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Abstract. We propose a unified definition for discrete analogues of
constant mean curvature surfaces in spaces of constant curvature as a
special case of discrete special isothermic nets. B\"acklund transforma-
tions and Lawson’s correspondence are discussed. It is shown that the
definition generalizes previous definitions and a construction for discrete
cmc surfaces of revolution in space forms is provided.
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1. INTRODUCTION

Discrete surfaces of constant mean curvature (discrete “cmc surfaces”) have been
studied in recent years from a variety of different points of view. Two essentially
antithetic approaches, one from variational principles and the other from integrable
systems, lead to substantially different definitions: normally, for example, discrete
soap films and bubbles, i.e., “discrete variationally cmc surfaces”, are triangulated
whereas the definition of “integrable discrete cmc surfaces” makes use of special coor-
dinates and, therefore, leads to “discrete cmc nets”, i.e., quadrilateral surfaces. Even
in cases where it is sensible to compare the two approaches, such as that of a discrete
catenoid in Euclidean space, it turns out that different notions are obtained: each
approach leads to a different class of discrete surfaces that can be viewed as analogues
of the smooth catenoid.

The present paper is concerned with the integrable systems approach to discrete
cmc surfaces.

A key feature of this approach is its compatibility with the transformation theory
of the (smooth) surface class under consideration: for a given class of surface, not only
is a similar transformation theory sought for the discrete case but a discrete surface in
the class should be created by repeated (B\"acklund-Darboux-)transformations of the
smooth class; or, otherwise said, every 2-dimensional subnet of a multidimensional
net created by repeated transformation of a discrete surface in the class should itself
be a discrete net of the class. This is what has recently been coined “multidimensional
consistency”, see the very clear and essential description of integrable discretization
in [6].

A key idea in the definition of integrable discrete cmc surfaces has been to consider
them as special discrete isothermic nets: that is, to discretize $a$ (conformal) curvature
line net on a smooth cmc surface – recall that smooth surfaces of constant mean
curvature (in any space form) are isothermic, i.e., allow a parametrization by confor-
mal curvature line parameters. This has been the pioneering idea in [3], where the
authors introduced the notion of discrete minimal surfaces in Euclidean space along-
side the notion of discrete isothermic surfaces and their Christoffel transformationl.
Subsequently, the notion of discrete surfaces of constant mean curvature in Euclidean
space has been introduced alongside a notion of a Darboux transformation for discrete

lNote the parallel with Christoffel’s original paper [13], where his transformation is introduced
– motivated by an observation about minimal surfaces.
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isothermic nets in [17], see also [4], and the notion of discrete horospherical surfaces
in hyperbolic space – as an analogue of smooth cmc 1 surfaces – has been intro-
duced alongside a notion of a Calapso transformation for discrete isothermic nets in
[18]. In all three cases the constant mean curvature surfaces can be characterized
as isothermic surfaces with a special behaviour of their transformations, as we will
discuss below.

Note that for all three classes of surfaces $H^{2}+\kappa\geq 0$ , where $H$ is the mean
curvature of the surface and $\kappa$ is the ambient curvature. It is straightforward to
use the Calapso transformation for discrete isothermic nets to extend this family of
definitions to discrete analogues of any constant mean curvature surfaces with

$H^{2}+\kappa\geq 0.$

Here, the key observation is that, for smooth constant mean curvature surfaces in
space forms, the Calapso transformation becomes a conformal variant of the Lawson
correspondence and that Bianchi permutability can then be used to carry over the
characterization of cmc surfaces in Euclidean space to other space forms. However,
these ideas turn out to be useless for surfaces with

$H^{2}+\kappa<0$

as, for example, for minimal surfaces in hyperbolic space.
For discrete isothermic surfaces in Euclidean space, a construction of a mean cur-

vature function or rather a “mean curvature sphere congruence” was given in [4] and
shown to be constant for discrete minimal or constant mean curvature surfaces2. Note
that this mean curvature function is defined at the vertices of a discrete isothermic
net. Very recently, new ideas from [22] have led to substantial progress in this di-
rection: a new definition of discrete cmc surfaces in Euclidean space relies on the
requirement that a mean curvature function – defined via Steiner’s formula on the
faces of a discrete (isothermic) net – be constant, see also [8]. This definition is
equivalent to the one via isothermic transformations, see [9].

Our mission in the present paper will be to add another definition of discrete cmc
surfaces to the list. However, the aim is not just to promote mathematical pluralism:
our definition provides a uniform definition of discrete cmc nets in all space forms
alike – in particular, we also capture the previously inaccessible case of

$H^{2}+\kappa<0.$

In fact, we define the much wider class3 of “discrete special isothermic surfaces”
based on [10] and [12, Def. 2.18], see Definition 3.12; these come equipped with a
“type number” $N\in \mathbb{N}$ – discrete cmc nets in space forms will be the $N=1$ case.
Hence our definition does not only provide a generalization in allowing any ambient
space form and value of the mean curvature, but also in discussing a wider class of
discrete isothermic nets – and we expect it to inaugurate a new direction of research
in the field.

We shall start our investigation with a short discussion of discrete isothermic sur-
faces and their transformations – not only to remind the reader of some facts and
to fix notations but also to introduce our perspective on discrete isothermic nets

$2In$ the minimal case the reverse is in fact also true as shown in [3].
$3In$ contrast to the generic terminology of “special discrete isothermic nets” used earlier our

“discrete special isothermic surface” will be a technical term.
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FIGURE 1.1. Discrete minimal net in $H^{3}$

via loops of flat connections, which will be central to all that follows, see Lemma
2.5. This will set the scene for the central section of this paper: we shall investigate
the properties of polynomial loops of parallel sections, called “polynomial conserved
quantities”, and relations to the geometry of the underlying isothermic net. Exclud-
ing some degenerate cases we will arrive at the notion of “discrete special isothermic
nets of type $N$” in a natural way. It turns out that the Darboux transformation
for discrete isothermic nets behaves nicely on these special isothermic nets, which
gives rise to a “B\"acklund transformation” for special isothermic nets; in particular,
we will prove a Bianchi permutability theorem that establishes $3D$-consistency” for
special isothermic nets. Hence our discrete special isothermic nets satisfy the two
fundamental discretization principles of the “discrete Erlanger programme” of [6]:

$\bullet$ Transformation group principle – this is built into our construction as we are
working in conformal geometry which is the natural symmetry group for spe-
cial isothermic (smooth) surfaces and (discrete) nets alike, see [12, Sect. 2.2.3];

$\bullet$ Consistency principle – which is established by our Bianchi permutability
theorem for the B\"acklund transformation, see Theorem 4.7.

Certain (very) special B\"acklund transforms of a special isothermic net, its “com-
plementary nets”, will provide the basis for establishing the relation of our approach
with the previous approaches to discrete cmc surfaces via their transformations as
discrete isothermic surfaces in [3], [17], [4] and [18], as discussed above. Moreover,
we obtain a characterization for discrete cmc surfaces in space forms, i.e., special
isothermic nets of type 1, with

$H^{2}+\kappa\geq 0$

via complementary nets – as one may have expected; and the lack of their existence
when

$H^{2}+\kappa<0$
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provides one possible explanation why the aforementioned approach to define discrete
cmc nets in space forms was doomed to failure in this case. In the same context we
also obtain characterizations of type 2 special isothermic nets, which discretize the
classical “special isothermic surfaces” of Darboux [14] and Bianchi [2], see also [15,
\S \S 84-86].

In the final section we arrive at the main subject of this paper: we give a definition
of discrete cmc surfaces in space forms as special isothermic nets of type 1. Clearly,
the rich theory developed in the more general case of special isothermic nets descends
to a similarly rich theory for discrete cmc nets in space forms – in particular, we
have the discrete analogues of the Lawson correspondence and the B\"acklund trans-
formation and our discretization satisfies the two discretization principles above for
an “integrable discretization” Note that we consider M\"obius geometry as the natu-
ral ambient geometry for constant mean curvature surfaces in space forms as these
arise in “Lawson families” of cmc surfaces with different ambient curvatures: the con-
finement to a space form subgeometry appears as a symmetry breaking phenomenon
initiated by part of the geometric data attached to a special isothermic net and, in
particular, a discrete cmc net.

Despite the obvious merits of our definition we make a great effort to convince the
reader of its value by providing detailed analysis of how the aforementioned previous
approaches tie in with our definition. However, we do not conceal its problems:
we provide an example of a single discrete isothermic net which is a cmc net in a
whole family of different space $forms^{4}$ ; even though this seems to be a rather singular
example we can, at the moment, only speculate about how to obviate this anomaly.
On the positive side, we provide a method to construct discrete cmc nets of revolution
for any prescribed mean curvature $H$ and ambient curvature $\kappa$ . In particular, we show
how to explicitely construct discrete analogues of smooth constant mean curvature
surfaces that were previously unavailable: for example, we construct (see Figure
1.1) the discrete analogue of a “hyperbolic catenoid”, that is, a minimal surface of
revolution in hyperbolic space, see [1].

Acknowledgements. It is our pleasure to thank our colleagues A. Bobenko, T. Hoff-
mann, U. Pinkall, W. Schief and Y. Suris for many interesting and helpful discussions
about the subject.

We also gratefully acknowledge financial support for exchange visits of the second
and third authors to Japan and the $UK$ , respectively, from the Daiwa Anglo-Japanese
Foundation and the Japanese Ministry of Education.

The surface graphics in Figures 1. $1$ & 5.1 were produced using Mathematica.

2. DISCRETE ISOTHERMIC NETS

We consider discrete nets $f$ : $\mathbb{Z}^{2}\supset Marrow S^{3}$ in the (conformal) 3-sphere, where

$M=\{(m, n)\in \mathbb{Z}^{2}|m_{1}\leq m\leq m_{2}, n_{1}\leq n\leq n_{2}\}$

is a rectangular $grid^{5}$ :

$4_{This}$ net is not spherical but it “looks” close to a “wrinkled” sphere – note that, in a smooth
world, spheres are the only surfaces that have constant mean curvature in different space forms.

$5It$ should be straightforward to generalize our results to discrete nets defined on quad-graphs,
making it possible to consider discrete isothermic nets with “umbilics”, cf. [20].
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Definition 2.1. Such a net will be called $a$ discrete isothermic net if there is $a$ (real)
function $a$ on the edges of $M$ , that is, a map $(ij)\mapsto a_{ij}\in \mathbb{R}$ with $a_{ji}=a_{ij}$ for all
edges $(ij)$ , so that

$\bullet$ (i) $a$ has equal values on opposite edges of elementary quadrilaterals
(ijkl) $=((m, n)(m+1, n)(m+1, n+1)(m, n+1))$ ,

i. e., $a_{(m,n)(m+1,n)}=a_{(m,n+1),(m+1,n+1)}$ and correspondingly for “vertical” edges;
$\bullet$ (ii) the cross ratios6 $q_{ijkl}=[f_{i};f_{j};f_{k};f_{l}]$ on faces factorize as

$q_{ijkl}= \frac{a_{ij}}{a_{il}}$

into two functions of one variable.

Thus we employ the “wide definition” of discrete isothermic nets [4], see also [19,
\S 5.7.2], which discretizes isothermic nets parametrized by curvature line coordinates
(not necessarily conformally): as all cross ratios are real, the four vertices of any
face of the net are concircular, so that a discrete isothermic net qualifies as a discrete
curvature line net or discrete principal net. Note that the smallest domain of a discrete
net where “discrete isothermic” imposes a condition is a $3\cross 3$-grid, $m_{2}-m_{1}=n_{2}-n_{1}=$
$2$ ; there the definition can be reformulated as a cross ratio 1 condition on four cross
ratios:

$q_{(m,n-1)(m+1,n-1)(m+1,n)(m,n)}\underline{q_{(m-1,n)(m,n)(m,n+1)(m-1,n+1)}}=1$ ;
$q(m,n)(m+1,n)(m+1,n+1)(m,n+1)q(m-1,n-1)(m,n-1)(m,n)(m-1,n)$

a cross ratio function, satisfying this condition on all $3\cross 3$-grids in $M$ , determines
the function $a$ uniquely up to a non-zero factor.

As a mild regularity assumption, discretizing the notion of an immersed surface
parametrized by curvature lines, we will usually add the requirement that any three
of the four vertices of a face uniquely determine the circle of the four vertices, i.e.,
that any three vertices are in “general position”

Throughout the paper we will use the following notations: if $g$ is a map defined on
the vertices of a rectangular grid $M$ , then we let

(2.1) $dg_{ij}:=g_{j}-g_{i}$ and $g_{ij}:= \frac{1}{2}(g_{i}+g_{j})$ ;

note that $(ij)\mapsto g_{ij}$ defines a function on the edges of $M$ whereas $(ij)\mapsto dg_{ij}$ defines
a 1-form, that is, $dg_{ij}+dg_{ji}=0$ . With these notations a Leibniz rule holds:
(2.2) $d(g\cdot h)_{ij}=g_{ij}\cdot dh_{ij}+dg_{ij}\cdot h_{ij},$

where ‘. denotes any product on the target space of $g$ and $h.$

2.1. The projective approach and Moutard lifts. As we are considering nets in
the conformal 3-sphere it will be helpful to consider

$S^{3}\cong L^{4}/\mathbb{R}\subset \mathbb{R}P^{4}$ , where $L^{4}=\{Y\in \mathbb{R}^{4,1}||Y|^{2}=0\},$

as a quadric in projective 4-space. Recall (from [19] for example) that 2-spheres are, in
this model, described by Minkowski 4-spaces in $\mathbb{R}^{4,1}$ and circles by Minkowski 3-spaces
or, equivalently, by their (spacelike) orthogonal complements, and that incidence
translates into a subspace relation or as orthogonality, respectively. For example,

$6_{Note}$ that the cross ratio of four points in $S^{3}$ is (up to complex conjugation) a conformal invariant.
For a detailed discussion see [19, Sects. 4.9, 6.5 and \S 7.5.14].
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four points $p_{n}\in S^{3},$ $n=1,$ $\ldots,4$ , generically lie on a unique 2-sphere $S\subset S^{3}$ which
can be described as

