
The Stokes semigroup on spaces of bounded functions

Ken Abe

Graduate Schoolof Mathematical Sciences,
the University of Tokyo

Abstract
In this brief note, we review recent results on the Stokes semigroup on spaces of

bounded functions especially for bounded domains based on the papers [1], [3] (and also
[2] $)$ . The Stokes semigroup on a bounded domain is an analytic semigroup on spaces of
bounded functions as was recently proved in [1] based on an a priori $L^{\infty}$ -estimate for so-
lutions to the linear Stokes equations. The proof for the a priori $L^{\infty}$ -estimate is a blow-up
argument. Very recently, a direct approach for the analyticity of the semigroup is found
in [3], where a necessary resolvent estimate is established by so called Masuda-Stewart
technique for elliptic operators. In this note, we sketch the proofs for the analyticity of the
semigroup on $L^{\infty}$ both in indirect and direct ways.

1 Introduction

We consider the initial-boundary problem for the Stokes equations in the domain $\Omega\subset R^{n},$ $n\geq 2$ :
$v_{t}-\Delta v+\nabla q=0$ in $\Omega\cross(0, T)$ , (1.1)

$divv=0$ in $\Omega\cross(0, T)$ , (1.2)
$v=0$ on $\partial\Omega\cross(0, T)$ , (1.3)
$v=v_{0}$ on $\Omega\cross\{t=0\}$ . (1.4)

It is well known that the solution operator of the linear Stokes equations $S(t)$ : $v_{0}\mapsto v(\cdot, t)$ ,
called the Stokes semigroup, is an analytic semigroup on $L^{r}$-solenoidal space, $r\in(1, \infty)$ , for
various kinds of domains including bounded domains with smooth boundaries [27], [9]. How-
ever, it had been a long-standing open problem whether or not the Stokes semigroup is an
analytic semigroup on $L^{\infty}$ -type spaces even if the domain $\Omega$ is bounded. For a half space the
Stokes semigroup is an analytic semigroup on $L^{\infty}$ -type spaces since explicit solution formulas
are available [6], [28], [19]. In this note, we review recent results on the analyticity of the
semigroup on $L^{\infty}$ especially for bounded domains based on works [1], [3] (and also [2]).

To state a result, let $C_{0,\sigma}(\Omega)$ denote the $L^{\infty}$ -closure all smooth solenoidal vector fields with
compact support in $\Omega$ . When $\Omega$ is bounded, $C_{0,\sigma}(\Omega)$ agrees with the space of all continuous
solenoidal vector fields vanishing on $\partial\Omega[18],$ $[1]$ . Our typical result is the following:

Theorem 1.1 ([1]). Let $\Omega$ be a bounded domain in $R^{n},$ $n\geq 2$, with $C^{3}$ -boundary. Then the
Stokes semigroup $S(t)$ : $v_{0}\mapsto v(\cdot, t)$ is a $C_{0}$ -analytic semigroup on $C_{0,\sigma}(\Omega)$ .

数理解析研究所講究録
第 1875巻 2014年 151-159 151



For the Laplace operator or general elliptic operators it is well known that the corresponding
semigroup is analytic on $L^{\infty}$-type spaces. K. Masuda was the first to prove the analyticity of the
semigroup associated to general elliptic operators on $C_{0}(R^{n})$ including the case of higher orders
[20], [21], [22]. This result was then extended by H. B. Stewart to the case for the Dirichlet
problem [31] and more general boundary condition [32]. We refer to a book by A. Lunardi [16,

Chapter 3] for this Masuda-Stewart method which applies to many other situations. However, it
seems that their localization argument does not directly apply to the Stokes equations because
of the presence of pressure.

