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Abstract. Let $G$ be a finite group. In this article, we recall an equi-

variant transversality theorem and discuss its applications to semifree
$G$-actions on closed manifolds and to Smith-equivalent real $G$-modules.

1. INTRODUCTION

Unless otherwise stated, let $G$ be a finite group. We mean by a manifold a
paracompact smooth manifold. $A$ submanifold, $M$ say, of a manifold, $N$ say, should

be read as a regular smooth submanifold such that $M$ is a closed subset of $N$ . We
mean by a $G$ -manifold a smooth manifold with a smooth $G$-action. In particular,

each connected component of a manifold in the present article is $\sigma$-compact, and an
arbitrary $G$-manifold can be equipped with a $G$-invariant Riemannian metric.

Let $M$ and $N$ be manifolds, $B$ a subset of $M,$ $Y$ a submanifold of $N$ , and $f$ :
$Marrow N$ a continuous map. We say that $f$ is transversal on $B$ to $Y$ in $N$ if $f$ is

smooth on a neighborhood of $f^{-1}(Y)\cap B$ in $M$ and the linear map

$T_{x}(M)arrow^{df_{x}}T_{y}(N)arrow T_{y}(N)/T_{y}(Y)$

is surjective for every $y\in Y$ and $x\in f^{-1}(y)\cap B$ , where $T_{x}(M)$ stands for the

tangent space of $M$ at $x$ . There have been obtained several versions of equivariant

transversality theorems, e.g. A. Wasserman [19, Lemma 3.3], T. Petrie [16, \S 1,
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p.188], E. Bierstone [1, Theorem 1.3]. In this paper we will discuss applications of
the next version.

Theorem 1.1. Let $M$ be a $G$ -manifold, $N$ a $G$ -manifold with a $G$-invariant Rie-
mannian metric, $A$ a $G$ -invariant closed subset of $M$ , and $Y$ a $G$-submanifold of
N. Let $f$ : $Marrow N$ be a smooth $G$ -map transversal on $A$ to $Y$ in N. Suppose
the $G$ -action on $M\backslash A$ is free. Then for an arbitrary $G$-invariant positive contin-
uous function $\delta$ : $Marrow \mathbb{R}$ , there exists a smooth $G$ -map $g:Marrow N$ satisfying the
following conditions.

(1) $g$ is transversal on $M$ to $Y$ in $N.$

(2) $g|_{A}=f|_{A}.$

(3) $d_{N}(f(x), g(x))<\delta(x)$ for all $x\in M$ , where $d_{N}$ stands for the distance
function on $N$ induced from the Riemannian metric of $N.$

We mean by a real (resp. complex) $G$-module a real (resp. complex) $G$-representation
space of finite dimension. For a real $G$-module $V$ (of finite dimension), let $S(V)$ de-
note the unit sphere of $V$ with respect to some $G$-invariant inner product on $V$ . The
following two propositions have been known.

Proposition ([14, Lemma 2.1]). If $G$ is a group of order 2 and $M$ is a connected
closed $G$ -manifold of positive dimension then $|M^{G}|\neq 1.$

Proposition ([7, Lemma 2.2]). If $M$ is a connected closed orientable $G$ -manifold
of positive dimension such that the $G$ -action on $M\backslash M^{G}$ is free, then $|M^{G}|\neq 1.$

The latter proposition is generalized to the next result.

Theorem 1.2. Let $M$ be a connected closed oriented $G$ -manifold of dimension $n+1,$

and $\Sigma$ an oriented homotopy sphere of dimension $n$ . Suppose the $G$ -action on $M$

is semifree and preserves the orientation of M. If $M^{G}$ is a finite set then the
congruence

$\sum_{x\in M^{G}}\deg(f_{x})\equiv 0 mod |G|$

holds, where $T_{x}(M)$ is the tangent space of $M$ at $x$ and $f_{x}$ is an arbitrary (continu-
ous) $G$ -map $S(T_{x}(X))arrow\Sigma$ for each $x\in M^{G}.$
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Theorem 1.3. Let $M$ be a connected closed oriented $G$ -manifold of positive dimen-
sion such that the $G$ -action on $M$ is semifree and $M^{G}=\{a, b\}$ . Then the spheres
$S(T_{a}(M))$ and $S(T_{b}(M))$ are $G$ -homotopy equivalent to each other.