$S\cong$ span$\{P_{1}, \ldots, P_{4}\}\subset \mathbb{R}^{4,1},$

where $P_{n}\in L^{4}$ with $\mathbb{R}P_{n}=p_{n}\in S^{3}\cong L^{4}/\mathbb{R}$ – their (complex) cross $ratio^{7}$ is given
by

(2.3) $q=[p_{1};p_{2};p_{3};p_{4}]=$

$\frac{\langle P_{1},P_{2}\rangle\langle P_{3},P_{4}\rangle-\langle P_{1},P_{3}\rangle\langle P_{2},P_{4}\rangle+\langle P_{1},P_{4}\rangle\langle P_{2},P_{3}\rangle\pm\sqrt{\det(\langle P_{i},P_{j}\rangle)_{i,j=1,4}}}{2\langle P_{1},P_{4}\rangle\langle P_{2},P_{3}\rangle}$ ;

the cross ratio becomes real exactly when the $P_{n}$ become linearly dependent, i.e., when
they span a 3-dimensional Minkowski subspace and the four points $p_{n}$ are concircular.
In this case the (real) cross ratio uniquely determines the relative position of the four
points on the circle: given three of the points, say $p_{1},$ $p_{2}$ and $p_{4}$ , and a real cross ratio
$q$ the fourth point $p_{3}=\Gamma_{p,p_{4}}^{q_{2}}(p_{1})$ , where

(2.4) $\Gamma_{p,p}^{q},(X):=X+\frac{1}{\langle P,P’\rangle}\{(q-1)\langle X, P’\rangle P+(\frac{1}{q}-1)\langle X, P\rangle P’\},$

as is easily verified from (2.3); note that $\Gamma_{p,p}^{q},$ $\in O(4,1)$ descends to a M\"obius trans-
formation of $S^{3}$ and does not depend on the choice of representatives $P,$ $P’\in L^{4}$ of
$p,p’\in S^{3}$ . Also note that

$\mathbb{R}P^{1}\cong \mathbb{R}\cup\{\infty\}\ni q\mapsto\Gamma_{p,p’}^{q}(p")\in S^{3}$

yields a l-to-l parametrization of the circle through three distinct points $p,p’,p”\in S^{3}$

in terms of the cross ratio, so that $\Gamma_{p,p}^{0},(p")=p’,$ $\Gamma_{p,p}^{1},(p")=p"$ and $\Gamma_{p,p}^{\infty},(p")=p.$

Now suppose that $f$ : $Marrow S^{3}$ is an isothermic net and fix a cross ratio factorizing
function $a$ . We wish to show that there is a lift $F$ of $f$ with

(2.5) $\langle F_{i}, F_{j}\rangle=a_{ij}$

on every edge $(ij)$ of $M$ . To this end we have to show that this scaling is compatible
on any quadrilateral: thus let (ijkl) denote an elementary quadrilateral and choose
a light cone lift $F_{i}\in L^{4}$ of $f_{\iota’}$ ; then we normalize lifts $F_{j},$ $F_{l}\in L^{4}$ of $f_{j}$ and $f_{l}$ so that
$\langle F_{i},$ $F_{j}\rangle=a_{ij}$ and $\langle F_{i},$ $F_{l}\rangle=a_{il}$ . Now we choose the lift

$\underline{a}_{\angle}$

(2.6) $F_{k} := \Gamma_{f_{j},f_{l}}^{a_{ll}}(F_{i})=F_{i}+\frac{a_{ij}-a_{il}}{\langle F_{j},F_{l}\rangle}(F_{j}-F_{l})$

of $f_{k}$ and readily verify that $\langle F_{j},$ $F_{k}\rangle=a_{\iota\iota}=a_{jk}$ and $\langle F_{l},$ $F_{k}\rangle=a_{ij}=a_{kl}.$

Note that this lift $F$ of $f$ satisfies the discrete version (2.6) of a Moutard equation.
Conversely, if a light cone lift $F$ of a discrete surface satisfies a Moutard equation,

$F_{k}-F_{i}\Vert F_{j}-F_{l}$ on all faces, then it is isothermic, see [7, Def. 9]. Namely, taking
scalar products we learn that

$F_{k}+F_{i}\perp F_{j}-F_{l}$
$\Rightarrow$ $\{$

$\langle F_{j},$ $F_{k}\rangle=\langle F_{i},$ $F_{l}\rangle$

$F_{k}-F_{i}\perp F_{j}+F_{l}$ $\langle F_{k},$ $F\iota\rangle=\langle F_{i},$ $F_{j}\rangle$

$7Note$ that $\det(\langle P_{i}, P_{j}\rangle)<0$ so that $\sqrt{\det(\langle P_{i},P_{j}\rangle)}\in i\mathbb{R}$ . Using the Clifford algebra of $\mathbb{R}^{4,1}$ , a
Clifford algebra valued cross ratio can be defined whose “imaginary” part encodes the 2-sphere of
the four points [19, Sect. 6.5].
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and hence

$\langle F_{i}, F_{k}\rangle\langle F_{j}, F_{l}\rangle=\langle F_{i}, F_{j}-F_{l}\rangle\langle F_{k}-F_{i}, F_{l}\rangle=(\langle F_{i}, F_{j}\rangle-\langle F_{i)}F_{l}\rangle)^{2}$

so that (2.3) gives

$[f_{i};f_{j};f_{k};f_{l}]= \frac{\langle F_{i},F_{j}\rangle}{\langle F_{i},F_{l}\rangle}.$

$\mathbb{R}om(2.6)$ it is also straightforward to see that any diagonal vertex star of a
discrete isothermic net is cospherical: if $i_{(m,n)},$ $m,$ $n\in\{-1,0,1\}$ , denote the vertices
of a $3\cross 3$-grid then the discrete Moutard equation (2.6) shows that the four diagonals
$F_{i_{(m,n)}}-F_{p_{(0,0)}},$ $m,$ $n\in\{\pm 1\}$ , are linearly dependent so that

$\dim span\{F_{i_{(0,0)}}, F_{i_{(1,1)}}, F_{i_{(-1,1)}}, F_{i_{(-1,-1)}}, F_{i_{(1,-1)}}\}\leq 4$

and the five points lie on a 2-sphere.
Assuming that the vertex star $\{F_{i_{(0,0)}}, F_{i_{(1,0)}}, F_{i_{(0,1)}}, F_{i_{(-1,0)}}, F_{i_{(0-1}}\}$ is not cospherical

the converse can also be shown, leading to two characterizations of discrete isothermic
nets, see [7, Sect. 3]:

Lemma 2.2. $A$ discrete net $f$ : $\mathbb{Z}^{2}\supset Marrow S^{3}$ in the conformal 3-sphere is
isothermic iff

$\bullet$ (i) there is a lift $F$ : $Marrow L^{4}$ of $f$ satisfying a discrete Moutard equation
$F_{k}-F_{i}\Vert F_{j}-F_{l}$ on every face (ijkl) iff

$\bullet$ (ii) any diagonal vertex star is cospherical.

The sphere containing a diagonal vertex star of an isothermic net is referred to as
the central sphere of the net at the center of the star, see [7, Thm. 10].

As an example we investigate discrete surfaces of revolution: consider the discrete
net

$(m, n)\mapsto f_{(m,n)}:=(\eta_{m}, \rho_{m}\cos\varphi_{n}, \rho_{m}\sin\varphi_{n})\in \mathbb{R}^{3}\subset \mathbb{R}^{3}\cup\{\infty\}\cong S^{3}$

where $\eta,$ $\rho$ and $\varphi$ are real functions of a discrete parameter. $A$ straightforward cross
ratio computation would reveal that

$q_{(m,n)(m+1,n)(m+1,n+1)(m,n+1)}=- \frac{(d\eta_{m,m+1})^{2}+(d\rho_{m,m+1})^{2}}{4\rho_{m}\rho_{m+1}\sin^{2}\frac{d\varphi_{n,n+1}}{2}}$

identifying the net as a discrete isothermic net. However, we shall proceed differently
to show that $f$ is an isothermic net and to find a cross ratio factorizing function $a$ on
the edges.

Consider

$|(x_{0}, \ldots, x_{4})|^{2}=-x_{0}^{2}+\sum_{i=1}^{4}x_{i}^{2}$

as the quadratic form of the Minkowski scalar product of $\mathbb{R}^{4,1}$ and let

(2.7) $F^{e}:=( \frac{1+|f|^{2}}{2}, f, \frac{1-|f|^{2}}{2})$
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denote the Euclidean lifl8 of $f$ into the light cone $L^{4}\subset \mathbb{R}^{4,1}$ . Now observe that

$F_{(m,n)}:= \frac{(-1)^{m}}{\rho_{m}}F_{(m,n)}^{e}=$

that is, there is an orthogonal decomposition $\mathbb{R}^{4,1}=\mathbb{R}^{2,1}\oplus \mathbb{R}^{2}$ so that

(2.8) $F_{(m,n)}=(-1)^{m}(M_{m}+\Phi_{n}C)=(-1)^{m}\Phi_{n}(M_{m}+C)$ ,

where $\Phi_{n}$ are rotations of $\mathbb{R}^{2},$ $C\in S^{1}\subset \mathbb{R}^{2}$ and $M$ takes values in the hyperbolic
plane9

$H^{2}=\{Y\in \mathbb{R}^{2,1}||Y|^{2}=-1, Y_{0}>0\}\subset \mathbb{R}^{2,1}$

In particular, $M_{m}\perp\Phi_{n}C$ for all $(m, n)$ .
Note that $\mathbb{R}^{2}=$ span $\{\Phi_{n}C|n\in \mathbb{Z}\}$ defines an elliptic sphere pencil, hence (cf. [19,

Sect. 1.2] $)$ a circle
$L^{4}\cap \mathbb{R}^{2,1}=L^{4}\cap\{\Phi_{n}C|n\in \mathbb{Z}\}^{\perp},$

which is the axis of our discrete surface of revolution. At the same time, it is the
infinity boundary of the hyperbolic 2-plane $H^{2}$ of the meridian curve.

Clearly, $F$ satisfies the discrete Moutard equation

$F_{(m+1,n+1)}-F_{(m,n)}=(-1)^{m+1}\{M_{m+1}+\Phi_{n+1}C+M_{m}+\Phi_{n}C\}=F_{(m+1,n)}-F_{(m,n+1)}$

and is therefore a discrete isothermic net with cross ratio factorizing function

$a_{ij}:=\langle F_{i}, F_{j}\rangle=$

$=\{-1+\langle\Phi_{n}C,\Phi_{n+1}C\rangle=-1-\langle M_{m},M_{m+1}\rangle=\frac{(d\eta_{m,m+1})^{2}+(d\rho_{m,m+1)^{2}}}{-2sin^{2}\frac{\rho_{m+1}d\varphi_{n,n+l}}{2}2\rho_{m}}$ forfor (
$ij)=((m,n)(m,n+1))(ij)=((m,n)(m+.1, n))$

as soon as $M_{m+1}\neq M_{m}$ and $\Phi_{n+1}C\neq\Phi_{n}C.$

2.2. Quaternions and the Calapso transformation. The Calapso transforma-
tion, or $T$-transformation, of (discrete) isothermic nets will be central to our investi-
gations – it was introduced in [18] (see also [19, \S 5.7.16]) using a quaternionic setup
for M\"obius geometry. Hence we will first briefly discuss the quaternionic approach in
order to make contact with earlier work; however, we will provide an independent def-
inition in the following section so that a reader unfamiliar with previous approaches
may just skip this section.

Thus, we consider $S^{3}\cong{\rm Im} \mathbb{H}\cup\{\infty\}\subset \mathbb{H}\mathbb{P}^{1}$ and

$\mathbb{R}^{4,1}\cong\{X\in End(\mathbb{H}^{2})|X=(\begin{array}{ll}x x_{\infty}x_{0} -x\end{array}), x\in{\rm Im} \mathbb{H}, x_{0}, x_{\infty}\in \mathbb{R}\}\subset End(\mathbb{H}^{2})$

$8_{The}$ Euclidean lift into the (flat) quadric of constant curvature (see [19, Sect. 1.4])

$\mathcal{Q}=\{Y\in L^{4}|\langle Y, Q\rangle=-1\}$ , where $Q:=(1,0_{\}}0,0, -1)$ .

$9$Secretly we are using a conformal map $\mathbb{R}^{3}\backslash$ {axis} $arrow H^{2}\cross S^{1}\subset \mathbb{R}^{2,1}\oplus \mathbb{R}^{2}=\mathbb{R}^{4,1}$ adapted to
the rotational symmetry of the map $f$ , cf. [19, \S 1.4.16].
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equipped with $|X|^{2}=-X^{2}=x^{2}+x_{0}x_{\infty}$ as the quadratic form of the Minkowski
product $1$ . In particular, we obtain an isometry

(2.9) $\mathbb{R}^{3}\cong{\rm Im} \mathbb{H}\ni xarrow X=(\begin{array}{ll}x -x^{2}1 -x\end{array})\in L^{4}\subset \mathbb{R}^{4,1}$ ;

note that, for two such “Euclidean” light cone lifts $X,$ $Y\in L^{4},$

$-2\langle X, Y\rangle=XY+YX=-(y-x)^{2}=|y-x|^{2}.$

In this setup the M\"obius group

M\"ob (3) $=\{(\begin{array}{ll}a bc d\end{array})\in End(\mathbb{H}^{2})|\overline{a}c+\overline{c}a=\overline{b}d+\overline{d}b=0,\overline{a}d+\overline{c}b\in \mathbb{R}\backslash \{0\}\}/\mathbb{R}\subset \mathbb{P}Gl(2, \mathbb{H})$

of $S^{3}$ acts isometrically on $\mathbb{R}^{4,1}$ via
(2.10) M\"ob(3) $\cross \mathbb{R}^{4,1}\ni(A, X)\mapsto A\cdot X$ $:=AXA^{-1}\in \mathbb{R}^{4,1}$

Now let $f$ : $Marrow S^{3}$ be a discrete conformal net, with cross ratio factorizing
function $a$ on the edges, and define

(2.11) $\tau_{ij} :=\frac{a_{ij}}{2\langle F_{i},F_{j}\rangle}F_{i}F_{j},$

where $F$ is any light cone lift of $f$ ; assuming that $f$ : $Marrow{\rm Im} \mathbb{H}\subset S^{3}$ and using the
lift (2.9) we find

$\tau_{ij}=(\begin{array}{ll}f_{i}df_{ij}^{*} -f_{i}df_{ij}^{*}f_{j}df_{ij}^{*} -df_{ij}^{*}f_{j}\end{array})$ , where $df_{ij}^{*}=a_{ij}(df_{ij})^{-1}$

is the “derivative” of the Christoffel transform $f^{*}$ of $f$ in $\mathbb{R}^{3}$ , see [4, Thm. 14] or [19,
\S 5.7.7]. Then, for $\lambda\in \mathbb{R},$

$(1+\lambda\tau_{ij})(1+\lambda\tau_{ji})=1-\lambda a_{ij}\in \mathbb{R}$

and
$(1+\lambda\tau_{ij})(1+\lambda\tau_{jk})=(1+\lambda\tau_{il})(1+\lambda\tau_{lk})$

on every elementary quadrilateral (ijkl) so that
(2.12) $(ij)\mapsto 1+\lambda\tau_{ij}, 1+\lambda\tau_{ij}:\{j\}\cross S^{3}arrow\{i\}\cross S^{3},$

defines a flat M\"ob(3)-connectionll on $M\cross S^{3}$ , as long as
$1-\lambda a_{ij}\neq 0 \Leftrightarrow 1+\lambda\tau_{ij}\in M\ddot{o}b(3)$

for all edges $(ij)$ . Hence there is a gauge transformation
(2.13) $T^{\lambda}$ : $Marrow$ M\"ob (3), $T_{j}^{\lambda}=T_{i}^{\lambda}(1+\lambda\tau_{ij})$ ,
which identifies the $(1+\lambda\tau)$-connection on $M\cross S^{3}$ with the trivial connection.