In the sequel, we review two approaches in proving the analyticity of the Stokes semigroup
on $L^{\infty}$ . The analyticity of the Stokes semigroup on $L^{\infty}$ was first proved by a contradiction
argument called a blow-up argument [1]. We sketch the proof for an a priori $L^{\infty}$-estimate for
solutions to the non-stationary Stokes equations $(1.1)-(1.4)$ . Recently, a direct proof is found
in [3], where a necessary resolvent estimate is established by the Masuda-Stewart technique for
elliptic operators. The former is the original proof based on a heuristic observation. The latter
is rather involved, but we are able to prove the maximum angle of the analytic semigroup on $L^{\infty}$

which does not follow from a contradiction argument.

2 $A$ blow-up argument

A blow-up argument is a typical indirect argument to obtain an a priori upper bound for so-
lutions; see [11], [23], [24] for semilinear heat equations and [14], [12] for the Navier-Stokes
equations. Let us give a heuristic idea of our argument. Our goal is to establish the a priori
$L^{\infty}$-estimate for solutions $(v,q)$ of the form,

$\sup_{0<t\leq T_{0}}\Vert N(v,q)\Vert_{L^{\infty}(\Omega)}(t)\leq C\Vert v_{0}||_{L^{\infty}(\Omega)}$
(2.1)

for some $T_{0}$ and the constant $C$, where $N(v,q)(x, t)$ denotes the norm for solutions up to second
orders,

$N(v, q)(x, t)=|v(x, t)|+t^{1/2}|\nabla v(x, t)|+t|\nabla^{2}v(x, t)|+t|v_{t}(x,t)|+t|\nabla q(x, t)|$. (2.2)

The a priori estimate $(2\cdot 1)$ in particular implies that the Stokes semigroup is (a positive angle
00 a $C_{0}$-analytic semigroup on $C_{0,\sigma}(\Omega)$ . We define analytic semigroups for semigroups. For
the Banach space $X$ and the semigroup $\{T(t)\}_{t\geq 0}\subset \mathcal{L}(X)$ we call $T(t)$ an analytic semigroup if
$t \Vert dT(t)\int dt||_{l}$ is bounded in $(0,1],$ where $\mathcal{L}(X)$ denotes the space of all bounded linear operators
from $X$ onto itself and is equipped with the norm $||\cdot||_{\mathcal{L}}$ . Although the angle of the analytic
semigroup depends on the constant in (2.1), the estimate (2.1) is stronger than that of the resol-
vent estimate discussed later in Section 3. The following statement is a special case of general
analyticity results proved in [1].

Theorem 2.1 ([1]). Let $\Omega$ be a bounded domain in $R^{n},$ $n\geq 2$, with $C^{3}$ -boundary. Then there
exist constants $T_{0}$ and $C$ such that the a priori $L^{\infty}$-estimate (2.1) holdsfor all solutions $(v, q)$ for
$v_{0}\in C_{c,\sigma}^{\infty}(\Omega)$ . In particular, the Stokes semigroup $S(t)$ : $v_{0}\mapsto v(\cdot, t)$ is a $C_{0}$ -analytic semigroup
on $C_{0,\sigma}(\Omega)$ .
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To argue by contradiction, suppose that the estimate (2.1) were false for any choice of con-
stants $T_{0}$ and $C$ . Then, there are a sequence of solutions $\{(v_{m}, q_{m})\}_{m=1}^{\infty}$ and a sequence of points
$t_{m}\downarrow 0$ such that

$\sup_{0<t\leq t_{m}}\Vert N(v_{m}, q_{m})\Vert_{L^{\infty}(\Omega)}(t)\leq 1$ , (2.3)

$||v_{0,m}||_{L^{\infty}(\Omega)} \leq\frac{1}{m}$ , (2.4)

$||N(v_{m}, q_{m}) \Vert_{L^{\infty}(\Omega)}(t_{m})\geq\frac{1}{2}$ . (2.5)

We take the point $x_{m}\in\Omega$ such that $N(v_{m}, q_{m})(x_{m}, t_{m})\geq 1/4$ and resale $(v_{m},q_{m})$ around the point
$(x_{m}, t_{m})$ to get the blow-up sequence,

$u_{m}(x, t)=v_{m}(x_{m}+t_{m}^{1/2}x, t_{m}t) , p_{m}(x, t)=t_{m}^{1/2}q_{m}(x_{m}+t_{m}^{1/2}x, t_{m}t)$ .

