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AN EQUIVARIANT TRANSVERSALITY THEOREM
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Abstract. Let G be a finite group. In this article, we recall an equi-
variant transversality theorem and discuss its applications to semifree

G-actions on closed manifolds and to Smith-equivalent real G-modules.
1. INTRODUCTION

Unless otherwise stated, let G be a finite group. We mean by a manifold a
paracompact smooth manifold. A submanifold, M say, of a manifold, N say, should
be read as a regular smooth submanifold such that M is a closed subset of N. We
mean by a G-manifold a smooth manifold with a smooth G-action. In particular,
each connected component of a manifold in the present article is o-compact, and an
arbitrary G-manifold can be equipped with a G-invariant Riemannian metric.

Let M and N be manifolds, B a subset of M, Y a submanifold of N, and f :
M — N a continuous map. We say that f is transversal on B to' Y in N if f is
smooth on a neighborhood of f~}(Y)N B in M and the linear map

dfz
To(M) — Ty (N) — T,(N)/T,(Y)
is surjective for every y € Y and z € f~(y) N B, where T,(M) stands for the
tangent space of M at . There have been obtained several versions of equivariant
transversality theorems, e.g. A. Wasserman [19, Lemma 3.3|, T. Petrie [16, §1,
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p.188], E. Bierstone [1, Theorem 1.3]. In this paper we will discuss applications of

the next version.

Theorem 1.1. Let M be a G-manifold, N a G-manifold with a G-invariant Rie-
mannian metric, A a G-invariant closed subset of M, and Y a G-submanifold of
N. Let f: M — N be a smooth G-map transversal on A to Y in N. Suppose
the G-action on M ~\ A is free. Then for an arbitrary G-invariant positive contin-
uous function § : M — R, there exists a smooth G-map g : M — N satisfying the

following conditions.

(1) g is transversal on M toY in N.
(2) gla= fla.
(3) dn(f(z),9(x)) < 6(z) for all x € M, where dy stands for the distance

function on N induced from the Riemannian metric of N.

We mean by areal (resp. complex) G-module areal (resp. complex) G-representation

space of finite dimension. For a real G-module V' (of finite dimension), let S(V') de-
note the unit sphere of V' with respect to some G-invariant inner product on V. The

following two propositions have been known.

Proposition ([14, Lemma 2.1]). If G is a group of order 2 and M is a connected
closed G-manifold of positive dimension then |M%| # 1.

Proposition ([7, Lemma 2.2]). If M is a connected closed orientable G-manifold
of positive dimension such that the G-action on M ~ M is free, then |M%| # 1.

The latter proposition is generalized to the next result.

Theorem 1.2. Let M be a connected closed oriented G-manifold of dimension n+1,
and ¥ an oriented homotopy sphere of dimension n. Suppose the G-action on M
is semifree and preserves the orientation of M. If MC is a finite set then the

congruence

Z deg(f:) =0 mod |G|
zeMC
holds, where T;,(M) is the tangent space of M at x and f, is an arbitrary (continu-

ous) G-map S(T,(X)) — ¥ for each x € MC.
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Theorem 1.3. Let M be a connected closed oriented G-manifold of positive dimen-
sion such that the G-action on M is semifree and M® = {a,b}. Then the spheres
S(T,(M)) and S(Ty(M)) are G-homotopy equivalent to each other.

Corollary 1.4. Let V and W be real G-representations satisfying dimV = dim W.
If S(V)IL S(W) is the boundary of a compact orientable G-manifold M such that
the G-action on M is free then S(V) and S(W) are G-homotopy equivalent to each

other.

A homotopy sphere & with a G-action is called a Smith sphere if £¥¢ consists of
exactly 2 points. Two real G-modules V' and W are said to be Smith equivalent if
there exists a Smith sphere ¥ such that £¢ = {a,b} with V = T,(Z) and W = T,(%)

as real G-modules.

Theorem 1.5. Let G be a finite group and let V and W be Smith-equivalent real
G-modules. For any normal subgroup H of G such that |G/H| is a prime and a
Sylow 2-subgroup Hy of H is normal in H, S(VH) and S(WH) are G/H-homotopy

equivalent to each other.