The $T^{\lambda}$ play a key role in the transformation theory of (discrete) isothermic nets;
in particular, it turns out that every $T^{\lambda}f$ definesl2 a discrete isothermic net: $T^{\lambda}$ :
$Marrow M\ddot{o}b(3)$ are the Calapso transformations of $f$ and the discrete isothermic nets
$T^{\lambda}f$ are its Calapso transforms, see [19, \S 5.7.16].

$1_{This}$ is analogous to the Vahlen matrix approach to M\"obius geometry (see [19, Sect. 7.1]) using
the Clifford algebra of $\mathbb{R}^{4,1}.$

llWe shall make the notion of a flat (discrete) connection precise in the following section.
$12HereM;b(3)$ acts on $S^{3}\cong{\rm Im} \mathbb{H}U\{\infty\}$ by M\"obius transformations, i.e., by fractional linear

transformations.
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The connections $(ij)\mapsto 1+\lambda\tau_{ij}$ lift to flat $O(4,1)$ -connections $(ij)\mapsto\Gamma_{ij}^{\lambda}$ on the
(discrete) vector bundle $M\cross \mathbb{R}^{4,1}$ via (2.10) to give

(2.14) $X \mapsto\Gamma_{ij}^{\lambda}\cdot X :=\frac{1}{1-\lambda a_{ij}}(1+\lambda\tau_{ij})X(1+\lambda\tau_{ji})=\Gamma_{f_{i},f_{j}}^{1-\lambda a_{ij}}(X)$.

2.3. The vector bundle approach. Clearly, the flat connections $\Gamma^{\lambda}$ on $M\cross \mathbb{R}^{4,1}$ in
(2.14) can be defined without reference to the quaternionic approach. First we define
our setup:

Definition 2.3. $A$ connection on $a$ (discrete) fibre bundle $Farrow M$ , where the base
$M$ is a rectangular grid as before, is a map that assigns to each directed edge $(ij)$ in
$M$ an isomorphism

$\Gamma_{ij}:F_{j}arrow F_{i}$ so that $\Gamma_{ij}\Gamma_{ji}=1$ ;

it will be said to be $a$ flat connection if its holonomies around all elementary quadi-
laterals (ijkl) are trivial,

$\Gamma_{ij}\Gamma_{jk}\Gamma_{kl}\Gamma_{li}=1.$

With these notions we can now formulate the key definition:

Definition 2.4. Let $f$ : $Marrow S^{3}$ be a discrete isothermic net with cross ratio factor-
izing function $a$ . We say that

(2.15) $(\lambda, ij)\mapsto\Gamma_{ij}^{\lambda} :=\Gamma_{f_{i},f_{j}}^{1-\lambda a_{ij}}\in Hom(\{j\}\cross \mathbb{R}^{4,1}, \{i\}\cross \mathbb{R}^{4,1})$

defines the isothermic family of connectionsl3 of $f$ , where $\lambda\in \mathbb{R}$ so that $1\neq\lambda a_{ij}$ for
all $edge\mathcal{S}(ij)$ .

Note that the $\Gamma^{\lambda}$ are metric connections on $M\cross \mathbb{R}^{4,1}$ , as all $\Gamma_{ij}^{\lambda}$ are isometries and
hence descend to connections on $M\cross S^{3}.$

We already know that, if $f$ is an isothermic net, then the isothermic family of
connections (2.15) is flat, see [19, \S 5.7.5]. Here we shall give an independent proof,
not relying on the quaternionic setup, as well as a certain converse of this fact (cf.
[18, Thm. 3.14] $)$ :

Lemma 2.5. Let $f$ : $Marrow S^{3}$ be a regular discrete net, i. e., any three vertices of a
face are in general position, and let $a$ be a function on the edges. Then the connection
given by (2.15) is flat if and only if $f$ is isothermic with cross ratio factorizing function
$a.$

Proof. First note that $\Gamma_{f_{i},f_{j}}^{1-\lambda a_{ij}}(X)=Xmod f_{i}$ when $X\perp f_{i}$ , so that $\Gamma_{f_{i},f_{j}}^{1-\lambda a_{ij}}$ projects
to the identity on $f_{i}^{\perp}/f_{i}$ and similarly for $f_{j}$ . Consequently,

$\Gamma_{f_{i},f_{j}}^{1-\lambda a_{ij}}\Gamma_{f_{j},f_{k}}^{1-\lambda a_{jk}}(X)=Xmod f_{j}$ if $X\perp f_{j}.$

The same is true for the product $\Gamma_{f_{i},f_{l}}^{1-\lambda a_{il}}\Gamma_{f_{l)}f_{k}}^{1-\lambda alk}$ so that, if we now assume flatness of
the connection,

$\Gamma_{f_{i},f_{j}}^{1-\lambda a}ij\Gamma_{f_{j},f_{k}}^{1-\lambda a_{jk}}=\Gamma_{f_{i},f_{l}}^{1-\lambda a_{il}}\Gamma_{f_{l},f_{k}}^{1-\lambda a_{lk}}=:\Gamma^{\lambda},$

13We have $\Gamma_{ij}^{\lambda}\Gamma_{ji}^{\lambda}=1$ on all edges $(ij)$ , so that the $\Gamma^{\lambda}$ qualify as discrete (linear) connections.
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we learn that $\Gamma^{\lambda}=id$ on $(f_{j}\oplus f_{l})^{\perp}$ since $f_{j}\neq f_{l}$ . Moreover, $f_{j}$ and $f_{l}$ are eigendirec-
tions of $\Gamma^{\lambda}$ and

$\Gamma^{\lambda}(X)=\{\begin{array}{ll}\frac{1-\lambda a_{jk}}{1-\lambda aij}X if X\in f_{j},X if X\perp f_{j}, f_{l},\frac{1-\lambda a_{lk}}{1-\lambda a_{il}}X if X\in f_{l}.\end{array}$

As $\Gamma^{\lambda}$ is, along with $\Gamma_{f_{i},f_{j}}^{1-\lambda a_{ij}}$ and $\Gamma_{f_{j},f_{k}}^{1-\lambda a_{jk}}$ , an orientation preserving orthogonal trans-
formation we infer that, for all $\lambda,$

$\frac{1-\lambda a_{jk}1-\lambda a_{lk}}{1-\lambda a_{ij}1-\lambda a_{il}}=1$ and $\Gamma^{\lambda}=\Gamma_{f_{j},f_{l}}^{1/q(\lambda)},$ $q( \lambda):=\frac{1-\lambda a_{ij}}{1-\lambda a_{jk}}.$

Hence $a_{i_{J}’}=a_{jk}$ and $a_{il}=a_{lk}$ (in which case $\Gamma^{\lambda}=id$ for all $\lambda$ ) or $a_{ij}=a_{lk}$ and
$a_{jk}=a_{il}.$

Now decompose $F_{k}\in f_{k}\backslash \{0\}$ as $F_{k}=F_{i}+F_{j}+F_{k}^{\perp}\in f_{i}\oplus f_{j}\oplus(f_{i}\oplus f_{j})^{\perp}$ and
observe that

$\Gamma^{\lambda}(F_{k})=\underline{1}\Gamma$
$1- \lambda a_{jk}f_{i},f_{j}1-\lambda a_{ij}(F_{k})=\frac{1-\lambda a_{ij}}{1-\lambda a_{jk}}F_{i}+\frac{1}{1-\lambda a_{jk}}F_{k}^{\perp}+\frac{1}{(1-\lambdaa_{ij})(1-\lambda a_{jk})}F_{j}$

$arrow\underline{a_{ij}}F_{i}$

$a_{jk}$

as $\lambdaarrow\infty$ . This shows that, since $f_{k}\neq f_{i}$ , we cannot have $a_{ij}=a_{jk}$ ; hence the func-
tion $a$ has equal values on opposite edges of an elementary quadrilateral. Moreover,
we learn that

$f_{k}=\Gamma_{f_{j},f\iota}^{q(\infty)}(f_{i})$ ,

showing that the four vertices $f_{i},$ $f_{j},$ $f_{k}$ and $f_{l}$ are concircular and the edge function
$a$ factorizes their cross ratio,

$[f_{i};f_{j};f_{k};fi]=q( \infty)=\frac{a_{ij}}{a_{jk}}.$

Hence $f$ is a discrete isothermic net.
Conversely, suppose that $f$ is discrete isothermic with cross ratio factorizing func-

tion $a$ ; we wish to show that

$\Gamma_{ij}^{\lambda}\Gamma_{jk}^{\lambda}=\Gamma_{f_{j},f_{l}}^{1/q(\lambda)}=\Gamma_{f_{l},f_{j}}^{q(\lambda)}=\Gamma_{il}^{\lambda}\Gamma_{lk}^{\lambda},$

where $q( \lambda)=\frac{1-\lambda a_{ij}}{1-\lambda a_{jk}}$ . As the second equation holds and the third is obtained from the
first by exchanging the roles of $j$ and $l$ it suffices to prove the first of these equations.
Also,

$\Gamma_{f_{j},f\iota}^{q(\lambda)}\Gamma_{ij}^{\lambda}\Gamma_{jk}^{\lambda}(X)=\{\begin{array}{ll}X if X\in f_{j}Xmod f_{j} if X\perp f_{j}\end{array}$

so that flatness of the family of isothermic connections of $f$ follows as soon as
$\Gamma_{f_{j},f_{l}}^{q(\lambda)}\Gamma_{ij}^{\lambda}\Gamma_{jk}^{\lambda}$ has another isotropic eigendirection – we shall show that $f_{k}$ serves this
purpose: consider

$\mathbb{R}P^{1}\cong \mathbb{R}\cup\{\infty\}\ni\lambda\mapsto\Gamma_{ij}^{\lambda}\Gamma_{jk}^{\lambda}(f_{k})=\Gamma_{ij}^{\lambda}(f_{k}), \Gamma_{f_{j},f_{l}}^{1/q(\lambda)}(f_{k})\in s^{3}.$
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Both maps parametrize the same circle in terms of a certain cross ratio, given as a
linear fractional transformation of $\lambda$ ; in particular,

$\lambda=0 \Rightarrow \Gamma_{ij}^{\lambda}(f_{k})=\Gamma_{f_{i},f_{j}}^{1}(f_{k})=f_{k}=\Gamma_{f,,f_{l} ,a_{\perp}\underline{k}}^{1}(f_{k})=\Gamma_{f_{j},f_{l}}^{1/q(\lambda)}(f_{k})-,$

$\lambda=\infty \Rightarrow \Gamma_{ij}^{\lambda}(f_{k})=\Gamma_{f_{i},f_{j}}^{\infty}(f_{k})=f_{i}=\Gamma_{f_{j},f_{l}}^{a_{ij}}(f_{k})=\Gamma_{f_{j},f_{l}}^{1/q(\lambda)}(f_{k})$,
$\lambda=\frac{1}{a_{ij}} \Rightarrow \Gamma_{ij}^{\lambda}(f_{k})=\Gamma_{f_{i},f_{j}}^{0}(f_{k})=f_{j}=\Gamma_{f_{j},fl}^{\infty}(f_{k})=\Gamma_{f_{j},f_{l}}^{1/q(\lambda)}(f_{k})$ .

As two M\"obius transformations of a circle coincide as soon as they coincide at three
points we conclude that $\Gamma_{ij}^{\lambda}(f_{k})=\Gamma_{f_{j},f_{l}}^{1/q(\lambda)}(f_{k})$ for all $\lambda.$ $\square$

Note that, freeing the second part of the proof from the specific notations of the
situation, we have proved the following:

Lemma 2.6. Write $[p_{1};p_{2};p_{3};p_{4}]= \frac{a}{b}$ with $a,$ $b\in \mathbb{R}$ for the cross ratio of four con-
circular points $p_{i}\in S^{3},$ $i=1,$ $\ldots,$

$4$ ; then, for all $\lambda\in \mathbb{R},$

$\Gamma_{p_{1},p_{2}}^{1-a\lambda}\Gamma_{p_{2},p_{3}}^{1-b\lambda}=\Gamma_{p_{2},p_{4}}^{(1-b\lambda)/(1-a\lambda)}=\Gamma_{pp_{2}}^{(1-a\lambda)/(1-b\lambda)}=\Gamma_{p_{1},p_{4}}^{1-b\lambda}\Gamma_{p_{4},p_{3}}^{1-a\lambda}4,\cdot$

Thus, for a discrete isothermic net $f$ , there are gauge transformations $T^{\lambda}$ : $Marrow$

$O(4,1)$ identifying the connections $\Gamma^{\lambda}$ on $M\cross \mathbb{R}^{4,1}$ with the trivial connection:

Lemma 2.7. (Lemma and definition) Let $f:Marrow S^{3}$ be a discrete isothermic net
with its isothermic family of connections $\Gamma^{\lambda}$ . Then the gauge transformations

$T^{\lambda}$ : $Marrow O(4,1)$ with $T_{j}^{\lambda}=T_{i}^{\lambda}\Gamma_{ij}^{\lambda}$

are the Calapso transformations of $f$ ; the isothermic nets $f^{\lambda}$ $:=T^{\lambda}f$ are its Calapso
transforms.