Corollary 1.4. Let $V$ and $W$ be real $G$ -representations satisfying $\dim V=\dim W.$

If $S(V)\coprod S(W)$ is the boundary of a compact orientable $G$ -manifold $M$ such that

the $G$ -action on $M$ is free then $S(V)$ and $S(W)$ are $G$ -homotopy equivalent to each

other.

A homotopy sphere $\Sigma$ with a $G$-action is called a Smith sphere if $\Sigma^{G}$ consists of

exactly 2 points. Two real $G$-modules $V$ and $W$ are said to be Smith equivalent if

there exists a Smith sphere $\Sigma$ such that $\Sigma^{G}=\{a, b\}$ with $V\cong T_{a}(\Sigma)$ and $W\cong T_{b}(\Sigma)$

as real $G$-modules.

Theorem 1.5. Let $G$ be a finite group and let $V$ and $W$ be Smith-equivalent real
$G$ -modules. For any normal subgroup $H$ of $G$ such that $|G/H|$ is a prime and a
Sylow 2-subgroup $H_{2}$ of $H$ is normal in $H,$ $S(V^{H})$ and $S(W^{H})$ are $G/H$-homotopy

equivalent to each other.

2, TRANSVERSALITY OF MAPS

In this section, let us recall classical transversality theorems. First, recall a result

by A. Wasserman.

Lemma (A. Wasserman [19, Lemma 3.3]). Let $G$ be a compact Lie group, $M$ and $N$

$G$ -manifolds, $f$ : $Marrow N$ a smooth $G$ -map, $W\subset N$ a closed invariant submanifold,

and $C$ a closed subset of $M^{G}$ . Suppose $f|_{M^{G}}$ is transversal on $C$ to $W^{G}$ in $N^{G}$ . Then

there exists a homotopy $f_{t}$ such that $f_{0}=f,$ $f_{t}|_{C}=f|_{C}$ , and $f_{1}|_{M^{G}}$ is transversal

on $M^{G}$ to $W^{G}$ in $N^{G}.$

T. Petrie gave several versions and the next one may be most basic.

Proposition (Petrie [16, \S 1, p.188]). Let $G$ be a compact Lie group. Let $M,$ $N$ and
$Y\subset N$ be $G$ -manifolds and $f$ : $Marrow N$ a proper $G$ -map. Suppose $f$ : $Marrow N$

is transversal to $Y$ on a $G$ -neighborhood of a closed subset $Z$ of M. Let $K$ be a

maximal closed subgroup such that $(M\backslash Z)^{K}\neq\emptyset$ . Then $f$ is $G$ -homotopic $relZ$ to

a proper $G$ -map $h:Marrow N$ such that $h^{K}$ is transversal on $M^{K}$ to $Y^{K}$ in $Z^{K}.$
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As its proof, T. Petrie wrote as follows. (Note that $N(K)/K$ acts freely on
$M^{K}\backslash Z.)$ “This uses the Thom Transversality Lemma [11] for the case of trivial
group action and the $G$-homotopy extension lemma [19, Lemma 3.2].” Here the
reference [11] should be replaced by an appropriate one.

Another version is obtained by E. Bierstone’s theory, namely from the following
three results.

Theorem (Bierstone [1, Theorem 1.3]). Let $G$ be a compact Lie group. If $P$ is a
closed $G$ -submanifold of $N$ , then the set of smooth equivariant maps $F:Marrow N$

which are in general position with respect to $P$ is open in Whitney topology.

Theorem ([1, Theorem 1.4]). Let $G$ be a compact Lie group. If $P$ is an invariant

submanifold of $N$ , then the set of smooth equivariant maps $F:Marrow N$ which are
in general position with respect to $P$ is a countable intersection of open dense sets
(in the Whitney of $C^{\infty}$ topology).

Proposition ([1, Proposition 6.3]). If a smooth equivariant map $F$ : $Marrow N$

is in general position with respect to an invariant submanifold $P$ of $N$ , then it is
stratumwise transversal to P. In other words, for every isotropy subgroup $H$ of $M,$

$F|_{M^{H}}$ : $M_{H}arrow N^{H}$ is transversal to $P^{H}.$

Our Theorem 1.1 is an equivariant analogue of A. Hattori [6, Ch.6, \S 3, Theo-
rem 3.6].