Then, the blow-up sequence $(u_{m}, p_{m})$ solves the Stokes equations in the domain $\Omega_{m}\cross(0,1],$

where $\Omega_{m}=\Omega_{x_{/l}},/t_{m}^{1/2}$ is the rescaled domain which expands to either the whole space or a half
space depending on whether $d_{m}/t_{m}^{1/2},$ $d_{m}=d_{\Omega}(x_{m})$ , converges or not. Here, $d_{\Omega}(x)$ denotes the
distance from $x\in\Omega$ to the boundary $\partial\Omega.$ The estimates $(2.3)-(2.5)$ are inherited to the estimates

$\sup_{0<t\leq 1}\Vert N(u_{m}, p_{m})\Vert_{L^{\infty}(\Omega_{1t})}(t)\leq 1$ , (2.6)

$||u_{0,m}||_{L^{\infty}(\Omega_{m})}\leq\underline{1}$ (2.7)
$m$

’

$N(u_{m}, p_{m})(0,1) \geq\frac{1}{4}$ . (2.8)

The basic strategy is to show the compactness of the blow-up sequence $(u_{m}, p_{m})$ and the
uniqueness of its limit. If $(u_{m}, p_{m})$ (subsequently) converges to a limit $(u, p)$ strongly enough,
(2.8) implies $N(u,p)(O, 1)\geq 1/4$ . If the limit $(u,p)$ is unique, it is natal to expect $u\equiv 0$ and
$\nabla p\equiv 0$ . This yields a contradiction. The first part is ”compactness” of a blow-up sequence
and the second part is”uniqueness” for the limit problem. If the problem is the heat equation,
it is easy to realize this argument. However, for the Stokes equations this strategy is highly
non-trivial because of the presence of pressure.

To solve both compactness of the $bIow$-up sequence and uniqueness of its limit, a key is the
harmonic-pressure gradient estimate in terms of velocity,

$\sup_{x\in\Omega}d_{\Omega}(x)|\nabla q(x, t)|\leq C_{\Omega}\Vert W(v)\Vert_{L^{\infty}(\partial\Omega)}(t)$ (2.9)

for $W(v)=-(\nabla v-\nabla^{T}v)n_{\Omega}$ . When $n=3$ , the tangential vector field $W(v)$ agrees with the
tangential component of vorticity, i.e., -curl $v\cross n_{\Omega}$ . Here, $n_{\Omega}$ denotes the unit outward normal
vector field on $\partial\Omega$ . The estimate (2.9) is a special case of an estimate for solutions of the
homogeneous Neumann problem. We invoke that the pressure $q$ is harmonic in $\Omega.$ $A$ key
observation is that the Neumann data of the pressure $q$ is transformed into the surface divergence
of the tangential component of vorticity, i.e., $\Delta v\cdot n_{\Omega}=div_{\partial\Omega}W(v)$ as $divv=0$ in $\Omega$ . Then, the
estimate (2.9) is reduced to investigating an a priori estimate for solutions of the homogeneous
Neumann problem:

$\Delta q=0$ in $\Omega,$ $\frac{\partial q}{\partial n_{\Omega}}=div_{\partial\Omega}W$ on $\partial\Omega$ . (2.10)
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The question is for what kind of domains the estimate (2.9) holds. Since the estimate (2.9) may
not hold for general domains, we call $\Omega$ strictly admissible if the a priori estimate (2.9) holds for
all solutions of the Neumann problem (2.9). Of course, a half space is strictly admissible. It is
proved in [1], [2] by a blow-up argument that bounded and exterior domains with $C^{3}$ -boundaries
are strictly admissible.