Note that $a^{\mu}= \frac{a}{1-\mu a}$ is a cross ratio factorizing function for the Calapso transform
$f^{\mu}$ of $f$ with cross ratio factorizing function $a$ , see [19, \S 5.7.16]; the isothermic family
of connections of $f^{\mu}$ is given by

(2.16) $\Gamma_{ij}^{\mu,\lambda}=T_{i}^{\mu}\Gamma_{ij}^{\mu+\lambda}(T_{j}^{\mu})^{-1},$

which shows that the Calapso transformations of a discrete isothermic net satisfy a
1-parameter group property, see [18] or [19, \S 5.7.30]:
(2.17) $T^{\mu,\lambda}T^{\mu}=T^{\mu+\lambda}.$

3. POLYNOMIAL CONSERVED QUANTITIES

The second key notion in our definition of discrete cmc nets in space forms will be
that of polynomial conserved quantities:

Definition 3.1. Let $f$ : $Marrow S^{3}$ be an isothermic net. $A$ polynomial conserved
quantity of $f$ is a map

$\mathbb{R}\cross M\ni(\lambda, i)\mapsto P_{i}(\lambda)=\sum_{k=0}^{N}P_{i}^{(k)}\lambda^{k}\in \mathbb{R}^{4,1}[\lambda]$

so that, for every fixed $\lambda,$

$T^{\lambda}P(\lambda)\equiv$ const.
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Hence, a polynomial conserved quantity of an isothermic net can be thought of as
a polynomial family of parallel sections of the vector bundle $M\cross \mathbb{R}^{4,1}$ equipped with
the isothermic family of connections:
(3.1) $T^{\lambda}P(\lambda)\equiv$ const. $\Leftrightarrow$ $P_{i}(\lambda)=\Gamma_{ij}^{\lambda}P_{j}(\lambda)$

on all edges $(ij)$ of $M.$

3.1. Basic properties. Clearly, as $T^{\lambda}$ acts linearly on $\mathbb{R}^{4,1}$ , the polynomial conserved
quantities of a given discrete isothermic net $f$ can be superposed:

Lemma 3.2. The space of polynomial conserved quantities of $f$ is a vector space.
As a consequence, we can construct new polynomial conserved quantities from a

given one by multiplying with real polynomials $p(\lambda)$ , thereby raising the degree; for
example, if $P$ is a polynomial conserved quantity of $f$ then $(1+\lambda)P(\lambda)$ will be a new
polynomial conserved quantity of higher degree. Thus we will be interested in (non-
vanishing) polynomial conserved quantities of lowest possible degree. The following
lemma provides a criterion:

Lemma 3.3. Let $P(\mu)=0$ for a polynomial conserved quantity $P(\lambda):Marrow \mathbb{R}^{4,1}[\lambda]$

of $f$ ; then

$\tilde{P}(\lambda):=\frac{1}{\lambda-\mu}P(\lambda)$

is a polynomial conserved quantity of $f$ of lower degree.
Note that, if $P_{i}(\mu)=0$ for some $i\in M$ then $P(\mu)\equiv 0$ on $M$ since $T^{\mu}P(\mu)\equiv$ const.

Proof. Writing $P_{i}(\lambda)\in \mathbb{R}^{4,1}[\lambda]$ in terms of a basis of $\mathbb{R}^{4,1}$ shows that $\mu$ is a common
zero for all (real) component polynomials, which are therefore divisible by $(\lambda-\mu)$ .
Hence $\tilde{P}_{i}(\lambda)$ is polynomial at any $i\in M.$

Clearly

$T^{\lambda} \tilde{P}(\lambda)=\frac{1}{\lambda-\mu}T^{\lambda}P(\lambda)\equivconst$

for any fixed $\lambda$ , showing that $\tilde{P}(\lambda)$ is a polynomial conserved quantity of $f.$ $\square$

As a direct consequence of the previous two lemmas we leam that, if two distinct
polynomial conserved quantities $P(\lambda)$ and $\tilde{P}(\lambda)$ of degree $N\in \mathbb{N}$ of an isothermic
net have the same value at some point $(\mu, i)\in \mathbb{R}\cross M$ , then there is a polynomial
conserved quantity of degree $\leq N-1$ . In particular:

Corollary 3.4. $A$ non-zero polynomial conserved quantity of lowest possible degree
$N,$

$P(\lambda)=\lambda^{N}Z+\cdots+\lambda^{0}Q:Marrow \mathbb{R}^{4,1}[\lambda],$

is uniquely determined by either its top or bottom coefficient $Z$ or $Q$ , respectively.
Since the $T^{\lambda}$ are orthogonal transformations, there is another obvious property of

a polynomial conserved quantity which will become important later:
Lemma 3.5. If $P(\lambda)$ is a polynomial conserved quantity of $f$ , then $|P(\lambda)|^{2}$ depends
only on $\lambda$ ; in particular, $|Z|^{2}$ and $|Q|^{2}$ are constants. If $P(\lambda)=\lambda Z+Q$ is a linear
conserved quantity, then also $\langle Z,$ $Q\rangle\equiv$ const.
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Finally note that the equation (3.1) for a polynomial conserved quantity depends
crucially on the choice of a cross ratio factorizing function $a$ : however, if $\tilde{a}:=\alpha a$ is a
new cross ratio factorizing function, then

$\tilde{\Gamma}^{\lambda}=\Gamma^{\alpha\lambda}$

by (2.15); hence $\tilde{P}(\lambda)=P(\alpha\lambda)$ is a new polynomial conserved quantity satisfying
(3.1) with the new isothermic family of connections. Consequently:

Lemma 3.6. If $P(\lambda)$ is a polynomial conserved quantity of $f$ with respect to $a$ as a
cross ratio factorizing function then

$\tilde{P}(\lambda):=P(\alpha\lambda)$

is a polynomial conserved quantity of $f$ with respect to $\tilde{a}$ $:=\alpha a$ as a new cross ratio
factorizing function.
3.2. Geometric properties. We now turn to a more detailed analysis of (3.1) and
its geometric consequences: using (2.4) the fact that a polynomial conserved quantity
$P(\lambda)$ is a family of parallel sections of the isothermic family of connections (2.15) of
$f$ reads

$P_{i}(\lambda)$ $=$ $\Gamma_{ij}^{\lambda}P_{j}(\lambda)$ $=$ $P_{j}( \lambda)+\frac{\lambda a_{ij}}{\langle F_{i},F_{j}\rangle}\{\frac{1}{1-\lambda aij}\langle P_{j}(\lambda), F_{i}\rangle F_{j}-\langle P_{j}(\lambda), F_{j}\rangle F_{i}\}$

on any edge $(ij)$ of $M$ ; exchanging the roles of the endpoints $i$ and $j$ of the edge we
obtain a similar equation which, as $f_{i}\neq f_{j}$ , yields two equations

$dP_{ij}(\lambda) =$

$= \frac{\lambda a_{ij}}{1-\lambda aij}\frac{\langle F_{i},F_{j}\rangle\lambda a_{ij}1}{\langle F_{i},F_{j}\rangle}\{\langle P_{i}(\lambda),F_{j}\rangle F_{i}-\frac{}{}\{\langle P_{j}(\lambda),F_{j}\rangle F_{i}-\langle P_{j}(\lambda),F_{i}\rangle F_{j}\}\langle P_{i}(\lambda), F_{i}\rangle F_{j}\}$

for some light cone lift $F$ of $f$ . Note that the second equality follows from the first
by taking scalar products with $F_{i}$ and $F_{j}$ , respectively. Hence, we also obtain the
converse:

Lemma 3.7. $P(\lambda)$ is a polynomial conserved quantity of $f$ if and only if, for all edges
$(ij)$ in $M,$

(3.2) $dP_{ij}( \lambda)=\frac{\lambda a_{ij}}{\langle F_{i},F_{j}\rangle}\{\langle P_{j}(\lambda), F_{j}\rangle F_{i}-\langle P_{i}(\lambda), F_{i}\rangle F_{j}\}.$

Note that, in case $F$ is a Moutard lift of $f$ satisfying (2.5), then (3.2) simplifies to

$dP_{ij}(\lambda)=\lambda\{p_{j}(\lambda)F_{i}-p_{i}(\lambda)F_{j}\}$ , where $p(\lambda)$ $:=\langle P(\lambda),$ $F\rangle.$

The integrability $d^{2}P(\lambda)=0$ of this equation then yields

$(p_{k}(\lambda)-p_{i}(\lambda))(F_{j}-F_{l})=(p_{j}(\lambda)-p_{l}(\lambda))(F_{k}-F_{i})$ ,

and hence $p(\lambda)$ satisfies the very same Moutard equation (2.6) as $F$ does.
Now the key observation from (3.2) is that this equates a polynomial of degree $N$

and a polynomial of degree $N+1$ with vanishing constant $co$efficient. Hence, looking
at the degree $0$ and degree $N$ and $N+1$ terms we obtain the following two corollaries:

Corollary 3.8. If $P(\lambda)=\lambda^{N}Z+\cdots+Q$ is a polynomial conserved quantity of $f,$

then $Q\equiv$ const.
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Thus a polynomial conserved quantity naturally provides an ambient quadric $\mathcal{Q}$ of
constant curvature $\kappa=-|Q|^{2}$ for the isothermic net, see [19, Sect. 1.4]:

(3.3) $\mathcal{Q}=\{Y\in L^{4}|\langle Y, Q\rangle=-1\}.$

Corollary 3.9. If $P(\lambda)=\lambda^{N}Z+\lambda^{N-1}Y+\cdots+Q$ is a polynomial conserved quantity
of $f$ then:
(i) $Z_{i}\perp f_{i}$ at all points $i$ in $M$;
(ii) $Z_{i}+a_{ij} \frac{\langle Y_{j},F_{j}\rangle}{\langle F_{i},F_{j}\rangle}F_{i}=Z_{j}+a_{ij}\frac{\langle Y_{i},F_{i}\rangle}{\langle F_{i},F_{j}\rangle}F_{j}$ for all edges $(ij)$ in $M$;
(iii) $|Z|^{2}\geq 0$ and $|Z|^{2}=0$ if and only if $Z\in f.$

Here, (iii) follows from (i) since $f^{\perp}$ carries a positive semi-definite metric with only
$f$ as a null direction. Also note that, since $|Z|^{2}$ is constant, either $Z\Vert F$ at all points
or, without loss of generality, $|Z|^{2}\equiv 1$ as the space of polynomial conserved quantities
is linear.

We will be mostly interested in the latter case. To interpret this situation geomet-
rically first note that, if $|Z|^{2}\equiv 1$ , then $i\mapsto Z_{i}$ defines a discrete sphere congruence
so that every sphere $Z_{i}$ contains the point $f_{i}$ , by (i); moreover, the sphere

(3.4) $S_{ij} :=Z_{i}+a_{ij} \frac{\langle Y_{j},F_{j}\rangle}{\langle F_{i},F_{j}\rangle}F_{i}=Z_{j}+a_{ij}\frac{\langle Y_{i},F_{i}\rangle}{\langle F_{i},F_{j}\rangle}F_{j}$

belongs to both contact elementsl4 defined by $Z$ at the endpoints of an edge so that

$M\ni i\mapsto Z_{i}+f_{i}:=\{Z_{i}+\alpha F_{i}|\alpha\in \mathbb{R}\}$

defines a discrete principal net in Lie geometry, see [6, Sect. 4.1], with curvature
spheres $S_{ij}$ . On the other hand, the existence of the curvature spheres $S_{ij}$ , which
touch both spheres $Z_{i}$ and $Z_{j}$ , can be interpreted as a discrete version of the enveloping
condition for a sphere congruence defined at the vertices of a discrete net. Thinking
of $f$ as a net in $\mathbb{R}^{3}$ , the spheres $Z$ define a unit normal field $n$ at the vertices of $f,$

which satisfies the trapezoid property of [22, Sect. 3].
We summarize these observations in the followingl5

Corollary 3.10. (Corollary and definition) If $P(\lambda)=\lambda^{N}Z+\cdots+Q$ is a polynomial
conserved quantity of $f$ with $|Z|^{2}=1$ , then $f$ envelops the discrete sphere congruence
$Z$ : we say that $f:Marrow S^{3}$ envelops a discrete sphere congruence $S:Marrow S^{3,1}$ if

$\bullet$ (i) $S_{i}\in f_{i}^{\perp}for$ all $i\in M$ (incidence) and
$\bullet$ (ii) $S_{j}=S_{i}mod f_{i}\oplus f_{j}$ for each edge $(ij)$ of $M$ (touching);

the common sphere $S_{ij}$ of the two contact elements $S_{i}+f_{i}$ and $S_{j}+f_{j}$ given by $S_{i}$

and $S_{j}$ at the endpoints of an edge will be called $a$ curvature sphere.

Note that the condition for a sphere congruence to be enveloped by a net is a
condition on the congruence of contact elements defined by the sphere congruence $=$

hence, if $f$ envelops $S$ and $F$ is any light cone lift of $f$ , then any sphere congruence
$S+hF,$ $h:Marrow \mathbb{R}$ , is also enveloped by $f.$

$14$Recall that, in contrast to M\"obius geometry, Lie geometry considers oriented spheres; thus
$\pm Z+f$ will define two contact elements which differ by the orientation of their spheres.

