HOMOTOPY COMMUTATIVITY IN LOCALIZED GAUGE GROUPS

DAISUKE KISHIMOTO

1. INTRODUCTION AND STATEMENT OF THE RESULT

This is a survey the paper [KKTh] written with Akira Kono and Stephen Theriault.

Throughout the paper, we only consider the Lie group G = SU(n) for simplicity, while most results hold for other simply connected, simple Lie groups. Let us recall *p*-local properties of *G*.

Theorem 1.1 (Mimura, Nishida and Toda [MNT]). There exist p-local spaces B_1, \ldots, B_{p-1} satisfying

$$G_{(p)} \simeq B_1 \times \cdots \times B_{p-1},$$

where the mod p cohomology of B_i is given by

$$H^*(B_i; \mathbb{Z}/p) = \Lambda(x_{2i+1+2k(p-1)} \mid 0 \le k < \frac{n-i-1}{p-1}), \quad |x_j| = j.$$

This is called the mod p decomposition of G. Observe that if $p \ge n$, each B_i has the homotopy type of $S_{(p)}^{2i+1}$ or a point. Then we can say that the p-local homotopy type of G degenerates as p gets larger. So it is natural to consider degeneration of the H-structure of $G_{(p)}$ as p gets larger. As for homotopy commutativity, the complete answer was given by McGibbon [M] as:

Theorem 1.2 (McGibbon [M]). $G_{(p)}$ is homotopy commutative if and only if p > 2n.

Later, this result was generalized by Kaji and Kishimoto [KaKi] and Kishimoto [Ki] to homotopy nilpotency.

Our object to study is a gauge group which is the topological group of all automorphisms of a principal bundle, i.e. self-maps of the total space which are compatible with the action of the fiber and cover the identity map of the base space. Recall that principal G-bundles over S^4 are classified by $\pi_4(BG) \cong \mathbb{Z}$. We write the gauge group of the principal G-bundle over S^4 corresponding to the integer $k \in \mathbb{Z} \cong \pi_4(BG)$ by \mathcal{G}_k . The homotopy theory of gauge groups has been studied in many directions (cf. [CS, Ko, KiKo]). In each work, we have seen that \mathcal{G}_k has a close relation with G as is expected from definition. So we may expect that \mathcal{G}_k possesses p-local properties analogous to G. As for the mod p decomposition, our expectation has been proved to be true.

The second author is partially supported by the Grant-in-Aid for Scientific Research (C)(No.25400087) from the Japan Society for Promotion of Sciences.

$$\mathcal{G}_{k(p)} \simeq \mathcal{B}_1 \times \cdots \times \mathcal{B}_{p-1}$$

and homotopy fibrations

$$\Omega(\Omega_0^3 B_i) \to \mathcal{B}_i \to B_{i-2},$$

where we regard the spaces B_i of Theorem 1.1 are indexed by $\mathbb{Z}/(p-1)$. Moreover, the homotopy fibrations are trivial if $p \ge n+2$.

In particular, we can say that the *p*-local homotopy type of \mathcal{G}_k degenerates as *p* gets larger, analogously to *G*. Now we naturally ask whether there is a gauge group version of Theorem 1.2. Let us state our main result.

Theorem 1.4. Suppose $n \ge 4$.

- (1) For p < 2n + 1, $\mathcal{G}_{k(p)}$ is not homotopy commutative.
- (2) For p > 2n + 1, $\mathcal{G}_{k(p)}$ is homotopy commutative.
- (3) For p = 2n + 1, $\mathcal{G}_{k(p)}$ is homotopy commutative if and only if p divides k.

Remark 1.5. Note that the integer k only appears in the border case p = 2n + 1.

