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Abstract

Mader’s disjoint $S$-paths problem is a common generalization of non-bipartite matching
and Menger’s disjoint paths problems. Lov\’asz (1980) suggested a polynomial-time algo-
rithm for this problem through a reduction to matroid matching. $A$ more direct reduction
to the linear matroid parity problem was given later by Schrijver (2003), which leads to
faster algorithms.

As a generalization ofMader’s problem, Chudnovsky, Geelen, Gerards, Goddyn, Lohman,
and Seymour (2006) introduced a framework of packing non-zero $A$-paths in group-labelled
graphs, and proved a min-max theorem. Chudnovsky, Cunningham, and Geelen (2008)
provided an efficient combinatorial algorithm for this generalized problem. On the other
hand, Pap (2007) introduced a framework of packing non-returning $A$-paths as a further
genaralization.

In this paper, we discuss a possible extension of Schrijver’s reduction technique to
another framework introduced by Pap (2006), under the name of the subgroup model,
which apparently generalizes but in fact is equivalent to packing non-returning $A$-paths.
We provide a necessary and sufficient condition for the groups in question to admit a
reduction to the linear matroid parity problem. As a consequence, we give faster algorithms
for important special cases of packing non-zero $A$-paths such as odd-length $A$-paths. In
addition, it turns out that packing non-returning $A$-paths admits a reduction to the linear
matroid parity problem, which leads to its efficient solvability, if and only if the size of the
input label set is at most four.

1 Introduction
Let $\Gamma$ be a group. $A\Gamma$ -labelled graph $(G,\psi)$ is a pair of an undirected graph $G=(V, E)$

and a label function $\psi$ on the edge set to $\Gamma$ , which is defined below. For a directed
graph $\vec{G}=(V,\vec{E})$ obtained from $G$ by replacing each edge with a pair of arcs of opposite
directions, a function $\psi$ : $\vec{E}arrow\Gamma$ is called a label function if $\psi(\overline{e})=\psi(e)^{-1}$ holds for
each $e\in\vec{E}$ , where $\overline{e}$ denotes the reverse arc of $e$ . In this paper, for $e=uv=vu\in E$

replaced with $e’=uv\in\vec{E}$ and $e^{\overline{\prime}}=vu$ $\in\vec{E}$ , we will use the notation of $\psi(e, v)$ $:=$

$\psi(e’)=\psi(e^{\overline{J}})^{-1}=;\psi(e, u)^{-1}$ . For each undirected path $P=(v_{0}, e_{1}, v_{1}, \ldots, e_{k}, v_{k})$ in
$G$ , where $e_{i}=v_{i-1}v_{i}\in E$ for every $1\leq i\leq k$ , we define the label of $P$ as $\psi(P);=$

$\psi(e_{k}, v_{k})\cdots\psi(e_{2}, v_{2})\cdot\psi(e_{1}, v_{1})$ .

$*$ This is a r\’esum\’e of an accepted paper [15] of the 25th ACM-SIAM Annual Symposium on Discrete
Algorithms (SODA 2014). The full version is to appear in January 2014.
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For a prescribed terminal set $A\subseteq V$ , an $A$ -path is an undirected path between distinct
terminals in $A$ which does not intersect with $A$ in between. In this paper, we consider the
subgroup model of packing $A$-paths in group-labelled graphs introduced by Pap [10]. In
this model, for a given proper subgroup $\Gamma’$ of $\Gamma$ , an $A$-path $P$ is called admissible if $\psi(P)\not\in$

$\Gamma’$ , and is called non-admissible otherwise. Our objective is to find a maximum family of
(fully) vertex-disjoint admissible $A$-paths in a given $\Gamma$-labelled graph with terminal set
$A$ . Note that it is not necessary that $G$ is simple.

The subgroup model was introduced at the end of a sequence of extensions of Mader’s
disjoint $S$-paths problem, which is known to be solvable by a reduction to matroid match-
ing due to Lov\’asz [5]. $A$ more direct reduction to linear matroid parity has been presented
by Schrijver [13]. In this paper, we extract a structure of Schrijver’s reduction and in-
troduce the concept of coherent representation. For an instance of the subgroup model,
we call a matrix a coherent representation if it satisfies Properties 3.1 and 3.2 described
in Section 3.1. The main result of this paper is a characterization of the subgroup model
that admits a coherent representation.