$15We$ insist on a consistent orientation of the spheres of an enveloped sphere congruence.
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Before focusing on this geometrically interesting configuration we shall, for the
rest of this section, investigate the degenerate case where we can, without loss of
generality, take $Z=F$ as a canonical light cone li$ft^{16}$ of $f.$

Lemma 3.11. If $P(\lambda)=\lambda^{N}F+\cdots+Q$ is a polynomial conserved quantity of $f,$

then $F$ is a Moutard lift of $f.$

Proof. From (ii) of Corollary 3.9 we learn that
$\langle F_{i}, F_{j}\rangle+a_{ij}\langle Y_{j}, F_{j}\rangle=\langle F_{i}, F_{j}\rangle+a_{ij}\langle Y_{i}, F_{i}\rangle=0$

since $F_{i}$ and $F_{j}$ are linearly independent; thusl7 $\langle Y,$ $F\rangle\equiv$ const $=:c$ and $F$ satisfies
(2.5) with the cross ratio factorizing function $\tilde{a}$ $:=-ca.$ $\square$

As an example we seek an isothermic net with a degenerate degree 1 polynomial
conserved quantity: this is the lowest degree possible since the top term of a degree $0$

polynomial conserved quantity is constant and can therefore not be $a$ (Moutard) lift
of an isothermic net.

Now consider, as before,

$|(x_{0}, \ldots, x_{4})|^{2}=-x_{0}^{2}+\sum_{i=1}^{4}x_{i}^{2}$

as the quadratic form of the Minkowski scalar product of $\mathbb{R}^{4,1}$ and the isothermic net

(3.5) $\{-1,0,1\}^{2}\ni(m, n)\mapsto f_{(m,n)}:=(\eta m, \frac{1+\alpha}{2}+(-1)^{n}\frac{1-\alpha}{2}, \beta n)\in \mathbb{R}^{3},$

where $\alpha\in(0,1)$ and $\beta,$ $\eta>0$ , and let

(3.6) $Z_{(m,n)}:=(-1)^{n}F_{(m,n)}$ and $Q:=- \frac{4}{1-\alpha}(\frac{1+\alpha}{2}, 0,1,0, -\frac{1+\alpha}{2})$ ,

where $F=( \frac{1+|f|^{2}}{2}, f, \frac{1-|f|^{2}}{2})$ is a Euclidean liftl8. Note that $|Q|^{2}>0$ so that $Q$

describes a spherel9 and $f$ appears to be a perturbation of a net on that sphere.
Since

$\langle F_{i}, F_{j}\rangle=-\frac{1}{2}|f_{j}-f_{i}|^{2}$

and $f$ has rectangular faces, so that the cross ratio (2.3) on an elementary quadrilat-
eral becomes

$[f_{i};f_{j};f_{k};f_{l}]=- \frac{|f_{i}-f_{j}|^{2}}{|f_{i}-f_{l}|^{2}},$

$16We$ neglect the case where $Z$ may have zeroes, i.e., where the degree of $P(\lambda)$ may not be
constant.

$17_{This}$ we already knew from Lemma 3.5, because $\langle Y,$ $F\rangle$ is the $\lambda^{2N-1}$-coefficient of $|P(\lambda)|^{2}.$

$18Cf.$ $(2.7)$ and (2.9): this is the Euclidean lift with respect to $Q_{0}=(1,0,0,0, -1)$ , defining a flat
quadric of constant curvature via (3.3).

$19$Suppose that $|Q|^{2}\leq 0$ for a degenerate linear conserved quantity $P(\lambda)=\lambda F+Q$ of an isothermic
net $f$ ; then

$a_{ij}= \langle F_{i},F_{j}\rangle=-\frac{1}{2}|dF_{ij}|^{2}<0$

for any edge $(ij)$ since $dF_{ij}\perp Q$ by Lemma 3.5 and $f$ is regular. Hence the cross ratio of any
face becomes positive; thus, if we seek an isothermic net with embedded faces, then $Q$ necessarily
describes a sphere.
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$a_{ij}$
$:= \frac{1}{2}\langle Z_{i},$ $Z_{j}\rangle$ provides a cross ratio factorizing function, i.e., $Z$ is a Moutard lift of

$f$ . Moreover
$\langle\lambda Z+Q, Z\rangle=\langle Q, Z\rangle\equiv-2,$

so that

$d( \lambda Z+Q)_{ij}-\frac{\lambda a_{ij}}{\langle Z_{i},Z_{j}\rangle}\{\langle\lambda Z+Q, Z\rangle_{j}Z_{i}-\langle\lambda Z+Q, Z\rangle_{i}Z_{j}\}=0$

and $P(\lambda);=\lambda Z+Q$ is a linear conserved quantity for $f$ by Lemma 3.7.
Note that $Z=P(\infty)$ is a lift of $f$ and that

$P( \frac{4}{(1-\alpha)^{2}})=\frac{4}{(1-\alpha)^{2}}\{Z-2\frac{\langle Z,Q\rangle}{|Q|^{2}}Q\}$

is a lift of a M\"obius equivalent net or, more precisely, of the “antipodal” net in the
quadric of constant curvature given by $Q$ , see [19, Section 1.4]. We shall come back
to this observation later.

Finally observe that our restriction of the domain to $\{-1,0,1\}^{2}$ was not necessary:
$f$ , as given by (3.5), can be extended to all of $\mathbb{Z}^{2}$ while (3.6) keeps defining a linear
conserved quantity for $f$ . However, this restriction will be convenient later when we
shall recycle this example to demonstrate another aspect of our theory.

3.3. Special isothermic nets. As in the smooth case, see [12, Sect. 2.2], we can now
use the existence of a polynomial conserved quantity to define a special class of dis-
crete isothermic nets, ordered by the (minimal) degree of an associated polynomial
conserved quantity. However, in contrast to the smooth case, where a polynomial
conserved quantity is essentially unique because its top degree coefficient encodes the
conformal Gauss map of the underlying isothermic surface, the space of polynomial
conserved quantities of minimal degree may be higher $dimensiona1^{2}$ and may con-
tain elements with null $top$ degree coefficient, as in the above example, even though
we require the existence of a normalized polynomial conserved quantity of minimal
degree:

Definition 3.12. $A$ polynomial conserved quantity $P(\lambda)=\lambda^{N}Z+\cdots+Q$ of an
isothermic net $f$ will be called normalized if $|Z|^{2}\equiv 1$ ; we say that $f$ is $a$ special
isothermic net of type $N$ if it has a normalized polynomial conserved quantity of
degree $N$ , but not of any lower degree.

As a direct consequence of this definition and the 1-parameter group property (2.17)
of the Calapso transformations we obtain stability of the class of special isotbermic
nets of a fixed type $N$ under the Calapso transformation:

Theorem 3.13. If $f$ is special isothermic of type $N$ then so are its Calapso transforms
$f^{\mu}=T^{\mu}f.$

Proof. $T^{\mu,\lambda}=T^{\mu+\lambda}(T^{\mu})^{-1}$ are the Calapso transformations of $f^{\mu}$ by (2.17), see also
[19, \S 5.7.30]. Hence, if $P(\lambda)=\lambda^{N}Z+\cdots+Q$ is a polynomial conserved quantity of
$f$ , then

$P^{\mu}(\lambda):=T^{\mu}P(\mu+\lambda)$

$20_{However}$ , we do expect uniqueness of $a$ (normalized) polynomial conserved quantity of minimal
degree for generic isothermic nets of a sufficient size.
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defines a polynomial conserved quantity of $f^{\mu}$ of the same degree; moreover,
$|P^{\mu}(\lambda)|^{2}=|P(\lambda+\mu)|^{2}=\lambda^{2N}|Z|^{2}+\lambda^{2N-1}\cdots+\ldots$

showing that $P^{\mu}(\lambda)$ is normalized as soon as $P(\lambda)$ is. Thus $f^{\mu}$ is special isothermic
of type $\leq N.$

On the other hand $f=T^{\mu,-\mu}f^{\mu}$ is a Calapso transform of $f^{\mu}$ , by (2.17) again, so
that the same argument shows that $f^{\mu}$ is special isothermic of type $\geq N.$ $\square$

So far it is rather unclear how restrictive the definition of special isothermic of a
given type is: as we shall see later (and as one might expect after an equation count),
the condition on a discrete isothermic net of being special isothermic of type $N$ is
not a local condition – in particular, we will see that every isothermic $3\cross 3$-net has
plenty of linear conserved quantities and is, therefore, special isothermic of type 1.
On the other hand, the condition of being special isothermic of type $0$ does already
impose a condition on a $3\cross 3$-grid, and the corresponding constant conserved quantity
is generically unique:

Theorem 3.14. $f$ is special isothermic of type $0$ if and only if $f$ takes $value\mathcal{S}$ in a
2-sphere.

Proof. First suppose that $f$ is special isothermic of type $0$ with (necessarily21 normal-
ized) constant conserved quantity $P(\lambda)=Q$ . Then $Q$ defines a fixed 2-sphere, since
$|Q|^{2}=1$ , that contains the points of the net by (i) of Corollary 3.9. This also shows
that $a$ (normalized) constant conserved quantity is unique as soon as the isothermic
net does not take values in a circle.

Conversely, if $f$ takes values in a fixed 2-sphere $S\subset S^{3}$ then the Calapso transfor-
mations $T^{\lambda}$ of $f$ take (up to a constant M\"obius transformation) values in the M\"obius

group M\"ob (S) of this 2-sphere (see [18, Thm. 3.14] or [19, \S 5.7.22]). That is, the
Calapso transformations $T^{\lambda}$ of $f$ can be chosen to fix a unit vector $Q$ defining the
2-sphere $S$ : this yields a normalized constant conserved quantity so that $f$ is special
of type $0.$ $\square$

As a more involved example we take up surfaces of revolution and investigate
the symmetry of a corresponding polynomial conserved quantity: suppose $F_{(m,n)}=$

$(-1)^{m}(M_{m}+\Phi_{n}C)$ is the Moutard lift of a discrete surface of revolution, see (2.8),
with a rotationally symmetric polynomial conserved quantity, i,e., we assume that
$\Phi_{n}^{-1}P_{(m,n)}(\lambda)=:\hat{P}_{rn}(\lambda)$ does not depend on $n$ . Then, clearly,

$p_{(m,n)}(\lambda):=\langle P_{(m,n)}(\lambda), F_{(m,n)}\rangle=(-1)^{m}\langle\hat{P}_{m}(\lambda), M_{m}+C\rangle$

is independent of $n$ ; we shall see that the converse also holds:

Lemma 3.15. $A$ polynomial conserued quantity $P(\lambda)$ of a discrete net $f$ of revolution
with canonical lift $F_{(m,n)}=(-1)^{m}\Phi_{n}(M_{m}+C)$ is rotationally symmetric, $P_{(m,n)}(\lambda)=$

$\Phi_{n}\hat{P}_{m}(\lambda)$ , if and only if
$p(\lambda):=\langle P(\lambda), F\rangle$

does not depend on $n.$

21Remember that a constant conserved quantity cannot be degenerate by (i) of Corollary 3.9,
since $f$ is not constant.
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Proof. We already know that $p(\lambda)$ depends only on $m$ if $P(\lambda)$ is rotationally symmet-
ric; to prove the converse we assume that $p(\lambda)$ does not depend on $n$ and write
(3.7) $P_{(m,n)}=P_{(m,n)}^{\perp}+\Phi_{n}(\alpha_{(m},{}_{n)}C+\beta_{(m},{}_{n)}C^{\perp})\in \mathbb{R}^{2,1}\oplus \mathbb{R}^{2},$

where $C^{\perp}$ complements $C$ to form an orthonormal basis of $\mathbb{R}^{2}$ and $\alpha$ and $\beta$ are suitable
real valued functions. First note that

$(-1)^{m}p_{m}=\langle P_{(m,n)}^{\perp}, M_{m}\rangle+\alpha_{(m,n)}.$

Now we fix $m$ and, in order to simplify notation, consider all functions as functions
of $n$ only. From (3.2) we get

$0=dP_{n,n+1}(\lambda)+\lambda p(\lambda)dF_{n,n+1;}$

hence, in particular,
$dP_{n,n+1}^{\perp}=0$ and $d\alpha_{n,n+1}=-\langle dP_{n,n+1}^{\perp},$ $M\rangle=0.$

For a function $g$ on the vertices let $g_{n,n+1}$ $:= \frac{g_{n}+g_{n+1}}{2}$ denote the associated function
on the edges, and let $d\varphi_{n,n+1}$ be the rotation angle along the edge, i.e., the rotation
angle of $\Phi_{n+1}\Phi_{n}^{-1}$ ; observe that

$d( \Phi C^{\perp})_{n,n+1} = -2\tan\frac{d\varphi_{n,n+1}}{2}(\Phi C)_{n,n+1} \perp dF_{n,n+1},$

$2 ( \Phi C^{\perp})_{n,n+1} = \cot\frac{d\varphi_{n,n+1}}{2}d(\Phi C)_{n,n+1} \Vert dF_{n,n+1}.$

Hence the $\mathbb{R}^{2}$-part of $0=dP_{n,n+1}(\lambda)+\lambda p(\lambda)dF_{n,n+1}$ yields

$0=\beta_{n,n+1}(\lambda)$ and $0= \alpha(\lambda)+(-1)^{m}\lambda p(\lambda)+\frac{1}{2}d\beta_{n,n+1}(\lambda)\cot\frac{d\varphi_{n,n+1}}{2}.$

Thus, considering two consecutive edges, $0= \beta_{n}\sin\frac{d\varphi_{n-1,n}+d\varphi_{n,n+1}}{2}$ so that $\beta$ vanishes
and
(3.8) $P_{(m,n)}(\lambda)=P_{m}^{\perp}(\lambda)+(-1)^{m+1}\lambda p_{m}(\lambda)\Phi_{n}C$

is clearly rotationally symmetric. $\square$

As a simple consequence we see that a linear conserved quantity of a discrete surface
of revolution $f$ is rotationally symmetric as soon as $f$ is rotationally symmetric in the
space form defined by the constant term:

Corollary 3.16. $A$ linear conserved quantity $P(\lambda)=\lambda Z+Q$ of a net $f$ of revolution
is rotationally symmetric if and only if $Q$ is.

Proof. By (3.8), the constant term of a rotationally symmetric polynomial conserved
quantity has no $\mathbb{R}^{2}$-component in the decomposition (3.7); for the converse observe
that, in the case of a linear conserved quantity, $p_{(m,n)}=\langle Q,$ $F_{(m,n)}\rangle.$ $\square$

4. THE B\"ACKLUND TRANSFORMATION

Bianchi’s B\"acklund transformation of smooth constant mean curvature surfaces in
Euclidean space turned out to be a special case of the Darboux transformation of
isothermic surfaces: considering the Darboux transformation as an initial value prob-
lem depending on a real (spectral) parameter, the Darboux transforms of a constant
mean curvature surface turn out to have constant mean curvature as soon as a certain
relation between the initial value and the parameter is satisfied, see [19, \S 5.4.15]; in
fact, they turn out to be the B\"acklund transforms of the surface, see [16, Thm. 7]
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and [21, Thm. 4.4]. $A$ similar fact holds true for discrete constant mean curvature
surfaces in the sense of [17].