Lemma 2.2 ([1]). Let $\Omega$ be a bounded domain in $R^{n},$ $n\geq 2$, with $C^{3}$ -boundary. Then there
exists a constant $C$ such that the a priori estimate

$\sup_{x\epsilon\Omega}d_{\Omega}(x)|\nabla q(x)|\leq C||W||_{L^{\infty}(\partial\Omega)}$
(2.11)

holds for all solutions of the Neumann problem (2.10)for tangential vectorfields $W\in L^{\infty}(\partial\Omega)$.
Recently, it turned out that the estimate (2.11) was also found by C. E. Kenig, F. Lin, and $Z.$

Shen [13], independently of the works [1], [2]. In [13] they proved the estimate (2.11) for $C^{1,\gamma_{-}}$

bounded domains directly by estimating the Green function. Note that for layer-type domains
the estimate (2.11) does not hold. In fact, $q=x^{1}$ does not satisfy the estimate (2.4) in a layer
$\Omega=\{a<x_{n}<b\}$ . Thus, layer-type domains are not strictly admissible. We conjecture that
quasi-cylindrical domains, i.e., $\varlimsup_{|x|arrow\infty}d_{\Omega}(x)<\infty$, are not strictly admissible (see [4, 4, 6.32]).

We apply the harmonic-pressure gradient estimate (2.9) in order to solve both compactness
of the blow-up sequence $(u_{m}, p_{m})$ and uniqueness of a limit problem. The estimate (2.9) is
scale invariant so (2.9) for $(v_{m},q_{m})$ is inherited to the blow-up sequence $(u_{m}, p_{m})$ with the scale
invariant constant $C_{\Omega}$ , i.e.,

$\sup_{x\in\Omega_{m}}d_{\Omega_{m}}(x)|\nabla p_{m}(x, t)|\leq C_{\Omega}\VertW(u_{m})\Vert_{L^{\infty}(\partial\Omega_{m})}(t)$
. (2.12)

Now, we observe the compactness of the blow-up sequence. When $\Omega_{m}$ expands to the whole
space, we apply the parabolic regularity theory [15] to get a uniform local H\"older bound for the
blow-up sequence in the interior of $\Omega_{m}\cross(0,1],$ which implies $that N(u_{m}, p_{m})(x, t)$ subsequently
converges to $N(u, p)(x, t)$ locally uniformly near the point $(0,1)\in R^{n}\cross(0,1]$ . Up to boundary is
more involved. When $\Omega_{m}$ expands to a half space, we apply the H\"older estimate for the Stokes
equations [27], [29], [30] and obtain a uniform local H\"older bound for the blow-up sequence up
to the boundary of $\Omega_{m}$ . Note that, without using (2.12), we can not obtain a uniform local H\"older

bound for the blow-up sequence even in the interior of $\Omega_{m}$ . In fact, $v=g(t)$ and $q=-g’(t)\cdot x$

solves (1.1) and (1.2), and $N(\nu,q)$ is bounded in $\Omega\cross(0, T]$ for any $g\in C^{1}[0, T]$ , but $v_{t}$ and $\nabla q$

may not be H\"older continuous in time variables.
The estimate (2.12) plays an important role also for the uniqueness of a limit problem. When

$\Omega_{m}$ expands to the whole space, the problem is reduced to the heat equation. In fact, the estimate
$(2,12)$ implies that $\nabla p_{m}arrow 0$ locally uniformly in $R^{n}\cross(0,1]$ . When $\Omega_{m}$ expands to a half space,
the bound (2.12) is inherited to the limit, i.e., $\sup\{t^{1/2}x_{n}|\nabla p(x, t)||x\in R_{+}^{n}, 0<t\leq 1\}<\infty,$

which implies a necessary pressure decay condition for the uniqueness, i.e., $\nabla parrow 0$ as $x_{n}arrow\infty.$

We apply the $L^{\infty}$ -type uniqueness result due to V. A. Solonnikov [28] to get $u\equiv 0$ and $\nabla p\equiv 0.$

For the detailed proof see [1].

