on $(\Omega_{T}, \mathcal{B})$ is a
solution of $(\mathcal{L}_{k}, \mathcal{D})$ -martingale problem starting at $u\in H$ if

1. $P(x(0)=u)=1,$

2. $\Psi(x(t))-\Psi(x(0))-\int_{0}^{t}\mathcal{L}_{k}(\Psi(x(s))ds,$ $t\in[0,T],$

81



is a $\mathcal{B}_{t}$ -local martingale under $P.$

Since $(u_{k}^{\delta_{k}}, B)$ is a solution of (15) for each $k$ , it follows that $P^{k}$ is a solution
of $(\mathcal{L}_{k}, \mathcal{D})$-martingale problem starting at $\Pi_{k}u_{0}$ . We shall prove the following
lemmas:

Lemma 4.3. The family of probability measures $(P^{k})_{k=1,2},\ldots$ is relatively com-
pact in $\mathbb{W}_{T}.$

Suppose that Lemma 4.3 is proven, we denote by $\overline{P}$ its limit. Similarly to
$\mathcal{L}_{k},$ $k=1,2,$ $\cdots$ , we define a linear operator $\mathcal{L}$ on $\mathcal{D}$ as

$\mathcal{L}\Psi(u)=\frac{1}{2}\sum_{i,j=1}^{n}\frac{\partial^{2}\psi}{\partial\alpha_{i}\partial\alpha_{j}}(\langle u, \phi_{1}\rangle, \cdots, \langle u, \phi_{n}\rangle)\{(-Gu)^{*}\phi_{i}\cdot((-Gu)^{*}\phi_{j})^{*}\}$

$+ \sum_{i=1}^{n}\frac{\partial\psi}{\partial\alpha_{i}}(\langle u, \phi_{1}\rangle, \cdots, \langle u, \phi_{n}\rangle)\{\mu\langle u, \triangle\phi_{i}\rangle+\langle(u\cdot\nabla)\phi_{i}, u\rangle\}.$

Then, the following lemma holds.

Lemma 4.4. The probability measure $\overline{P}$ is a solution of $(\mathcal{L}, \mathcal{D})$ -martingale prob-
lem starting at $u_{0}.$

Let us mention that the proof of its lemma is based on the strategy using
[4]. By Lemma 4.4, we see that

$M^{\phi}(t, x)\equiv\langle x(t), \phi\rangle-\langle u_{0}, \phi\rangle$

$- \mu\int_{0}^{t}\langle x(s), \Delta\phi\rangle ds-\int_{0}^{t}\langle(x(s)\cdot\nabla)\phi, x(s)\rangle ds,$

and

$M^{\phi}(t, x)^{2}- \int_{0}^{t}(-Gx(u))^{*}\phi\cdot((-Gx(u))^{*}\phi)^{*}du,$

are local martingales. The remaining part of the proof is standard. It is solved
by applying the representation theorem of martingale (see e.g. [9], Theorem
8.2).

$\square$
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