In [12, Thm. 3.2], this condition for a Darboux transform of a constant mean
curvature surface to have (the same) constant mean curvature again is shown to be
a special case of a similar condition for (smooth) special isothermic surfaces of given
type $N$ . Here we shall analyze the situation for discrete special isothermic nets, giving
rise to what we will call the “B\"acklund transformation” for special isothermic nets.

To this end we shall first recall the Darboux transformation for discrete isothermic
nets, cf. [17] or [19, \S \S 5.7.12& 5.7.19]:

Definition 4.1. Let $f$ : $Marrow S^{3}$ be a discrete isothermic net with its family of
Calapso transformations $T^{\lambda}$ . Then $a$ Darboux transform of $f$ is a discrete net

$f:Marrow S^{3}$ so that $\exists\mu\in \mathbb{R}:T^{\mu}\hat{f}\equiv con\mathcal{S}t.$

Equivalently, we can characterize a Darboux transform by the condition
$\hat{f_{i}}=\Gamma_{ijJ}^{\mu ij}\hat{f}\prime=\Gamma_{f_{i},f_{j}}^{1-a\mu}\hat{f}_{j}$

for all edges $(ij)$ of $M$ : remember that the isothermic family of connections (2.15)
descends to a family of connections on $M\cross S^{3}$ ; thus a Darboux transform $f$ can be
thought of as a parallel section of a connection $\Gamma^{\mu}$ on $M\cross S^{3}$ of the isothermic family
of connections. Using a cross ratio identity (see [19, \S 4.9.11]), this condition can be
reformulated as the cross ratio condition22 (cf. (2.4))

(4.1) $[f_{i};f_{j};\hat{f}_{j};\hat{f}_{i}]=1-[\hat{f}_{j};f_{i};\hat{f_{i}};f_{j}]=a_{ij}\mu.$

Clearly, a Darboux transform $f$ of an isothermic net has a light cone lift $\hat{F}$ : $Marrow$

$L^{4}$ so that
(4.2) $T^{\mu}\hat{F}\equiv$ const. $\Leftrightarrow$ $\hat{F}_{i}=\Gamma_{ij}^{\mu}\hat{F}_{j}$

on all edges $(ij)$ of $M$ , that is, $\hat{F}$ is a $\Gamma^{\mu}$-parallel lift of $f$ . Note that this is exactly
the conserved quantity condition (3.1) for a light cone map $\hat{F}$ and a fixed value $\mu$ of
the spectral parameter; we shall come back to this point later.

The crucial observation now is that the Darboux transformation produces discrete
isothermic nets from isothermic nets, see [17] or [19, \S 5.7.12], where a proof relying on
the hexahedron lemma [19, \S 4.9.13] was given; here we shall again give an alternative
proof, relying on Lemma 2.5, that also provides us with a useful formula for the
Calapso transformations of a Darboux transform, cf. [18] or [19, \S 5.7.35]:
Lemma 4.2. A Darboux transform $f,$ $\tau^{\mu}f\equiv$ const, of a discrete isothermic net $f$

with cross ratio factorizing function $a$ is isothermic with the same cross ratio factor-
izing function $\hat{a}=a$ and with Calapso transformations
(4.3) $\hat{T}^{\lambda}=T^{\lambda}\Gamma_{f,\hat{f}}^{1-\lambda/\mu}.$

$22$Using quaternions or the Clifford algebra of $\mathbb{R}^{3}$ and thinking of $S^{3}=\mathbb{R}^{3}\cup\{\infty\}$ , this is equivalent
to the (discrete) Riccati type equation

$d\hat{f}_{ij}=\mu(\hat{f}-f)_{j}df_{ij}^{*}(f-f)_{i},$

where $df_{ij}^{*}=a_{ij}(df_{ij})^{-1}$ is the derivative of the Christoffel transform of $f$ , cf. [19, \S 5.7.7]; the
condition $\hat{f}_{i}=\Gamma_{ij}^{\mu}\hat{f}_{j}$ appears as the usual linearization from this Riccati equation: as “Darboux’s
linear system”.
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Proof. We shall show that the isothermic family of connections (2.15) of $f$ is given by
$\hat{\Gamma}_{ij}^{\lambda}:=\Gamma_{\hat{f}_{i},\hat{f}_{j}}^{1-\lambda a_{ij}}=(\Gamma_{f,\hat{f}}^{1-\lambda/\mu})_{i}^{-1}\Gamma_{ij}^{\lambda}(\Gamma_{f,\hat{f}}^{1-\lambda/\mu})_{j},$

which is then, with $\Gamma^{\lambda}$ , clearly flat so that $\hat{f}$ is isothermic with cross ratio factorizing
function $\hat{a}=a$ by Lemma 2.5; further, the formula for the Calapso transformations
$\hat{T}^{\lambda}$ also follows directly.

Thus we have to show that
$\Gamma_{f_{i},\hat{f}_{i}}^{1-\lambda/\mu}\Gamma_{\hat{f}_{t},\hat{f}_{j}}^{1-\lambda a_{ij}}=\Gamma_{f_{i},f_{j}}^{1-\lambda a_{ij}}\Gamma_{f_{j},\hat{f}_{j}}^{1-\lambda/\mu}.$

But, with (4.1), this follows directly from Lemma 2.6. $\square$

At this point we are now in perfect shape to discuss:
4.1. Darboux transforms of special isothermic nets. As outlined at the be-
ginning of this section, we aim to obtain the B\"acklund transformations for special
isothermic nets of type $N$ as particular classes of Darboux transformations. The
following theorem provides the essential criterion:

Theorem 4.3. Let $f$ be a Darboux transform, $\tau^{\mu}f\equiv$ const, of a special isothermic
net $f$ of type $N$ with normalized polynomial conserved quantity $P(\lambda)$ of degree $N.$

Then:
(i) $\hat{f}$ is special isothermic of $type\leq N+1$ and
(ii) $f$ is special isothermic of $type\leq N$ as soon as $P(\mu)\in\hat{f}^{\perp}.$

Note that, if $P_{i}(\mu)\in\hat{f_{i}}^{\perp}$ for some $i\in M$ , then this holds true for all $i\in M$ . Namely,
if $\hat{F}$ is a light cone lift of $f$ as $i_{\backslash }n(4.2)$ , then $P(\mu)$ and $\hat{F}$ are both parallel sections of
the metric connection $\Gamma_{ij}^{\mu}$ on $M\cross \mathbb{R}^{4,1}$ so that their scalar product $\langle P(\mu),\hat{F}\rangle\equiv con\mathcal{S}t.$

Proof. We define

(4.4) $\hat{P}(\lambda):=(\lambda-\mu)\Gamma_{\hat{f},f}^{1-\lambda/\mu}P(\lambda)$ .

Clearly $\hat{T}^{\lambda}\hat{P}(\lambda)\equiv$ const by (4.3) and, using (2.4), we obtain

$\hat{P}(\lambda)=(\lambda-\mu)P(\lambda)-\frac{1}{\langle F,\hat{F}\rangle}\{\frac{\lambda(\lambda-\mu)}{\mu}\langle P(\lambda), F\rangle\hat{F}+\lambda\langle P(\lambda),\hat{F}\rangle F\},$

which is polynomial of degree $\leq N+1$ as $\langle P(\lambda),$ $F\rangle$ has degree $\leq N-1$ by (i) in
Corollary 3.9. Finally, writing

$P(\lambda)=\lambda^{N}Z+\cdots+Q$ and $\hat{P}(\lambda)=\lambda^{N+1}\hat{Z}+\cdots+\hat{Q},$

we find that
$\lambda^{2N+2}|\hat{Z}|^{2}+\cdots=|\hat{P}(\lambda)|^{2}=(\lambda-\mu)^{2}|P(\lambda)|^{2}=\lambda^{2N+2}|Z|^{2}+\ldots$

for all $\lambda$ , so that $|\hat{Z}|^{2}=|Z|^{2}$ . Hence $\hat{P}(\lambda)$ is a normalized polynomial conserved
quantity of degree $N+1$ and, therefore, $\hat{f}$ is special isothermic of type $\leq N+1,$

proving (i).
To prove (ii) note that

$\hat{P}(\mu)=-\mu\frac{\langle P(\mu),\hat{F}\rangle}{\langle F,\hat{F}\rangle}F=0$

153



when $P(\mu)\in\hat{f}^{\perp}$ . Hence $f$ has a polynomial conserved quantity of degree $\leq N$ by
Lemma 3.3; in particular,

(4.5) $\hat{P}(\lambda):=\Gamma_{\hat{f},f}^{1-\lambda/\mu}P(\lambda)$

provides a normalized polynomial conserved quantity of degree $N$ for $\hat{f}$ showing that
$\hat{f}$ is special isothermic of type $\leq N.$ $\square$

Definition 4.4. $A$ B\"acklund transform $\hat{f}$ of a special isothermic net $f$ of type $N$ with
polynomial conserved quantity $P(\lambda)$ is a Darboux transform, that is, $\tau^{\mu}f\equiv$ const, so
that $P(\mu)\in\hat{f}^{\perp}.$

The B\"acklund transformation between special isothermic nets of the same type23 is
symmetric, that is, if $\hat{f}$ is a type $N$ B\"acklund transform of a special isothermic net $f$

of type $N$ with polynomial conserved quantity $P(\lambda)$ then $f$ is a B\"acklund transform
of $\hat{f}$ , where $\hat{P}(\lambda)$ is given by (4.5): firstly, $f$ is a Darboux transform of $f$ since the
cross ratio condition (4.1) is symmetric in $f$ and $\hat{f},$

$[\hat{f_{i}};\hat{f}_{j};f_{j};f_{i}]=[f_{i};f_{j};\hat{f}_{j};\hat{f_{i}}]=a_{ij}\mu,$

by a cross ratio identity, see [19, \S 4.9.11]; and secondly, using (2.4), we find that $f$

satisfies the B\"acklund condition24 $\hat{P}(\mu)\in f^{\perp}$ :

$\hat{P}(\mu)=\lim_{\lambdaarrow\mu}\hat{P}(\lambda)=P(\mu)-\frac{\langle P(\mu),F\rangle}{\langle F,\hat{F}\rangle}\hat{F}mod f.$

Recall that constructing a Darboux transform $\hat{f}$ of a given isothermic net amounts
to determining a parallel isotropic section $\hat{F}$ of $M\cross \mathbb{R}^{4,1}$ equipped with a connection
$\Gamma^{\mu}$ in the isothermic family, see (4.2): after choosing an initial value there is a unique
solution. As the condition on a Darboux transform of a special isothermic net to
become a B\"acklund transform is preserved by the propagation it is sufficient to choose
the initial value of the Darboux transform appropriately in order to obtain a B\"acklund
transform.

Now note that (4.5) has exactly the same structure25 as the conserved quantity
condition (3.1), with $\frac{1}{\mu}$ taking the role of the $a_{ij}$ . Thus, completely analogous to
Lemma 3.7,

(4.6) $\hat{P}(\lambda)+\frac{\lambda}{\mu}\frac{\langle P(\lambda),F\rangle}{\langleF,\hat{F}\rangle}\hat{F}=P(\lambda)+\frac{\lambda}{\mu}\frac{\langle\hat{P}(\lambda),\hat{F}\rangle}{\langle F,\hat{F}\rangle}F,$

where $F$ and $\hat{F}$ are $any^{26}$ light cone lifts of $f$ and $f$ , respectively. In particular, writing
$P(\lambda)=\lambda^{N}Z+\lambda^{N-1}Y+\cdots+Q$ and $\hat{P}(\lambda)=\lambda^{N}\hat{Z}+\lambda^{N-1}\hat{Y}+\cdots+\hat{Q},$

$23_{We}$ know that the B\"acklund transform does not increase the type but, in special circumstances,
if may decrease the type (by 1). We shall come back to this point later.

$24_{The}$ assumption that $f$ is special isothermic of the same type $N$ as $f$ ensures that $\hat{P}(\lambda)$ has,
with $P(\lambda)$ , minimal degree and, in particular, that $\hat{P}(\mu)\neq 0$ so that the condition is meaningful.

$25This$ is a common phenomenon in discrete differential geometry, often referred to as “multidi-
mensional consistency”, cf. [6] or [7]: the transformations of a discrete net are governed by exactly
the same conditions as the net itself.

$26A$ canonical choice would be to take $F$ and $\hat{F}$ to satisfy (2.5) and $(F, \hat{F}\rangle\equiv\frac{1}{\mu}$ : this is the
$3D$-consistency” of the condition to be discrete isothermic, see [7].
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we find that, analogous to Corollary 3.8, the constant coefficients $\hat{Q}=Q$ and that,
analogous to the geometric interpretation of Corollary 3.9,

(4.7) $S:=Z+ \frac{\langle\hat{Y},\hat{F}\rangle}{\mu\langle F,\hat{F}\rangle}F=\hat{Z}+\frac{\langle Y,F\rangle}{\mu\langle F,\hat{F}\rangle}\hat{F}$

yields a sphere congruence27 that is enveloped by both $f$ and $f$ in the sense of Defini-
tion 3.10. Thus our B\"acklund transformation for special isothermic nets is a special
type of Ribaucour transformation for discrete curvature line nets in Lie sphere geom-
etry, see [6, Def. 22].

Theorem 4.5. Let $f$ be a B\"acklund transform of a special isothermic net $f$ of type
$N$ , with respective polynomial conserved quantities

$P(\lambda)=\lambda^{N}Z+\lambda^{N-1}Y+\cdots+Q$ and $\hat{P}(\lambda)=\Gamma_{\hat{f},f}^{1-\lambda/\mu}P(\lambda)=\lambda^{N}\hat{Z}+\lambda^{N-1}\hat{Y}+\cdots+\hat{Q}.$

Then
$\bullet$ (i) $\hat{Q}=Q$ , and
$\bullet$ (ii) $Z+ \frac{(\hat{Y}_{)}\hat{F}\rangle}{\mu\langle F,\hat{F}\rangle}F=\hat{Z}+\frac{\langle Y,F\rangle}{\mu\langle F,\hat{F}\rangle}\hat{F}$; and,
$\bullet$ (iii) in particular, $Z+f$ and $\hat{Z}+f$ give rise to a Ribaucour pair in the Lie

geometric sense.