Remarks 2.3. (i) The statement of Theorem 2.1 is valid for general strictly admissible domains
with uniformly regular boundaries [1].

(ii) It is natural to extend the result for

$L_{\sigma}^{\infty}(\Omega)=\{f\in L^{\infty}(\Omega)$ $\int_{\Omega}f\cdot\nabla\varphi dx=0$ for $\varphi\in\hat{W}^{1,1}(\Omega)\},$
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where $\hat{W}^{1,1}(\Omega)$ denotes the homogeneous Sobolev space of the form $\hat{W}^{1,1}(\Omega)=\{\varphi\in L_{1oc}^{1}(\Omega)|$

$\nabla\varphi\in L^{1}(\Omega)\}$ . In fact, for bounded domains, the Stokes semigroup is a non$-C_{0}$ -analytic semi-
group on $L_{\sigma}^{\infty}(\Omega)[1]$ . For unbounded domains, the space $L_{\sigma}^{\infty}(\Omega)$ includes non-decaying func-
tions, It is proved also for exterior domains that the Stokes semigroup is uniquely extendable to
a non$-C_{0}$ -analytic semigroup on $L_{\sigma}^{\infty}(\Omega)[2].$

(iii) In general, it is unknown whether or not $S(t)$ is a bounded analytic semigroup on $L^{\infty}$-type
spaces in the sense that both $||S(t)||x$ and $||dS(t)/dt||_{\mathcal{L}}$ are bounded in $(0, \infty)$ for $X=C_{0,\sigma}(\Omega)$

or $L_{\sigma}^{\infty}$ . For bounded domains, we are able to prove that $S(t)$ is a bounded analytic semigroup
on $C_{0,\sigma}(\Omega)$ (and also on $L_{\sigma}^{\infty}(\Omega)$ ) via the energy inequality [1]. Recently, P. Maremonti [18]
proved that $S(t)$ is a bounded semigroup on $L_{\sigma}^{\infty}(\Omega)$ for exterior domains based on the a pri-
ori $L^{\infty}$-estimate (2.1). Note that it is unknown whether $||dS(t)/dt||_{l}$ is bounded in $(0, \infty)$ for
$X=L_{\sigma}^{\infty}(\Omega)$ .

3 Resolvent approach

As we have seen a contradiction argument in the preceding section, the harmonic-pressure gra-
dient estimate (2.9) plays a key role in proving the analyticity of the Stokes semigroup on $L^{\infty}.$

It is interesting to discuss the resolvent problem corresponding to $(1,1)-(1.4)$ :

$\lambda v-\Delta v+\nabla q=f$ in $\Omega$ , (3.1)
$divv=\cdot 0$ in $\Omega$ , (3.2)

$v=0$ on $\partial\Omega$ . (3.3)

We establish the a priori estimate for

$M_{p}(v,q)(x, \lambda)=|\lambda||v(x)|+|\lambda|^{1/2}|\nabla v(x)|+|\lambda|^{n/2p}||\nabla^{2}v||_{L^{p}(\Omega_{x,|\lambda|^{-1/2}})}+|\lambda|^{n/2p}||\nabla q||_{Lp(\Omega_{x,|\lambda|^{-1/2}})},$

and $p>n$ of the form,
$\sup_{\lambda\in\Sigma_{\theta.\delta}}\Vert M_{p}(v,q)\Vert_{L^{\infty}(\Omega)}(\lambda)\leq C||f||_{L^{\infty}(\Omega)}$ (3.4)