2. Noncommutativity

In this section, we give a sketch of the proof of the noncommutativity result on $\mathcal{G}_{k(p)}$. We first recall basic facts of gauge groups briefly. Let ϵ_i be a generator of $\pi_{2i-1}(G) \cong \mathbb{Z}$ for $i = 2, \ldots, n$. Recall that there is a natural homotopy equivalence

$$B\mathcal{G}_k \simeq \max(S^4, BG; k\bar{\epsilon}_2),$$

where map(X, Y; f) stands for the connected component of the space of maps from X to Y containing a map $f : X \to Y$ and $\bar{\epsilon}_2 : S^4 \to BG$ is the adjoint of ϵ_2 . See [AB]. Then the evaluation map map $(S^4, BG; k\bar{\epsilon}_2) \to BG$ induces a homotopy fibration

(2.1)
$$\mathcal{G}_k \xrightarrow{\pi} G \xrightarrow{\delta} \Omega_0^3 G,$$

where π is a loop map. The map δ is identified as:

Lemma 2.1 (Whitehead [W]). The map δ is the adjoint of the Samelson product $\langle \epsilon_2, 1_G \rangle$.

Hereafter, everything will be localized at the prime p.

We now sketch the proof of noncommutativity of \mathcal{G}_k . Suppose that there are $2 \leq i, j, \leq n$ such that

(2.2)
$$\langle \epsilon_2, \epsilon_i \rangle = 0, \quad \langle \epsilon_2, \epsilon_j \rangle = 0, \quad \langle \epsilon_i, \epsilon_j \rangle \neq 0.$$

Since $\delta \circ \epsilon_{\ell}$ is the adjoint of $\langle \epsilon_2, \epsilon_{\ell} \rangle$ by Lemma 2.1, $\delta \circ \epsilon_{\ell}$ is null homotopic for $\ell = i, j$. Then for $\ell = i, j, \epsilon_{\ell}$ lifts to $\tilde{\epsilon}_{\ell} : S^{2\ell-1} \to \mathcal{G}_k$ through $\pi : \mathcal{G}_k \to G$. Consider the Samelson product $\langle \tilde{\epsilon}_i, \tilde{\epsilon}_j \rangle$. Since π is an H-map, we have

$$\pi \circ \langle \tilde{\epsilon}_i, \tilde{\epsilon}_j \rangle = \langle \pi \circ \tilde{\epsilon}_i, \pi \circ \tilde{\epsilon}_j \rangle = \langle \epsilon_i, \epsilon_j \rangle$$

which is nontrivial by assumption. Then in particular, we obtain that \mathcal{G}_k is not homotopy commutative. So our task is to find $2 \leq i, j \leq n$ satisfying (2.2), which is easily done by the following classical result if $n \geq 4$.

Theorem 2.2 (Bott [B]). If $2 \le i, j \le n$ and i + j > n, the order of the Samelson product $\langle \epsilon_i, \epsilon_j \rangle$ is a nonzero multiple of

$$\frac{(i+j-1)!}{(i-1)!(j-1)!}$$

3. Commutativity

In this section, we give a brief sketch of the proof of the commutativity result on \mathcal{G}_k . If the map π in the homotopy fibration (2.1) has a homotopy section, we have a decomposition

$$\mathcal{G}_k \simeq G \times \Omega(\Omega_0^3 G)$$

as spaces. If this decomposition is as H-spaces and G is homotopy commutative (i.e. p > 2n by Theorem 1.2), we obtain that \mathcal{G}_k is homotopy commutative as desired. Then we give a criterion for the decomposition being as H-spaces, where we omit the proof.

Lemma 3.1 (cf. [KiKo]). If there is an H-map $\hat{s} : G \to \mathcal{G}_k$ such that $\pi \circ \hat{s}$ is a homotopy equivalence, then there is a homotopy equivalence as H-spaces

$$\mathcal{G}_k \simeq G \times \Omega(\Omega_0^3 G).$$

In particular, if moreover p > 2n, \mathcal{G}_k is homotopy commutative.

For the rest of this section, we assume p > 2n. Then in particular, $G \simeq S^3 \times S^5 \times \cdots \times S^{2n-1}$

Since G is homotopy commutative, it follows from Lemma 2.1 that π has a homotopy section $s: G \to \mathcal{G}_k$, not necessarily an H-map. We replace this homotopy section with an H-map. To this end, we employ the loop-suspension technique.