4.2. Bianchi permutability. $A$ key feature of Darboux-B\"acklund type transforma-
tions for smooth or discrete classes of surfaces is Bianchi permutability: given two
transforms of a surface there is a fourth (often unique) surface, which is a simultane-
ous transform of the two initial transforms – thus providing the combinatorics of a
quadrilateral for the transformation. We will refer to such quadrilaterals as Bianchi
quadrilaterals.

In particular, such a theorem holds true for the Darboux transformation of (dis-
crete) isothermic surfaces, see [17] or [19, \S 5.7.28], where the fourth surface is uniquely
determined28 by a cross ratio $condition^{29}$ :

Theorem 4.6. If $\hat{f}_{1}$ and $\hat{f}_{2}$ are two Darboux transforms, $T^{\mu_{i}}\hat{f}_{i}\equiv$ const, of a discrete
isothermic net $f$ , then

$f_{12}:=\Gamma_{\hat{f}_{1},\hat{f}_{2}}^{\mu_{2}/\mu_{1}}f$

is a simultaneous Darboux transform of $\hat{f}_{1}$ and $\hat{f}_{2}$ :
$\hat{T}_{1}^{\mu_{2}}f_{12}\equiv$ const and $\hat{T}_{2}^{\mu_{1}}f_{12}\equiv$ const.

$27_{Indeed}$ , a similar fact can be proved for Darboux transforms in general: given a sphere congru-
ence $Z$ enveloped by an isothermic net and a Darboux transform $\hat{f}$ of $f$ , the sphere congruence

$S:=Z- \frac{\langle Z,\hat{F}\rangle}{\langle F,\hat{F}\rangle}F$

will be enveloped by both $f$ and $\hat{f}$ . This is a fact about the existence of Ribaucour transforms for
discrete curvature line nets in Lie geometry, cf. [6]. Note that this is a different “Darboux sphere
congruence” than the one discussed in [17], which “lives” on the faces of the domain $M.$

$28This$ is in contrast to the Ribaucour transformation of (discrete) principal nets, where a 1-
parameter family of fourth surfaces exists, see [11] or [5].

$29Note$ how repeated application of this theorem builds up a discrete isothermic net.
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We wish to prove a similar theorem for the B\"acklund transformation of special
isothermic nets of a given type $N.$

Thus let $f$ be a special isothermic net with polynomial conserved quantity $P(\lambda)$

and let $\hat{f}_{i}$ be two B\"acklund transforms of $f$ , i.e.,
$T^{\mu_{i}}\hat{f}_{i}\equiv$ const and $P(\mu_{i})\in\hat{f_{i}}^{\perp}$

Clearly, by the permutability theorem, Theorem 4.6, for the Darboux transformation
and (4.5), the simultaneous B\"acklund transform $f_{12}$ of $\hat{f}_{1}$ and $\hat{f}_{2}$ is necessarily

(4.8) $f_{12}=\Gamma_{\hat{f}_{1},\hat{f}_{2}}^{\mu_{2}/\mu_{1}}f$ with $P_{12}(\lambda)=\Gamma_{f^{-\lambda}\hat{f}^{/\mu_{2}}}^{1_{121}}\hat{P}_{1}(\lambda)=\Gamma_{f^{-\lambda}\hat{f}^{/\mu_{1}}}^{1_{122}}\hat{P}_{2}(\lambda)$

as a polynomial conserved quantity – just as in the proof of Lemma 4.2 it follows
from Lemma 2.6 that

$\Gamma_{f_{12},\hat{f}_{1}}^{1-\lambda/\mu_{2}}\Gamma_{\hat{f}_{1},f}^{1-\lambda/\mu_{1}}=\Gamma_{\hat{f}_{1},\hat{f}_{2}}^{(1-\lambda/\mu_{1})/(1-\lambda/\mu_{2})}=\Gamma_{f_{12},\hat{f}_{2}}^{1-\lambda/\mu_{1}}\Gamma_{\hat{f}_{2},f}^{1-\lambda/\mu_{2}},$

so that $P_{12}(\lambda)$ is well defined by (4.8). Now it is straightforward to see that

$P_{12}( \mu_{1})=\lim_{\lambdaarrow\mu_{1}}\Gamma_{\hat{f}_{1},\hat{f}_{2}}^{(1-\lambda/\mu_{1})/(1-\lambda/\mu_{2})}P(\lambda)=P(\mu_{1})-\frac{\langle P(\mu_{1}),\hat{F}_{2}\rangle}{\langle\hat{F}_{1},\hat{F}_{2}\rangle}\hat{F}_{1}+\ldots\hat{F}_{2}\in\hat{f}_{2}^{\perp},$

showing that $\hat{f}_{2}$ is a B\"acklund transform of $f_{12}$ ; similarly, $\hat{f}_{1}$ is also a B\"acklund
transform of $f_{12}$ . The symmetry of the B\"acklund transformation then completes the
proof of the following

Theorem 4.7. (Bianchi permutability) Given two B\"acklund transforms $\hat{f}_{1}$ and $\hat{f}_{2}$

with parameters $\mu_{1}$ and $\mu_{2}$ , respectively, of a special isothermic net $f$ of type $N,$

there is a net $f_{12}$ so that the four nets form a Bianchi quadrilateral: that is, $f_{12}$ is a
B\"acklund transform of $\hat{f}_{1}$ with parameter $\mu_{2}$ and of $\hat{f}_{2}$ with parameter $\mu_{1}.$

Note that we have not used any new arguments to prove this theorem – indeed,
using the similarity of the polynomial conserved quantity equations and the condi-
tions governing the B\"acklund transformation, we could have formulated a proof based
on the fact that $3D$-consistency” of a $2D$-system” implies higher dimensional con-
sistency, see [7, Thm. 7]: in the case at hand we were interested in $4D$-consistency”
Thus, any higher dimensional permutability theorems can now be proved by purely
combinatorial arguments$3$ . For example, we can now argue that a “Bianchi cube”
can be (uniquely) constructed from a special isothermic net and three B\"acklund trans-
forms: the existence of the eighth B\"acklund transform is ensured by the very same
fact that ensured the existence of a Darboux transform and the compatibility of the
B\"acklund transformation with the construction, as discussed above.

4.3. Complementary nets. As we already noticed earlier, the equation (4.2) on
a light cone map $\hat{F}$ to provide a Darboux transform of an isothermic net $f$ is ex-
actly the conserved quantity equation (3.1) for a fixed parameter $\mu$ . Consequently,
any zero $\mu$ of $|P(\lambda)|^{2}$ provides $a$ (light cone lift of a) Darboux transform $\hat{F}=P(\mu)$

of an isothermic net $f$ with polynomial conserved quantity $P(\lambda)$ . Moreover, since

$30_{This}$ is in contrast with the Ribaucour transformation, where 3-dimensional permutability, i.e.,
a “Bianchi cube” theorem, is the critical case as there is no uniqueness in the Bianchi quadrilateral.
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$\langle\hat{F},$ $P(\mu)\rangle=|P(\mu)|^{2}=0$ , this Darboux transform will, in fact, be a B\"acklund trans-
form of $f$ . In this section we shall discuss the role of these special B\"acklund transforms
of a special isothermic net.

Definition 4.8. Let $f$ be a special isothermic net with polynomial conserved quantity
$P(\lambda)$ ; those B\"acklund transforms $\hat{f}$ of $f$ given by $\hat{F}=P(\mu)$ , where $|P(\mu)|^{2}=0$ , are
the complementary nets of $f.$

Clearly, a special isothermic net of type $N$ has at most $2N$ complementary nets
and, as $|P(\lambda)|^{2}$ is an even degree polynomial, there may be no (real) complementary
nets: for example, let $f$ be a type 1 special isothermic net with linear conserved
quantity

(4.9) $P(\lambda)=\lambda Z+Q$ and $H:=-\langle Z,$ $Q\rangle,$ $\kappa:=-|Q|^{2}$ ;

then the complementary nets of $f$ are given $by^{31}$

(4.10) $P(H\pm\sqrt{H^{2}+\kappa})=(H\pm\sqrt{H^{2}+\kappa})Z+Q$

so that the number of (real) complementary nets depends on the $sign$ of $H^{2}+\kappa.$

On the other hand, if enough complementary nets are known, then the correspond-
ing polynomial conserved quantity can be reconstructed: first we observe that, given
$N+1$ distinct parameter values $\lambda=\mu_{0},$

$\ldots,$ $\mu_{N},$

(4.11) $P( \lambda)=\sum_{n=0}^{N}P(\mu_{n})\prod_{m\neq n}\frac{\lambda-\mu_{m}}{\mu_{n}-\mu_{7n}},$

where $P(\mu_{n})$ are $\Gamma^{\mu_{n}}$ -parallel and, with $\alpha_{n}:=\prod_{m\neq n}\frac{1}{\mu_{n}-\mu_{m}}$ , the leading coefficient

$Z= \sum_{n=0}^{N}\alpha_{n}P(\mu_{n})\in f^{\perp}$

of $P(\lambda)$ is $a$ (constant) linear combination of the $P(\mu_{n})$ . These are the assumptions
that will allow us to reconstruct a polynomial conserved quantity from $N+1$ suitable
Darboux transforms:

Lemma 4.9. Let $\hat{F}^{n},$ $n=0,$ $\ldots,$
$N$ , be $\Gamma^{\mu_{n}}$ -parallel sections of $M\cross \mathbb{R}^{4,1}$ for pairwise

distinct $\mu_{n}$ and suppose that

$Z_{i}= \sum_{n=0}^{N}\alpha_{n}\hat{F}_{i}^{n}\in f_{i}^{\perp}$

for some constants $\alpha_{n}\in \mathbb{R}$ and all $i\in M$ . Then

(4.12) $P( \lambda) :=\sum_{n=0}^{N}\alpha_{n}\hat{F}^{n}\prod_{m\neq n}(\lambda-\mu_{m})$

is a degree $N$ polynomial conserved quantity for $f$ with top degree coefficient $Z$ ; if
$|Z_{i}|^{2}=1$ at some $i\in M$ , then (4.12) defines a normalized polynomial conserved
quantity.

$31_{Note}$ that $P(H\pm\sqrt{H^{2}+\kappa})\neq 0$ since $f$ is special isothermic of type 1 so that $P(\lambda)$ cannot
have zeroes.

157



Note that, if $|Z|^{2}>0$ , then $f$ envelops the sphere congruence $Z$ in the sense of Def-
inition 3.10, as desired: incidence is given by assumption and touching is guaranteed
because the sections $\hat{F}^{n}$ are $\Gamma^{\mu_{n}}$ parallel so that

$dZ_{ij}= \sum_{n=0}^{N}\alpha_{n}d\hat{F}_{ij}^{n}=0mod f_{i}\oplus f_{j}.$

This also implies directly that $|Z|^{2}\equiv$ const on $M.$

Proof. It remains to show that $P(\lambda)$ is indeed a polynomial conserved quantity, that
is, we wish to show that

$\Gamma_{ij}^{\lambda}P_{j}(\lambda)-P_{i}(\lambda)=dP_{ij}(\lambda)+\frac{a_{ij}\lambda}{\langle F_{i},F_{j}\rangle}\{\frac{1}{1-a_{ij}\lambda}\langle P_{j}(\lambda), F_{i}\rangle F_{j}-\langle P_{j}(\lambda), F_{j}\rangle F_{i}\}=0$

for all $\lambda$ and each edge $(ij)$ of $M$ . Clearly, this equality holds true for $\lambda=\mu_{n},$

$n=0,$ $\ldots,$
$N$ , since

$\Gamma_{ij}^{\mu_{n}}P_{j}(\mu_{n})=\alpha_{n}\Gamma^{\mu_{n}}\hat{F}_{j}^{n}\prod_{m\neq n}(\mu_{n}-\mu_{m})=\alpha_{n}\hat{F}_{i}^{n}\prod_{m\neq n}(\mu_{n}-\mu_{m})=P_{i}(\mu_{n})$

so that it holds for all $\lambda$ as soon as we know that $\Gamma_{ij}^{\lambda}P_{j}(\lambda)-P_{i}(\lambda)$ is a degree $N$

polynomial. By definition $P_{i}(\lambda)$ and $P_{j}(\lambda)$ are degree $N$ polynomials, and $\langle P_{j}(\lambda),$ $F_{j}\rangle$

is a degree $N-1$ polynomial by incidence, $Z_{j}\perp F_{j}$ . Moreover,

$\langle P_{j}(\frac{1}{a_{ij}}), F_{i}\rangle = \overline{a}_{ij}1v\prod_{m=0}^{N}(1-a_{ij}\mu_{m})\sum_{n=0\overline{1}^{A}}^{N_{\alpha}}-\langle\hat{F}_{j}^{n}, F_{i}\rangle$

$= \overline{a}_{ij}1\pi\prod_{m=0}^{N}(1-a_{ij}\mu_{m})\sum_{n=0}^{N}\alpha_{n}\langle\hat{F}_{i}^{n}, F_{i}\rangle$

$= \overline{a}_{ij}1\pi\prod_{m=0}^{N}(1-a_{ij}\mu_{m})\langle Z_{i}, F_{i}\rangle$

$=$ $0$

so that $\frac{1}{1-a|j\lambda}\langle P_{j}(\lambda),$ $F_{i}\rangle$ is also a degree $N-1$ polynomial. Hence the claim follows.
$\square$

Note that, in Lemma 4.9, we did not require the $\hat{F}^{n}$ to be isotropic sections of
$M\cross \mathbb{R}^{4,1}$ , that is, we did not require them to be lifts of Darboux transforms of $f.$

Now suppose that $\mu$ is a simple zero of $|P(\lambda)|^{2}$ and let $\hat{F}=P(\mu)$ denote (a lift of)
the corresponding complementary net of $f$ . Then, from (4.5),

$\hat{P}(\lambda)=P(\lambda)-\frac{\lambda}{\mu}\frac{\langle P(\lambda),F\rangle}{\langle P(\mu),F\rangle}P(\mu)-\frac{\lambda\langle P(\lambda),P(\mu)\rangle}{\lambda-\mu\langle F,P(\mu)\rangle}F$

such that

$\hat{P}(\mu)=-\frac{\mu}{\langle P(\mu),F\rangle}\lim_{\lambdaarrow\mu}\frac{\langle P(\lambda),P(\mu)\rangle}{\lambda-\mu}F=-\frac{\mu}{2\langle P(\mu),F\rangle}\lim_{\lambdaarrow\mu}\frac{|P(\lambda)|^{2}}{\lambda-\mu}F$

since

$\frac{|P(\lambda)|^{2}}{\lambda-\mu}-2\frac{\langle P(\lambda),P(\mu)\rangle}{\lambda-\mu}=(\lambda-\mu)|\frac{P(\lambda)-P(\mu)}{\lambda-\mu}|^{2}arrow 0\cdot|P’(\mu)|^{2}=0$

as $\lambdaarrow\mu$ . Consequently, if $\mu$ is a simple zero of $|P(\lambda)|^{2}$ , then $f$ is a complementary
net of $\hat{f}$ , that is, the notion of complementary nets is symmetric.