2. TRANSVERSALITY OF MAPS

In this section, let us recall classical transversality theorems. First, recall a result

by A. Wasserman.

Lemma (A. Wasserman [19, Lemma 3.3]). Let G be a compact Lie group, M and N
G-manifolds, f : M — N a smooth G-map, W C N a closed invariant submanifold,
and C a closed subset of MG. Suppose f|yc is transversal on C to W€ in N©. Then
there exists a homotopy f; such that fo = f, filc = flc, and filye is transversal
on MY to W€ in NC.

T. Petrie gave several versions and the next one may be most basic.

Proposition (Petrie [16, §1, p.188]). Let G be a compact Lie group. Let M, N and
Y C N be G-manifolds and f : M — N a proper G-map. Suppose f: M — N
is transversal to Y on a G-neighborhood of a closed subset Z of M. Let K be a
mazimal closed subgroup such that (M ~ Z)X # 0. Then f is G-homotopic el Z to
a proper G-map h : M — N such that h¥ is transversal on M¥ to Y¥ in Z¥.



As its proof, T. Petrie wrote as follows. (Note that N(K)/K acts freely on
M¥ \ Z.) “This uses the Thom Transversality Lemma [11] for the case of trivial
group action and the G-homotopy extension lemma [19, Lemma 3.2].” Here the
reference [11] should be replaced by an appropriate one.

Another version is obtained by E. Bierstone’s theory, namely from the following

three results.

Theorem (Bierstone [1, Theorem 1.3]). Let G be a compact Lie group. If P is a
closed G-submanifold of N, then the set of smooth equivariant maps F : M — N

which are in general position with respect to P is open in Whitney topology.

Theorem ([1, Theorem 1.4]). Let G be a compact Lie group. If P is an invariant
submanifold of N, then the set of smooth equivariant maps F : M — N which are

in general position with respect to P is a countable intersection of open dense sets

(in the Whitney of C* topology).

Proposition ([1, Proposition 6.3]). If a smooth equivariant map F : M — N
is 1n general position with respect to an invariant submanifold P of N, then it is
stratumwise transversal to P. In other words, for every isotropy subgroup H of M,

Flyu : My — N¥ is transversal to PH.

Our Theorem 1.1 is an equivariant analogue of A. Hattori [6, Ch.6, §3, Theo-
rem 3.6].

3. MAPS BETWEEN SPHERES

We mean by a homotopy sphere a closed manifold being homotopy equivalent to
a sphere. Let X be a finite G-CW complex such that G acts freely on X. For a
G-map f: X — X, the Lefschetz number L(f) is congruent to 0 mod |G|. In the
case where X is a homotopy sphere of dimension n, we have

(3.1) L(f)=1+(-1)"deg f =0 mod |G]|.

Using this property, we can prove the next fact without difficulties.

Lemma 3.1 ([17, 4, 9]). Let X be a connected homotopy sphere with a free G-action.
Then for any G-map f: X — X, deg f is congruent to 1 mod |G|.
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In addition, by standard arguments using Steenrod’s obstruction theory [18], we

can prove the next fact.

Lemma 3.2 ([17, 4]). Let X and Y be connected homotopy spheres of same dimen-

sion with free G-actions. Then the following conclusions hold.

(1) There ezist a G-map X =Y and a G-map ¥ — X.

(2) For any G-maps fo, fi: X =Y, deg fo =deg i mod |G].

(3) For any G-map fo : X — Y and any integer m, there exists a G-map
f1: X =Y such that deg fi = deg fo + m|G].

These lemmas provide the next proposition.

Proposition 3.3. Let X and Y be connected homotopy spheres of same dimension
with free G-actions and let f : X — Y be a G-map. Then deg f is prime to |G|.