for some constant $C>0$ independent of $f$. Here $\Omega_{x,r}$ denotes the intersection of $\Omega$ with an
open ball $B_{x}(r)$ centered at $x\in\Omega$ with radius $r>0$ , i.e., $\Omega_{X,\Gamma}=B_{x}(r)\cap\Omega$ and $\Sigma_{\theta,\delta}$ denotes
the sectorial region in the complex plane given by $\Sigma_{\theta,\delta}=\{\lambda\in C\backslash \{O\}||\arg\lambda|<\theta, |\lambda|>\delta\}$ for
$\theta\in(\pi/2,\pi)$ and $\delta>0$ . The approach is inspired by the Masuda-Stewart technique for elliptic
operators (see, e.g., [16]). The estimate (3.4) in particular implies that the Stokes semigroup is
an analytic semigroup of angle $\pi/2$ on $L^{\infty}$-type spaces. Furthermore, as noted in Remarks 3.2
(ii) the method applies also to different type of boundary conditions.

In order to prove the estimate (3.4) directly, we use the harmonic-pressure gradient estimate
(2.9) which is available also for the resolvent Stokes equations $(3.1)-(3.3)$ , i.e.,

$\sup_{x\in\Omega}d_{\Omega}(x)|\nabla q(x)|\leq C_{\Omega}\Vert W(v)\Vert_{L^{\infty}(\partial\Omega)}$ (3.5)

holds for $W(v)=-(\nabla v-\nabla^{T}v)n_{\Omega}$ . We estimate the $\sup$-norm for $M_{p}(v,q)(x, \lambda)$ by using the
estimate (3.5) and the $L^{p}$-estimate for the resolvent Stokes equations with inhomogeneous
divergence-free condition [7], [8].

From the estimate (3.4), we define the Stokes operator in $L^{\infty}$ and observe that the operator
generates an analytic semigroup on $L^{\infty}$-type spaces. Let us observe the generation of an analytic
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semigroup on $C_{0,\sigma}(\Omega)$ . By the $L^{p}$ -theory, the solutions $(v,q)$ exist for $f\in C_{c,\sigma}^{\infty}(\Omega)$ and satisfy the
estimates (3.4) and (3.5). We extend the solution operator $R(\lambda)$ : $f\mapsto v_{\lambda}$ by the estimate (3.4)
and a uniform approximation for $f\in C_{0,\sigma}(\Omega)$ . (The solution operator to the pressure gradient
$f\mapsto\nabla q_{\lambda}$ is also uniquely extended for $f\in C_{0,\sigma}$ ). We observe that $R(\lambda)$ is injective on $C_{0,\sigma}$

since the estimate (3.5) immediately implies that $f=0$ for $v_{\lambda}=R(\lambda)f=0$ and $f\in C_{0,\sigma}$ . The
operator $R(\lambda)$ may be regarded as a surjective operator from $C_{0,\sigma}$ to the range of $R(\lambda)$ . The open
mapping theorem then implies the existence of a closed operator $A$ such that $R(\lambda)=(\lambda-A)^{-1}$ ;
see [5, Proposition B.6]. We call A the Stokes operator in $C_{0,\sigma}(\Omega)$ . The estimate (3.4) says that
the Stokes operator $A$ is a sectorial operator in $C_{0,\sigma}$ . Although the following statement has a
general form as well as Theorem 2.1, here, we restrict the statement for bounded domains.

Theorem 3.1 ([3]). Let $\Omega$ be a bounded domain in $R^{n},$ $n\geq 2$, with $C^{3}$ -boundary. Let $p>n.$
For $\theta\in(\pi/2,\pi)$ there exist constants $\delta$ and $C$ such that the a priori estimate (3.4) holds for all
solutions $(v, \nabla q)$ of $(3.1)-(3.3)$ for $f\in C_{0,\sigma}(\Omega)$ and $\lambda\in\Sigma_{\theta,\delta}$ . In particular, the Stokes operator
A generates a $C_{0}$-analytic semigroup on $C_{0,\sigma}(\Omega)$ ofangle $\pi\int 2.$