3. MAPS BETWEEN SPHERES

We mean by a homotopy sphere a closed manifold being homotopy equivalent to
a sphere. Let $X$ be a finite G-$CW$ complex such that $G$ acts freely on $X$ . For a
$G$-map $f$ : $Xarrow X$ , the Lefschetz number $L(f)$ is congruent to $0$ mod $|G|$ . In the
case where $X$ is a homotopy sphere of dimension $n$ , we have

(3.1) $L(f)=1+(-1)^{n}\deg f\equiv 0$ mod $|G|.$

Using this property, we can prove the next fact without difficulties.

Lemma 3.1 ([17, 4, 9]). Let $X$ be a connected homotopy sphere with a free $G$ -action.

Then for any $G$ -map $f$ : $Xarrow X,$ $\deg f$ is congruent to 1 mod $|G|.$

115



In addition, by standard arguments using Steenrod’s obstruction theory [18], we

can prove the next fact.

Lemma 3.2 ([17, 4]). Let $X$ and $Y$ be connected homotopy spheres of same dimen-

sion with free $G$ -actions. Then the following conclusions hold.

(1) There exist a $G$ -map $Xarrow Y$ and a $G$ -map $Yarrow X.$

(2) For any $G$ -maps $f_{0_{J}}f_{1}$ : $Xarrow Y,$ $\deg f_{0}\equiv\deg f_{1}$ mod $|G|.$

(3) For any $G$ -map $f_{0}$ : $Xarrow Y$ and any integer $m$ , there exists a $G$ -map

$f_{1}$ : $Xarrow Y$ such that $\deg f_{1}=\deg f_{0}+m|G|.$

These lemmas provide the next proposition.

Proposition 3.3. Let $X$ and $Y$ be connected homotopy spheres of same dimension

with free $G$ -actions and let $f$ : $Xarrow Y$ be a $G$ -map. Then $\deg f$ is prime to $|G|.$

Proof. By Lemma 3.2, there is a $G$-map $g:Yarrow X$ . Moreover by Lemma 3.1 we

have
$\deg(g\circ f)\equiv 1 mod |G|$

and $\deg(gof)=\deg g\cdot\deg f$ . Thus $\deg f$ is prime to $|G|.$
$\square$

4. TANGENTIAL REPRESENTATIONS

Let $V$ be a real $G$-module such that the $G$-action on $V\backslash \{O\}$ is free. We adopt

an orientation of the ambient space of $V$ . Let $\Sigma$ be an oriented homotopy sphere

equipped with a free smooth $G$-action such that $\dim\Sigma=\dim S(V)$ . Then there

exists a smooth $G$-map $f_{V,\Sigma}$ : $S(V)arrow\Sigma$ and $\deg(f_{V,\Sigma})$ is prime to $|G|.$

Proof of Theorem 1.2. Let us fix an arbitrary point $a\in M^{G}$ . The tangential rep-

resentation $V=T_{a}(M)$ has the orientation inherited from that of $M$ . Since the
$G$-action on $S(V)$ preserves the orientation, $\dim S(V)$ is odd. Without any loss

of generality, we can assume $\Sigma=S(V)$ . Set $Y=S(\mathbb{R}\oplus V)$ . There is a canon-

ical orientation preserving $G$-diffeomorphism from the $G$-disk $D(V)$ to the upper

hemisphere $S_{+}$ of $Y$ . This diffeomorphism carries the center of $D(V)$ to the north

pole $P+=(1,0)$ of $Y$ , where $1\in \mathbb{R}$ and $0\in V$ . Take small $G$-disk neighborhoods

$D_{x}(\cong D(T_{x}(M)))$ of points $x\in M^{G}$ in $M$ , respectively, so that $D_{x_{1}}\cap D_{x_{2}}=\emptyset$
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for distinct $x_{1},$ $x_{2}\in M^{G}$ . For each point $x\in M^{G}$ , there is a smooth $G$-map
$f_{x}:\partial D_{x}arrow S(V)=\partial S_{+}$ . Let $Df_{x}$ : $D_{x}arrow D(V)=S_{+}$ denote the radial extension
of the map $f_{x}$ . Clearly $Df_{x}$ is transversal on a color neighborhood of $\partial D_{x}$ to $p+$ in
$Y$ . In addition, it holds that

$\deg(Df_{x}:(D_{x}, \partial D_{x})arrow(S_{+}, \partial S_{+}))=\deg(f_{x}:\partial D_{x}arrow\partial S_{+})$ .