Proof. By Lemma 3.2, there is a G-map g : Y — X. Moreover by Lemma 3.1 we
have

deg(go f)=1 mod |G|
and deg(g o f) = degg - deg f. Thus deg f is prime to |G]|. O

4. TANGENTIAL REPRESENTATIONS

Let V be a real G-module such that the G-action on V' ~ {0} is free. We adopt
an orientation of the ambient space of V. Let ¥ be an oriented homotopy sphere
equipped with a free smooth G-action such that dim¥ = dim S(V'). Then there
exists a smooth G-map fys : S(V) — £ and deg(fv;s) is prime to |G|.

Proof of Theorem 1.2. Let us fix an arbitrary point a € M G. The tangential rep-
resentation V = T,(M) has the orientation inherited from that of M. Since the
G-action on S(V) preserves the orientation, dim S(V') is odd. Without any loss
of generality, we can assume ¥ = S(V). Set Y = S(R@® V). There is a canon-
ical orientation preserving G-diffeomorphism from the G-disk D(V') to the upper
hemisphere S, of Y. This diffeomorphism carries the center of D(V) to the north
pole py = (1,0) of Y, where 1 € R and 0 € V. Take small G-disk neighborhoods
D, (2 D(T(M))) of points z € MY in M, respectively, so that Dy, N Dy, = 0



for distinct =1, =, € M®. For each point z € M, there is a smooth G-map
Joe: 0Dy — S(V) = 0S;. Let Df, : D, — D(V) = S, denote the radial extension
of the map f,. Clearly Df, is transversal on a color neighborhood of 8D, to P in
Y. In addition, it holds that

deg(Df, : (D, OD,) = (S4,05,4)) = deg(fs : 8D, — 8S.,).

Set X = M N [l cp0 Int(D,;). Then the G-action on X is free. Since S, is con-
tractible, the G-map [[,.,s¢ Df, extends to a continuous G-map f : M — S, such
that f is smooth on X. We will regard f as amap M — Y as well. For a G-invariant
positive function § : M — R, take a G-equivariant d-approximation g : M — Y of
f such that

(1) g is G-homotopic to f relatively to [.cpre De, and

(2) glx is smooth and transversal on X to {p,} in Y.

Since the G-action on g™'(p,) N X is free, each G-orbit in g~!(p,) N X consists of
|G| points. Thus it holds that

deg(g) = > deg(f.: D, = S(To(M)) — S(V)) mod |G-
zeMG
On the other hand, the equality deg(g) = deg(f) = 0 follows from the fact that

f:M —Y is not a surjection. Hence we can conclude

Z deg(fz) =0 mod |G|.

zeMC

O

Proof of Theorem 1.8. Set V. = T,(M) and W = T,(M). Then G freely acts on
S(V) and S(W). '

If |G| = 2 then V and W are isomorphic as real G-representations, and hence
S(V) and S(W) are G-diffeomorphic.

Thus we consider the other case, namely one where |G| > 3. The real G-modules
V and W have the inherited orientations from that of M, respectively. Since the
G-action on S(V') preserves the orientation, so does the G-action on M. Let fvv
be the identity map on S(V') and take a smooth G-map fwy : S(W) — S(V). By
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Theorem 1.2, we get

deg(fvy) +deg(fwy) =1 +deg(fwy) =0 mod |G|,

and hence deg(fwy) = —1 mod |G|. Thus there is a smooth G-map f : S(W) —
S(V) satisfying deg(f) = —1. On the other hand, there exists a smooth G-map
h:S(V)— S(W). We have deg(h o f) = 1 mod |G| and hence deg(h) = —

mod |G|. There exists a smooth G-map g : S(V) = S(W) such that deg(g) = —1.

These f and g are G-homotopy inverses to each other. O

Proof of Theorem 1.5. Set £¢ = {a,b}. If a connected component A of ¥ con-
taining either a or b has positive dimension then by Proposition 1 A contains both
a and b. By Theorem 1.3, S(V#) and S(WH) are G/H-homotopy equivalent. If
dim V¥ = 0 and dim W# = 0 both hold then S(V) and S(W#) are the empty set
and hence they are G/H-homotopy equivalent. O
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