Remarks 3.2. (i) The direct resolvent approach clarifies the angle of the analytic semigroup $e^{tA}$

on $C_{0,\sigma}$ . Theorem 3.1 asserts that $e^{tA}$ is angle $\pi/2$ on $C_{0,\sigma}$ which does not follow from the a
priori $L^{\infty}$-estimates for the non-stationary Stokes equations (2.1).
(ii) We observe that our argument applies to other boundary conditions, for example, to the
Robin boundary condition, i.e., $B(v)=0$ and $v\cdot n_{\Omega}=0$ on $\partial\Omega$ where

$B(v)=\alpha v_{\tan}+(D(v)n_{\Omega})_{\tan} for\alpha\geq 0$ . (3.6)

Here $D(v)=(\nabla v+\nabla^{T}v)/2$ denotes the deformation tensor and $f_{\tan}$ the tangential component
of the vector field $f$ on $\partial\Omega$ . Note that the case $\alpha=\infty$ corresponds to the Dirichlet boundary
condition (1.3); see [25] for generation results subject to the Robin boundary conditions on $L^{\infty}$

for $R_{+}^{n}$ . The $L^{p}$-resolvent estimates for the Robin boundary condition was established in [10] for
conceming analyticity and was later strengthened in [26] to non-divergence free vector fields.
We use the generalized resolvent estimate in [26] to extend our result in spaces of bounded
functions to the Robin boundary condition.
In the sequel, we sketch the proof for the a priori estimate (3.4). Our argument can be divided
into the following three steps:

(i) (Localization) We first localize a solution $(v,q)$ of the resolvent Stokes equations $(3.1)-(3.3)$

in a domain $\Omega’=B_{x_{0}}((\eta+1)r)\cap\Omega$ for $x_{0}\in\Omega,$ $r>0$ and parameters $\eta\geq 1$ by setting $u=v\theta_{0}$

and $p=(q-q_{c})\theta_{0}$ with a constant $q_{c}$ and the smooth cutoff function $\theta_{0}$ around $\Omega_{x_{0},r}$ satisfying
$\theta_{0}\equiv 1$ in $B_{x_{0}}(r)$ and $\theta_{0}\equiv 0$ in $B_{x0}((\eta+1)r)^{c}$ . We then observe that $(u, p)$ solves the resolvent
Stokes equations with inhomogeneous divergence-free condition in the localized domain $\Omega’.$

Applying the $L^{p}$-estimates for the localized Stokes equations we have

$|\lambda|||u||_{L(\Omega’)}p+|\lambda|^{1/2}||\nabla u||_{LF(\Omega’)}+||\nabla^{2}u||_{U(\Omega’)}+||\nabla p||_{Lp(\Omega’)}$

$\leq C_{p}(||h||_{Lp(\Omega’)}+||\nabla g||_{ly(\Omega’)}+|\lambda|||g||_{W_{0}^{-1.p}(\Omega’)})$ , (3.7)

where $W_{0}^{-1,p}(\Omega’)$ denotes the dual space of the Sobo]ev space $W^{1,p’}(\Omega’)$ with $1/p+1 \int p’=1$ . The
external forces $h$ and $g$ contain error terms appearing in the cut-off procedure and are explicitly
given by

$h=f\theta_{0}-2\nabla v\nabla\theta_{0}-v\Delta\theta_{0}+(q-q_{c})\nabla\theta_{0}, g=v\cdot\nabla\theta_{0}$ . (3.8)
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(ii) (Error estimates) $A$ key step is to estimate the error terms of the pressure such as $(q-q_{c})\nabla\theta_{0}.$

We here simplify the description by disregarding the terms related to $g$ in order to describe the
essence of the proof. Now, the error terms related to $h$ are estimated in the form

$||h||_{L^{p}(\Omega’)}\leq Cr^{n/p}((\eta+1)^{n\int p}||f||_{L^{\infty}(\Omega)}+(\eta+1)^{-(1-n/p)}(r^{-2}\Vert v\Vert_{L^{\infty}(\Omega)}+r^{-1}\Vert\nabla v||_{L^{\infty}(\Omega)}))$. (3.9)