Theorem 3.2 (James [J]). Consider a map $f : X \to Y$ where Y is a homotopy associative Hspace. There is a unique (up to homotopy) H-map $\overline{f} : \Omega \Sigma X \to Y$ satisfying $\overline{f} \circ E \simeq f$ for the suspension map $E : X \to \Omega \Sigma X$, where \overline{f} is called the extension of f.

We put $A = S^3 \vee S^5 \vee \cdots \vee S^{2n-1}$ and let $i : A \to G$ be the inclusion of a wedge into a product. Let F be the homotopy fiber of the extension $\overline{i} : \Omega \Sigma A \to G$, and let $\lambda : F \to \Omega \Sigma$ be the fiber inclusion. By an easy diagram chasing, we can prove: **Lemma 3.3.** Consider a map $f: G \to Z$ where Z is a homotopy associative H-space. If the composite $F \xrightarrow{\lambda} \Omega \Sigma A \xrightarrow{\overline{f \circ i}} Z$ is null homotopic, there is an H-map $\hat{f}: G \to Z$ satisfying the homotopy commutative square

$$\begin{array}{c} \Omega \Sigma A \xrightarrow{\overline{i}} G \\ & & \downarrow_{\overline{f \circ i}} & & \downarrow_{\widehat{f}} \\ Z \xrightarrow{} Z \xrightarrow{} Z. \end{array}$$

Suppose now that the composite $F \xrightarrow{\lambda} \Omega \Sigma A \xrightarrow{\overline{soi}} \mathcal{G}_k$ is null homotopic. Then it follows from Lemma 3.3 that there is an H-map $\hat{s}: G \to \mathcal{G}_k$ satisfying the homotopy commutative diagram

$$\begin{array}{c} \Omega \Sigma A \xrightarrow{\tilde{i}} G \\ \downarrow \overline{soi} & \downarrow \hat{s} \\ \mathcal{G}_k = \mathcal{G}_k. \end{array}$$

In particular, there is a chain of homotopies

$$\pi \circ \hat{s} \circ i \simeq \pi \circ \hat{s} \circ \overline{i} \circ E \simeq \pi \circ (\overline{s \circ i}) \circ E \simeq \pi \circ s \circ i \simeq i.$$

In the mod p homology, the map $i: A \to G$ induces the inclusion of ring generators. Then $\pi \circ \hat{s}$ turns out to be the identity map on ring generators in the mod p homology, hence since $\pi \circ \hat{s}$ is an H-map, it is an isomorphism in the mod p homology. So we obtain that $\pi \circ \hat{s}$ is a p-local homotopy equivalence. Then all we have to do is prove that the composite $F \xrightarrow{\lambda} \Omega \Sigma A \xrightarrow{\overline{soi}} \mathcal{G}_k$ is null homotopic. To this end, we analyze the fiber inclusion λ .

Let F' be the homotopy fiber of the adjoint $\Sigma A \to BG$ of the inclusion $i : A \to G$. Since the extension $\overline{i} : \Omega \Sigma A \to G$ is the loop of the above adjoint, we get:

Lemma 3.4. $F \simeq \Omega F'$ and the fiber inclusion $\lambda : \Omega F' \to \Omega \Sigma A$ is a loop map.