For a positive integer $n\in \mathbb{N}$ and a field $\mathbb{F},$ $GL$ $(n, \mathbb{F})$ denotes the set of the nonsingular
$n\cross n$ matrices over $\mathbb{F}$ , and let $PGL$ $(n, \mathbb{F});=$ $GL$ $(n, \mathbb{F})/\{kI_{n}|k\in \mathbb{F}\}$ , where $I_{n}$ is the
$n\cross n$ identity matrix. In this paper, each element of PGL is denoted by its representative
in $GL.$

Theorem 1.1. Let $\Gamma$ be a group, $\Gamma’$ be its proper subgroup, and $\mathbb{F}$ be a field. Then the
following two statements are equivalent.

(i) For any $\Gamma$-labelled graph $(G=(V, E), \psi)$ with any terminal set $A\subseteq V_{f}$ the subgroup
model with respect to $\Gamma’$ can be reduced to the linear matroid parity problem with a
coherent representation over $\mathbb{F}.$

(ii) There exist a homomorphism $\rho$ : $\Gammaarrow$ $PGL$ $(2, \mathbb{F})$ and $a$ 1-dimensional linear sub-
space $Y$ of $\mathbb{F}^{2}$ such that $\Gamma’=\{\alpha\in\Gamma|\rho(\alpha)Y=Y\}.$

Theorem 1.1 clarifies a necessary and sufficient condition for the groups in question to
admit a reduction with a coherent representation, which leads to fast algorithms. $A$ recent
work of Tanigawa and the author [14] showed that $Lov\acute{a}\mathfrak{Z}Z’ S$ reduction idea to matroid
matching, which implies the polynomial-time solvability by Lov\’asz’s matroid matching
algorithm [6], is always extendable even when there is no coherent representation.

2 Preliminaries

2.1 Packing $A$-paths
Finding a maximum family of (fully) vertex-disjoint $A$-paths is a path-packing problem
which includes non-bipartite matching as a special case with $A=V$ . Mader [8] suggested
a more generalized problem, called Mader’s disjoint $S$-paths problem, and showed a min-
max relation. Here $S$ is a partition of $A$ and an $S$ -path is an $A$-path between terminals
in distinct subsets in $\mathcal{S}$ . Hence, for any disjoint $S,$ $T\subseteq V$ , the concept of $S$-path includes
that of $S-T$ path as a special case with $S=\{S, T\}.$

As a generalization of Mader’s problem, Chudnovsky et al. [3] introduced a framework
of packing $A$-paths in group-labelled graphs, called the non-zero model in this paper,
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and proved a min-max theorem which generalizes Mader’s theorem. Later, Pap [11]
introduced a slightly more generalized model, called the non-returning model in this
paper, and gave a simpler proof of a further generalized min-max theorem for his model.
Chudnovsky et al. [2] gave an efficient combinatorial algorithm for the non-zero model,
and Pap [12] suggested one for the non-returning model, whose running time bound is
not known.

Theorem 2.1 (Chudnovsky, Cunningham, and Geelen [2]). $A$ maximum family of vertex-
disjoint non-zero $A$ -paths can be found in $O(|V|^{5})$ time.

These frameworks include interesting special cases besides Mader’s problem such as
packing odd-length $A$-paths, and packing $A$-paths on surfaces under various constraints
according to the homotopy class of the curve associated with each $A$-path. The non-
returning model generalizes the non-zero model and is in fact equivalent to the subgroup
model (see [10, \S 3.6] for a detail argument), so we mainly discuss the subgroup model in
this paper.

2.2 Linear matroid parity
Given a matrix $Z\in \mathbb{F}^{n\cross 2m}$ over a field $\mathbb{F}$ , the linear matroid patiry problem is to find
a maximum subset $X$ of $[m]=\{1,2, \ldots, m\}$ such that the corresponding submatrix
$Z_{X}$ $:=(z_{2i-1}, z_{2i}|i\in X)$ is column-full-rank, where $z_{j}$ denotes the j-th column of $Z$ . Let

$\omega$ be the matrix multiplication exponent, which is at most 2.373.