If we disregard the term $(q-q_{c})\nabla\theta_{0}$ in $h$ , the estimates (3.9) easily follows from the estimates of
the cutoff function $\theta_{0}$ , i.e. $||\theta_{0}||_{\infty}+(\eta+1)r||\nabla\theta_{0}||_{\infty}+(\eta+1)^{2}r^{2}||\nabla^{2}\theta_{0}||_{\infty}\leq K$ with some constant $K.$

We invoke the harmonic-pressure gradient estimate (3.5) in order to handle the pressure term in
terms of velocity through the Poincar\’e-Sobolev-type inequality:

$||\varphi-(\varphi)||_{Lp(\Omega_{x_{0^{S}}},)}\leq Cs^{n/p}||\nabla\varphi||_{L_{d}^{\infty}(\Omega)}$ for all $\varphi\in\hat{W}_{d}^{1,\infty}(\Omega)$ , (3.10)

with some constant $C$ independent of $s>0$ , where $(\varphi)$ denotes the mean value of $\varphi$ in $\Omega_{x_{0},s}$ and
$\hat{W}_{d}^{1,\infty}(\Omega)=\{\varphi\in L_{1oc}^{1}(\overline{\Omega})|\nabla\varphi\in L_{d}^{\infty}(\Omega)\}$. By taking $q_{c}=(q)$ and applying (3.10) for $\varphi=q$ and
$s=(\eta+1)r$ , we obtain the estimate (3.9) via (3.5).
(iii) (Interpolation) Once we establish the error estimates for $h$ and $g$ , it is easy to obtain the
estimate (3.4) by applying the interpolation inequality,

$||\varphi||_{L^{\infty}(\Omega_{x_{0^{\Gamma}}},)}\leq C_{l}r^{-n/p}(||\varphi||_{U(\Omega_{x_{0^{\gamma}}},)}+r||\nabla\varphi||_{L^{\rho}(\Omega_{X},)}0^{r})$ for $\varphi\in W_{1oc}^{1,p}(\Omega)-$ , (3.11)

for $\varphi=u$ and $\nabla u$ . Now taking $r=|\lambda|^{-1/2}$ we obtain the estimate for $M_{p}(v, q)(x_{0}, \lambda)$ with the
parameters $\eta$ of the form,

$M_{p}(v, q)(x_{0}, \lambda)\leq C((\eta+1)^{n\int p}||f||_{L^{\infty}(\Omega)}+(\eta+1)^{-(1-n\int p)}||M_{p}(v, q)||_{L^{\infty}(\Omega)}(\lambda))$ (3.12)

for some constant $C$ independent of $\eta$ . The second term in the right-hand side is absorbed into
the left-hand side by letting $\eta$ sufficiently large provided $p>n.$

Actually, in the procedure (ii) we take $q_{c}$ by the mean value of $q$ in $\Omega_{x_{0},(\eta+2)r}$ since we
estimate $|\lambda|||g||_{W_{0}^{-1.p}}$ . By using the equation (3.1) we reduce the estimate of $|\lambda|||g||_{W_{0}^{-1,p}}$ to the
$L^{\infty}$-estimate for the boundary value of $q-q_{c}$ on $\partial\Omega’$ . In order to estimate $||q-q_{c}||_{L^{\infty}(\Omega’)}$ we
use a uniformly local $L^{p}$ -norm bound for $\nabla q$ besides the $\sup$-bound for $\nabla v$ . This is the reason
why we need the norm $||M_{p}(v, q)||_{L^{\infty}(\Omega)}(\lambda)$ in the right-hand side of (3.12). For general elliptic
operators, the estimate (3.12) is valid without invoking the uniformly local $L^{p}$ -norm bound for
second derivatives of a solution. See [3] for the detailed proof.
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