Let L be the free Lie algebra generated by $\widetilde{H}_*(A; \mathbb{Z}/p)$. Then as in [CN], the induced map $\overline{i}_*: H_*(\Omega\Sigma A; \mathbb{Z}/p) \to H_*(G; \mathbb{Z}/p)$ is identified with the map between universal envelopes

$$U(L) \rightarrow U(L/[L, L])$$

induced from the abelianization $L \to L/[L, L]$. Moreover, there is a splitting

$$U(L) \cong U([L, L]) \otimes U(L/[L, L]),$$

hence the image of $\lambda_* : H_*(F; \mathbb{Z}/p) \to H_*(\Omega \Sigma A; \mathbb{Z}/p)$ is identified with $U([L, L]) \subset U(L)$. A little more consideration shows that the Lie algebra generators of [L, L] are spherical and lift to F. So we obtain:

Theorem 3.5. There is a wedge of spheres R such that $F' \simeq \Sigma R$, and the composite $R \xrightarrow{E} \Omega \Sigma R \xrightarrow{\lambda} \Omega \Sigma A$ is a wedge of iterated Samelson products of

$$\mu_j: S^{2j-1} \xrightarrow{\text{incl}} A \xrightarrow{E} \Omega \Sigma A.$$

Corollary 3.6. If p > 2n + 1, the composite $F \xrightarrow{\lambda} \Omega \Sigma A \xrightarrow{\overline{soi}} \mathcal{G}_k$ is null homotopic.

Proof. Put $\bar{\mu}_j = (\overline{s \circ i}) \circ \mu_j$. We consider the Samelson product $\langle \bar{\mu}_{i_1}, \bar{\mu}_{i_2} \rangle$. Since π is an H-map and G is homotopy commutative, we have

$$\pi \circ \langle \bar{\mu}_{i_1}, \bar{\mu}_{i_2} \rangle = \langle \pi \circ \bar{\mu}_{i_1}, \pi \circ \bar{\mu}_{i_2} \rangle = 0.$$

Then $\langle \bar{\mu}_{i_1}, \bar{\mu}_{i_2} \rangle$ lifts to a map $S^{2i_1+2i_2-2} \to \Omega(\Omega_0^3 G)$ by the homotopy fibration $\Omega(\Omega_0^3 G) \to \mathcal{G}_k \xrightarrow{\pi} G$. Since p > 2n + 1, we have $\pi_{2m}(\Omega(\Omega_0^3 G)) = 0$ for $m \leq 2n - 1$ by [To], implying that the above lift is null homotopic. Then we obtain $\langle \bar{\mu}_{i_1}, \bar{\mu}_{i_2} \rangle = 0$, hence

$$0 = \langle \bar{\mu}_{j_1}, \langle \cdots \langle \bar{\mu}_{j_{m-1}}, \bar{\mu}_{j_m} \rangle \cdots \rangle \rangle = (\overline{s \circ i}) \circ \langle \mu_{j_1}, \langle \cdots \langle \mu_{j_{m-1}}, \mu_{j_m} \rangle \cdots \rangle \rangle$$

since $\overline{s \circ i}$ is an H-map. Thus by Theorem 3.5, the composite $R \xrightarrow{E} \Omega \Sigma R \xrightarrow{\lambda} \Omega \Sigma A \xrightarrow{\overline{s \circ i}} \mathcal{G}_k$ is null homotopic. Therefore we obtain the desired result by the uniqueness of the extension and Lemma 3.4.

4. The case p = 2n + 1

Throughout this section, we assume p = 2n + 1.

As in the previous section, it is sufficient for proving the commutativity result to show that the homotopy section $s: G \to \mathcal{G}_k$ is an H-map. This is equivalent to show that the adjoint

$$\bar{s}: \Sigma G \to B\mathcal{G}_k \simeq \max(S^4, BG: k\bar{\epsilon}_2)$$

extends to the projective plane P^2G . By the exponential law, this is equivalent to existence of a map $\mu: S^4 \times P^2G \to BG$ satisfying a homotopy commutative diagram

$$S^{4} \vee \Sigma G \xrightarrow{k\bar{e}_{2} \vee \bar{s}} BG$$
$$\downarrow \text{incl} \qquad \qquad \parallel$$
$$S^{4} \times P^{2}G \xrightarrow{\mu} BG.$$

Since P^2G is the cofiber of the Hopf construction $\Sigma G \wedge G \to \Sigma G$ and $\Sigma G \wedge G$ has the homotopy type of a wedge of spheres of dimension $\leq 2n^2 - 1 = \frac{(p-1)^2}{2} - 1$, we see that the obstruction for existence of μ lies in $\pi_*(BG)$ for $* \leq \frac{(p-1)^2}{2} + 3$. Since the obstruction is torsion in $\pi_*(BG)$, we see from [To] that it is of order at most p. Moreover, we also see that the obstruction is linear in k. Then we get:

Proposition 4.1. If p divides k, the homotopy section s is an H-map, hence \mathcal{G}_k is homotopy commutative.