Theorem 2.2 (Gabow and Stallmann [4], Orlin [9]). The linear matroid parity problem
can be solved in $O(mn^{3})$ time. Iffast matrix multiplication is used, then the running time
is improved to $O(mn^{\omega})$ .

Theorem 2.3 (Cheung, Lau, and Leung [1]). The linear matroid parity problem can be
solved with high probability in $O(mn^{2})$ time. If fast matrix multiplication is used, then
the running time is improved to $O(mn^{\omega-1})$ .

A direct application of these theorems to Schrijver’s reduction of Mader’s problem
implies that a maximum family of vertex-disjoint $S$-paths in an undirected graph $G=$

$(V, E)$ can be found in $O(|E|\cdot|V|^{\omega})$ time, and moreover with high probability in $O(|E|\cdot$

$|V|^{\omega-1})$ time. Cheung et al. [1] improved the latter running time bound to $O(|V|^{\omega})$ under
the assumption, without loss of generality, that the input graph is simple.

3 Reduction to Linear Matroid Parity

3.1 Coherent Representation
We introduce two natural properties satisfied by Schrijver’s reduction of Mader’s problem
to the linear matroid parity problem. Let $\Gamma$ be a group and $\mathbb{F}$ be a field. For a $\Gamma$-labelled
graph $(G=(V, E), \psi)$ with terminal set $A\subseteq V$ , we consider constructing a representation
matrix $Z\in \mathbb{F}^{2n\cross 2m}$ which defines an instance of the linear matroid parity problem, where
$|V|=n,$ $|E|=m$ . For the simplicity of description, we assume $V=[n]$ $:=\{1,2, \ldots, n\}$

and $E=[m]$ . The representation is desired to be based on the incidence matrix of $G.$
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Property 3.1. For each $e=uv\in E$ , there exists exactly one pair of two corresponding
columns $z_{2e-1},$ $z_{2e}$ of $Z$ , each of which has at most four nonzero entries at $2u-1,2u,$ $2v-$

$1,$ $2v$ -th rows. In other words,

$z_{2e-1},$ $z_{2e}\in\{a_{2u-1}\vec{e}_{2u-1}+a_{2u}\vec{e}_{2u}+a_{2v-1}\vec{e}_{2v-1}+a_{2v}\vec{e}_{2v}|a_{i}\in \mathbb{F}(i=2u-1,2u, 2v-1,2v)\},$

where $\vec{e}_{i}\in \mathbb{F}^{2n}$ denote i-th unit vectors for $i\in[n].$

Let us call an edge set $F\subseteq E$ feasible if the set $\{z_{2e-1}, z_{2e}|e\in F\}$ of all correspong-
ing vectors is linearly independent. The following property guarantees natural relation
between the subgroup model and the linear matroid parity problem.

Property 3.2. For each $A$ -path $P$ in $G$ , its edge set $E(P)$ is feasible if and only if $P$ is
admissible.

3.2 Sufficiency

In this section, we show how to construct a coherent representation under the condition
(ii) in Theorem 1.1. Fix a field $\mathbb{F}$ , a projective representation $\rho$ : $\Gammaarrow$ $PGL$ $(2, \mathbb{F})$ , and a 1-
dimensional subspace $Y$ of $\mathbb{F}^{2}$ which satisfy (ii). Furthermore, fix an arbitrary $\Gamma$-labelled
graph $(G=(V, E), \psi)$ and an arbitrary terminal set $A\subseteq V.$

$\bullet$ Let $L_{e}$ $:=\{x\in(\mathbb{F}^{2})^{V}|\rho(\psi(e, w))x(u)+x(w)=0, x(v)=0(v\in V\backslash \{u, w\})\}$ for
each edge $e=uw\in E.$

$\bullet$ Let $Q_{v}$ $:=\{x\in(\mathbb{F}^{2})^{V}|x(v)\in Y, x(u)=0(u\in V\backslash \{v\})\}$ for each terminal $v\in A.$

$\bullet$ Let QU $:= \sum_{v\in U}Q_{v}$ for each $U\subseteq A$ , and let $Q:=Q_{A}.$

$\bullet$ Let $\mathcal{E}$ $:=\{L_{e}/Q|e\in E\}$ (we may assume $\dim(L_{e}/Q)=2$ for every edge $e\in E$).