Set $X=M\backslash \coprod_{x\in M^{G}}$ Int $(D_{x})$ . Then the $G$-action on $X$ is free. Since $S_{+}$ is con-
tractible, the $G$-map $\square _{x\in M^{G}}Df_{x}$ extends to a continuous $G$-map $f$ : $Marrow S_{+}$ such
that $f$ is smooth on $X$ . We will regard $f$ as a map $Marrow Y$ as well. For a $G$-invariant
positive function $\delta$ : $Marrow \mathbb{R}$ , take a $G$-equivariant $\delta$-approximation $g:Marrow Y$ of
$f$ such that

(1) $g$ is $G$-homotopic to $f$ relatively to $\square _{x\in M^{G}}D_{x}$ , and
(2) $g|_{X}$ is smooth and transversal on $X$ to $\{p_{+}\}$ in $Y.$

Since the $G$-action on $g^{-1}(p_{+})\cap X$ is free, each $G$-orbit in $g^{-1}(p_{+})\cap X$ consists of
$|G|$ points. Thus it holds that

$\deg(g)\equiv\sum_{x\in M^{G}}\deg(f_{x}:\partial D_{x}=S(T_{x}(M))arrow S(V))mod |G|.$

On the other hand, the equality $\deg(g)=\deg(f)=0$ follows from the fact that
$f$ : $Marrow Y$ is not a surjection. Hence we can conclude

$\sum_{x\in M^{G}}\deg(f_{x})\equiv 0 mod |G|.$

$\square$

Proof of Theorem 1.3. Set $V=T_{a}(M)$ and $W=T_{b}(M)$ . Then $G$ freely acts on
$S(V)$ and $S(W)$ .

If $|G|=2$ then $V$ and $W$ are isomorphic as real $G$-representations, and hence
$S(V)$ and $S(W)$ are $G$-diffeomorphic.

Thus we consider the other case, namely one where $|G|\geq 3$ . The real $G$-modules
$V$ and $W$ have the inherited orientations from that of $M$ , respectively. Since the
$G$-action on $S(V)$ preserves the orientation, so does the $G$-action on $M$ . Let $f_{V,V}$

be the identity map on $S(V)$ and take a smooth $G$-map $f_{W,V}$ : $S(W)arrow S(V)$ . By
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Theorem 1.2, we get

$\deg(f_{V,V})+\deg(f_{W,V})=1+\deg(f_{W,V})\equiv 0$ mod $|G|,$

and hence $\deg(f_{W,V})\equiv-1$ mod $|G|$ . Thus there is a smooth $G$-map $f$ : $S(W)arrow$

$S(V)$ satisfying $\deg(f)=-1$ . On the other hand, there exists a smooth $G$-map

$h:S(V)arrow S(W)$ . We have $\deg(hof)\equiv 1$ mod $|G|$ and hence $\deg(h)\equiv-1$

mod $|G|$ . There exists a smooth $G$-map $g:S(V)arrow S(W)$ such that $\deg(g)=-1.$

These $f$ and $g$ are $G$-homotopy inverses to each other. $\square$

Proof of Theorem 1.5. Set $\Sigma^{G}=\{a, b\}$ . If a connected component $A$ of $\Sigma^{H}$ con-
taining either $a$ or $b$ has positive dimension then by Proposition 1 $A$ contains both
$a$ and $b$ . By Theorem 1.3, $S(V^{H})$ and $S(W^{H})$ are $G/H$-homotopy equivalent. If
$\dim V^{H}=0$ and $\dim W^{H}=0$ both hold then $S(V^{H})$ and $S(W^{H})$ are the empty set

and hence they are $G/H$-homotopy equivalent. $\square$
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