When p does not divide k, we can prove that the obstruction is nontrivial by looking at the Steenrod operation on the mod p cohomology of BG. Then we have:

Proposition 4.2. If p does not divide k, the homotopy section s cannot be an H-map.

Corollary 4.3. If p does not divide k, \mathcal{G}_k is not homotopy commutative.

Proof. Suppose that \mathcal{G}_k is homotopy commutative. Then the argument in the previous section ensures that there is an H-map $\hat{s} : G \to \mathcal{G}_k$ such that the composite $e = \pi \circ \hat{s}$ is a homotopy equivalence. If we put $s = \hat{s} \circ e^{-1}$, s is a homotopy section of π and is an H-map, which contradicts to Proposition 4.2.

References

- [AB] M.F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), 523-615.
- [B] R. Bott, A note on the Samelson product in the classical Lie groups, Comment. Math. Helv. 34 (1960), 245-256.
- [CMN] F.R. Cohen, J.C. Moore, and J.A. Neisendorfer, Torsion in Homotopy Groups, Ann. of Math. 109 (1979), 121-168.
- [CN] F.R. Cohen and J.A. Neisendorfer, A construction of p-local H-spaces, pp. 351-359. LNM 1051, Springer, Berlin, 1984.
- [CS] M.C. Crabb and W.A. Sutherland, Counting homotopy types of gauge groups, Proc. London Math. Soc.
 (3) 81 (2000), no. 3, 747-768.
- [J] I.M. James, Reduced Product Spaces, Ann. of Math. 62 (1955), 170-197.
- [M] C.A. McGibbon, Homotopy commutativity in localized groups, Amer. J. Math 106 (1984), 665-687.
- [MNT] M. Mimura, G. Nishida and H. Toda, Mod p decomposition of compact Lie groups, Publ. Res. Inst. Math. Sci. 13 (1977/78), no. 3, 627-680.
- [KaKi] S. Kaji and D. Kishimoto, Homotopy nilpotency in p-regular loop spaces, Math. Z. 264 (2010), no. 1, 209-224.
- [Ki] D. Kishimoto, Homotopy nilpotency in localized SU(n), Homology, Homotopy Appl. 11 (2009), no. 1, 61-79.

[KiKo] D. Kishimoto and A. Kono, Splitting of gauge groups, Trans. Amer. Math. Soc. 362 (2010), 6715-6731.

- [KKTs] D. Kishimoto, A. Kono and M. Tsutaya, Mod p decompositions of gauge groups, Algebr. Geom. Topol. 13 (2013), no. 3, 1757-1778.
- [KKTh] D. Kishimoto, A. Kono and S. Theriault, Homotopy commutativity in p-localized gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), 851-870.
- [Ko] A. Kono, A note on the homotopy type of certain gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 117 (1991), 295-297.
- [Th] S.D. Theriault, The odd primary H-structure of low rank Lie groups and its application to exponents, Trans. Amer. Math. Soc. 359 (2007), no. 9, 4511-4535 (electronic).
- [To] H. Toda, Composition Methods in Homotopy Groups of Spheres, Ann. of Math. Studies 49, Princeton Univ. Press, Princeton N.J., 1962.
- [W] G.W. Whitehead, On products in homotopy groups, Ann. of Math (2) 47, (1946). 460-475.

DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY, KYOTO, 606-8502, JAPAN *E-mail address*: kishi@math.kyoto-u.ac.jp