Let us construct a representation matrix $Z\in \mathbb{F}^{2|V|\cross 2|E|}$ associated with $\mathcal{E}$ by enumer-
ating the bases of $L_{e}/Q$ for all $e\in E$ . Then each edge set $F\subseteq E$ is feasible if and only
if $\dim(L_{F}/Q)=2|F|$ , where $L_{F}$ $:= \sum_{e\in F}L_{e}.$

Lemma 3.3. Let $\nu(\mathcal{E})$ denote the cardinality of a maximum feasible edge set, and let
$\mu(G, \psi, A)$ denote the maximum number of vertex-disjoint admissible $A$ -paths in $G$ with
respect to $\psi$ : $Earrow\Gamma$ . If $G$ is connected and $A\neq\emptyset$ , then $\nu(\mathcal{E})=|V|-|A|+\mu(G, \psi, A)$ .

This lemma is derived from the following properties: (1) each maximum feasible edge
set includes an edge set forming a maximum family of vertex-disjoint admissible $A$-paths,
(2) the edge set of each maximum family of vertex-disjoint admissible $A$-paths is included
a maximum feasible edge set, and (3) each connected component formed by a feasible edge
set contains at most one $A$-path, which is admissible. From (1) and (3), in particular, one
can construct a maximum family of vertex-disjoint admissible $A$-paths from a maximum
feasible edge set by the depth first search from each terminal, in linear time. Thus the
subgroup model reduces to the linear matroid parity problem under the condition (ii) in
Theorem 1.1.
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3.3 Necessity
We construct a special $\Gamma$-labelled graph that has a coherent representation, and show
that the coherent representation leads to a projective representation of $\Gamma$ that satisfies
the condition (ii) in Theorem 1.1. Here we just show the construction of such a special
graph, and the proof is left for the full paper.

Let $\Gamma/\Gamma’$ denote the left cosets $\{\alpha\Gamma’ \alpha\in\Gamma\}$ , and consider a $\Gamma$-labelled graph
$(G=(V, E), \psi)$ with terminal set $A$ defined as follows.

$\bullet$ For each $i\in\{1,2,3\}$ , let $G_{i}=(V_{i}, E_{i})$ be a star with the center vertex $v_{i}\in V_{i}.$

$\bullet$ For each $i\in\{1,2,3\}$ and each representative $\alpha$ of $\Gamma/\Gamma’$ , there are exactly two edges
$e=uv_{i}\in E_{i}$ such that $\psi(e, v_{i})=\alpha.$

$\bullet$ For each $1\leq i<j\leq 3$ and each $\alpha\in\Gamma$ , there is exactly one edge $e=v_{i}v_{j}$ such that
$\psi(e, v_{j})=\alpha$ . Let $E’$ denote the set of such parallel edges and $E:=E’\cup E_{1}\cup E_{2}\cup E_{3}.$

$\bullet$ Let $V$ $:=V_{1}\cup V_{2}\cup V_{3}$ and let $A\subseteq V$ be the set of all leaves of $G.$

4 Applications
By our reduction, linear matroid parity algorithms can be used to solve a number of
special cases of the subgroup model. Naive applications of Theorems 2.2 and 2.3lead to
deterministic $O(|E|\cdot|V|^{\omega})$ and randomized $O(|E|\cdot|V|^{\omega-1})$ algorithms. One can improve
the latter bound to $O(|E|+|V|^{\omega})$ by the same argument as [1, \S 5.1.3]. Since $|\Gamma’|+1$

edges are enough between each pair of vertices, we may assume $|E|\leq(|\Gamma’|+1)\cdot|V|^{2}.$

Therefore, the new bound is better than $O(|V|^{5})$ , which can be achieved by an extension
of the algorithm of Chudnovsky et al. [2], unless $G$ has a large number of dense parallel
edges $(i.e.,$ there $are \Omega(|\Gamma’|)$ parallel edges between each of $\Omega(|V|^{2})$ pairs of two distinct
vertices) and $\Gamma’$ is so large that $|\Gamma’|=\Omega(|V|^{3})$ .

In this section, we present simple but important special cases of the subgroup model.
All following cases that admit coherent representations satisfy $|\Gamma’|=O(1)$ , and hence
the running time of the linear matroid parity algorithm of Cheung et al. [1] is bounded
by $O(|V|^{\omega})$ , which is much better than $O(|V|^{5})$ . Without loss of generality, $Y$ is fixed to
$\langle\vec{e}_{1}\rangle$ where $\vec{e}_{1}\in \mathbb{F}^{2}$ denotes the first unit vector over each field $\mathbb{F}.$

4.1 Mader’s $S$-paths
Let $S=\{A_{1}, \ldots, A_{k}\}$ be a partition of the terminal set $A$ . Then Mader’s problem is
a special case of the subgroup model: $\Gamma=(\mathbb{Z}, +),$ $\Gamma’=\{0\}$ and $\psi(e)=i-j$ for each
$e=uv\in\vec{E}$ with $u\in A_{i}$ and $v\in A_{j}$ , where $A_{0}$ $:=V\backslash A$ . In this case, $\rho$ defined as follows
leads to the same coherent representation over $\mathbb{Q}$ as Schrijver’s one with appropriate base
transformations:

$\rho(i);=(\begin{array}{ll}1 0i 1\end{array}) (i\in \mathbb{Z})$ .
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4.2 Odd-length $A$-paths
To find a maximum family of vertex-disjoint odd-length $A$-paths is a special case of the
subgroup model: $\Gamma=(\{1, -1\}, \cross)\simeq \mathbb{Z}/2\mathbb{Z},$ $\Gamma’=\{1\}$ , and $\psi(e)=-1$ for each $e\in\vec{E}$ . In
this case, $\rho$ defined as follows leads to a coherent representation over an arbitrary field:

$\rho(1);=(\begin{array}{ll}1 00 1\end{array}), \rho(-1);=(\begin{array}{ll}0 11 0\end{array}).$

4.3 Non-returning model
First we describe the definition of the non-returning model dealt with in [11, 12]. Let $\Pi$ be
a finite set, $\omega$ : $Aarrow\Pi$ be a map on the terminal set, and $\pi$ : $\vec{E}arrow S(\Pi)$ be a map on the
edge set to the permutations on $\Pi$ with reference orientation. In this model, an $A$-path
$(v_{0}, e_{1}, v_{1}, \ldots, e_{k}, v_{k})$ is admissible if and only if $\omega(v_{k})\neq\pi(e_{k}, v_{k})\circ\cdots 0\pi(e_{1}, v_{1})(\omega(v_{0}))$

holds. Let $d;=|\Omega|\geq 2$ . This model is equivalent to the subgroup model, and in
particular it reduces to the following setting. Let $\Gamma$ be the symmetric group $S_{d}$ of degree
$d$ , and $\Gamma’:=\{\sigma\in\Gamma|\sigma(d)=d\}=S_{d-1}.$

Theorem 4.1. The subgroup model reduced from the non-returning model with the label
set $\Omega$ admits a coherent $repre\mathcal{S}$entation if and only if $|\Omega|\leq 4.$

In particular, if $|\Omega|=4$ , we have desired $\rho$ over $\mathbb{F}$ $:=\mathbb{F}_{3}=\mathbb{Z}/3\mathbb{Z}$ as follows:

$\rho((1^{\rho((14))}2)(34))\rho((1324))\rho((1432))\rho((143))\rho((124))\rho((12))\rho(id)========\ovalbox{\tt\small REJECT}_{1}^{0}000011111111112220202202010111\ovalbox{\tt\small REJECT},$ $\rho((1^{\rho((24))}3)(24))\rho((1423))\rho((1342))\rho((234))\rho((142))\rho((123))\rho((23))========\ovalbox{\tt\small REJECT} 22222002111111110220022012111111\ovalbox{\tt\small REJECT},$ $\rho((1^{\rho((34))}4)(23))\rho((1234))\rho((1243))\rho((243))\rho((134))\rho((132))\rho((13))========\ovalbox{\tt\small REJECT}_{1}^{0}000011111111110202022221111111\ovalbox{\tt\small REJECT}.’,$

This is an isomorphism from $S_{4}$ to $PGL$ $(2, \mathbb{F}_{3})$ . The correctness can be easily confirmed
by checking $A^{2}=B^{2}=C^{2}=I_{2},$ $AC=CA,$ $ABA=BAB,$ $BCB=CBC$ where
$A:=\rho((12)),$ $B:=\rho((23))$ , and $C:=\rho((34))$ .
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