If, on the other hand, $\mu$ is a higher order zero of $|P(\lambda)|$ , then $\hat{P}(\mu)=0$ so that $f$

is special isothermic of lower type than $f$ by Lemma 3.3. Indeed, all type lowering

158



B\"acklund transformations arise in this way: suppose that $f$ is a type $N-1$ B\"acklund
transform of a special isothermic net $f$ of type $N$ – or, otherwise said, $f$ is a Darboux
transform of $\hat{f}$ which is not a B\"acklund transform. Then, their polynomial conserved
quantities are related by (4.4):

$P( \lambda)=(\lambda-\mu)\Gamma_{f,\hat{f}}^{1-\lambda/\mu}\hat{P}(\lambda)=(\lambda-\mu)(\hat{P}(\lambda)-\frac{\lambda}{\mu}\frac{\langle\hat{P}(\lambda),\hat{F}\rangle}{\langle F,\hat{F}\rangle}F)-\lambda\frac{\langle\hat{P}(\lambda),F\rangle}{\langle F,\hat{F}\rangle}\hat{F}$

so that

$P( \mu)=-\mu\frac{\langle\hat{P}(\mu),F\rangle}{\langle F,\hat{F}\rangle}\hat{F}$

spans $f$ , which is therefore a complementary net of $f.$

Note that $\mu$ is a higher order zero of $|P(\lambda)|^{2}=(\lambda-\mu)^{2}|\hat{P}(\lambda)|^{2}.$

We summarize these results:

Lemma 4.10. Let $f$ be special isothermic of type $N$ with polynomial conserved quan-
tity $P(\lambda)$ .

$\bullet$ (i) If $\mu$ is a higher order zero of $|P(\lambda)|^{2}$ , then $\hat{F}=P(\mu)$ defines a type $N-1$
$B$ cklund transform of $f.$

$\bullet$ (ii) If $\hat{f}$ is a type $N-1$ B\"acklund transform of $f$ , then $\hat{f}$ is a complementary
net of $f,$ $f\ni P(\mu)$ for some $\mu$ , where $\mu$ is a higher order zero of $|P(\lambda)|^{2}.$

As a consequence of this lemma, a special isothermic net of type $N$ can have at
most $N$ B\"acklund transforms of type $N-1$ – generically, a B\"acklund transformation
is between special isothermic nets of the same type, and is therefore symmetric as
discussed above. For example, consider a special isothermic net $f$ of type 1: by (4.10),
$f$ is a Darboux transform of a type $0$ net, that is, of a spherical net (see Lemma 3.14),
if and only if $H^{2}+\kappa=0.$

In the remainder of this section we shall discuss geometric properties of comple-
mentary nets of special isothermic nets of type 1 and 2.

First consider a type 1 special isothermic net with two complementary nets, i.e.,
$H^{2}+\kappa>0$ in (4.10); also, we assume $\kappa\neq 0$ , excluding the degenerate case, where
one of the complementary nets becomes constant. Then

(4.13) $\hat{F}^{\pm}:=Z+\frac{1}{\mu\pm}Q$ , where $\mu\pm:=H\pm\sqrt{H^{2}+\kappa},$

provides $\Gamma^{\mu\pm}$ -parallel light cone lifts of the two complementary nets so that

$\hat{F}^{\pm}=\hat{F}^{\mp}\pm\frac{2\sqrt{H^{2}+\kappa}}{\kappa}Q=\hat{F}^{\mp}-2\frac{\langle\hat{F}^{\mp},Q\rangle}{|Q|^{2}}Q.$

Thus the two nets are M\"obius equivalent and, more precisely, they are “antipodal”
in the quadric of constant curvature given by $Q$ , see [19, Section 1.4]. Moreover, the
“orthogonal circles”

$\hat{c}^{\pm}:=span\{F, Z,\hat{F}^{\pm}\}$
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of the Ribaucour pair32 $(f, f^{\pm})$ , see Theorem 4.5, coincide in corresponding points:

$\hat{c}_{i}^{\pm}=span\{F_{i}, Z_{i},\hat{F}_{i}^{\pm}\}=span\{F_{i}, Z_{i}, Q\}.$

For a type 2 special isothermic net $f$ we obtain two similar properties: first let

$\hat{F}^{n}=P(\mu_{n})=\mu_{n}^{2}Z+\mu_{n}Y+Q (n=1,2)$

denote ( $\Gamma^{\mu_{n}}$ -parallel lifts of) two complementary nets of $f$ ; then the planes (in the
quadric $Q$ )

$\hat{e}^{n} :=span\{F, Z,\hat{F}^{n}, Q\}$

of the orthogonal circles $\hat{c}^{n}$ coincide at corresponding points:

$\hat{e}_{i}^{n}=span\{F_{i}, Z_{i},\hat{F}_{i}^{n}, Q\}=span\{F_{i}, Z_{i}, Y_{i}, Q\}.$

On the other hand, if

$\hat{F}^{n}=P(\mu_{n})=\mu_{n}^{2}Z+\mu_{n}Y+Q (n=1,2,3)$

provide three complementary nets of $f$ , then

$Q\in\hat{c}_{i}$ $:=$ span$\{\hat{F}_{i}^{n}|n=1,2,3\}$

for all $i\in M$ , that is, the circles through corresponding points of the three comple-
mentary nets are, in fact, straight lines in the quadric of constant curvature given by
$Q.$

Reversing these observations yields four constructions for linear or quadratic con-
served quantities from geometric configurations of Darboux transforms:

Theorem 4.11. Let $\hat{f}^{n},$ $n=1,2$ , be two Darboux transforms with different parame-
ters $\mu_{n}$ of a discrete isothermic net $f$ so that the circles33

$\hat{c}_{ij}^{n}$ $:=$ span $\{F_{i}, F_{j},\hat{F}_{i}^{n}\}=$ span $\{F_{i}, F_{j},\hat{F}_{j}^{n}\}$

on the edges of $M$ do not coincide for $n=1,2$ . Suppose that the $\hat{f}^{n}$ are antipodal
in a suitable non-Euclidean space form. Then $f$ has a normalized linear conserved
quantity.

Theorem 4.12. Let $\hat{f}^{n},$ $n=1,2,3$, be three Darboux transforms with different pa-
rameters $\mu_{n}$ of a discrete isothermic net $f$ so that the circles

$\hat{c}_{ij}^{n} :=span\{F_{i}, F_{j},\hat{F}_{i}^{n}\}=span\{F_{i}, F_{j},\hat{F}_{j}^{n}\}$

on the edges of $M$ are not cospherical for $n=1,2,3$ . Suppose that the circles
$\hat{c}_{i}$ $:=$ span $\{\hat{F}_{i}^{n}|n=1,2,3\}$

are straight lines in a suitable space form geometw. Then $f$ has a normalized qua-
dratic conserved quantity.

$32In$ the smooth case, these orthogonal circles form a cyclic system, that is, they have a 1-
parameter family of orthogonal surfaces so that any two orthogonal surfaces are Ribaucour trans-
forms of each other.

$33_{Note}$ that span$\{F_{i}, F_{j},\hat{F}_{i}^{n}\}=$ span $\{F_{i}, F_{j},\hat{F}_{j}^{n}\}$ since corresponding edges of a Darboux (or,
more generally, Ribaucour pair) have concircular endpoints.
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Proof. We prove both theorems. Thus let $N=2$ or $N=3$ and let $\hat{F}^{n},$ $n=1,$ $\ldots,$
$N$

denote $\Gamma^{\mu_{n}}$ -parallel light cone lifts of the Darboux transforms $\hat{f}^{n}$ . Note that the non-
degeneracy assumption for the edge circles $c_{ij}^{n}$ ensures that the $\hat{F}_{i}^{n}$ or $\hat{F}_{j}^{n}$ are linearly
independent $mod f_{i}\oplus f_{j}.$

Now let $Q\in \mathbb{R}^{4,1}\backslash \{0\}$ denote the vector defining the space form. Then

$Q= \sum_{n=1}^{N}\alpha_{n}\hat{F}^{n}$

with suitable functions $\alpha_{n}:Marrow \mathbb{R}$ . First, we see that the $\alpha_{n}$ are constant:

$0=dQ_{ij}= \sum_{n=1}^{N}d(\alpha_{n})_{ij}\hat{F}_{ij}^{n}+(\alpha_{n})_{ij}d\hat{F}_{ij}^{n}=\sum_{n=1}^{N}d(\alpha_{n})_{ij}\hat{F}_{ij}^{n}mod f_{i}\oplus f_{j},$

so that $d(\alpha_{n})_{ij}=0$ since $(\hat{F}^{1}, \ldots,\hat{F}^{N})$ are linearly independent $mod f_{i}\oplus f_{j}$ . Now,

$0=dQ_{ij}= \sum_{n=1}^{N}\alpha_{n}d\hat{F}_{ij}^{n}=\sum_{n=1}^{N}\alpha_{n}\mu_{n}\{\langle\hat{F}^{n}, F\rangle_{j}F_{i}-\langle\hat{F}^{n}, F\rangle_{i}F_{j}\},$

showing that

$Z:= \sum_{n=1}^{N}\alpha_{n}\mu_{n}\hat{F}^{n}\perp f$

defines a sphere congruence enveloped by $f$ : note that $|Z|^{2}>0$ since the $\hat{F}^{n}$ and
$F$ are linearly independent. Hence $f$ has a linear or quadratic conserved quantity if
$N=2$ or $N=3$ , respectively, by Lemma 4.9. $\square$

Note that there are no corresponding theorems for the existence of higher de-.
gree polynomial conserved quantities for codimension 1 isothermic nets: the non-
degeneracy assumption on the $\hat{F}_{i}^{n\prime}s,$ $F_{i}$ and $F_{j}$ being linearly independent in $\mathbb{R}^{4,1}$

restricts $N$ to numbers not greater than 3.

Theorem 4.13. Let $\hat{f}^{n},$ $n=1,2$ , be two Darboux transforms with different parame-
ters $\mu_{n}$ of a discrete isothermic net $f$ and let

$M\ni i\mapsto\hat{c}_{i}^{n} :=span\{F_{i}, Z_{i},\hat{F}_{i}^{n}\}$

denote the orthogonal circle congruences of the Ribaucour pairs $(f,\hat{f}^{n}),$ $n=1,2$ , with
respect to an enveloped sphere congruence34 $Z$ and let

$(ij)\mapsto c_{ij}$ $:=$ span$\{F_{i}, Z_{i}, F_{j}\}=$ span$\{F_{i}, Z_{j}, F_{j}\}$

denote the orthogonal edge circles35. Further, let $Q\in \mathbb{R}^{4,1}$ define a quadric of constant
curvature so that neither the circles $c_{ij}$ nor the circles $\hat{c}_{i}$ are straight lines and let

$e_{ij}:=span\{F_{i}, Z_{i}, F_{j}, Q\}=span\{F_{i}, Z_{j}, F_{j}, Q\}$ and $\hat{e}_{i}^{n}:=span\{F_{i}, Z_{i},\hat{F}_{i}, Q\}$

denote the corresponding circle planes. Assume that $e_{ij}\neq\hat{e}_{i}^{n}$ for every edge and
suppose that the circle planes $\hat{e}^{1}=\hat{e}^{2}$ . Then $f$ has a quadmtic conserved quantity.

$34That$ is: $Z$ defines the normal direction at each vertex of the net so that the notion of an
“orthogonal circle” is well defined – thus, only the contact element $Z_{i}+\mathbb{R}F_{i}$ at each point $i$ is
needed.

$35Note$ that span$\{F_{i}, Z_{i}, F_{j}\}=$ span $\{F_{i}, Z_{j}, F_{j}\}$ by the enveloping condition Definition 3.10.
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Theorem 4.14. Let $\hat{f}^{n},$ $n=1,2$ , be two Darboux $tran\mathcal{S}$forms with different parame-
ters $\mu_{n}$ of a discrete isothermic net $f$ and let

$i\mapsto\hat{c}_{i}^{n}$ and $(ij)\mapsto c_{ij}$

denote the orthogonal circle congruences as in the previous theorem 4.13. Assume
that $c_{ij}\neq\hat{c}_{i}^{n}$ for every edge and suppose that $\hat{c}^{1}=\hat{c}^{2}$ . Then $f$ has a normalized linear
conserved quantity.

The first of these two theorems is a discrete version of a famous classical theorem,
cf. [14], [15, \S 84] and [12, Thms. 2. $1$ & 2.33].

Proof. Again, we prove both theorems as the proofs are very similar.
Let $\hat{F}^{n}$ denote $\Gamma^{\mu_{n}}$-parallel lifts of the two Darboux transforms $\hat{f}^{n}$ and note that

$Q$ is $\Gamma^{0}$-parallel.
First consider the second theorem: as $\hat{c}^{1}=\hat{c}^{2}$ we have

$\hat{F}^{2}=\alpha_{1}\hat{F}^{1}+\alpha F+\beta Z$

with suitable functions $\alpha_{1},$ $\alpha,$
$\beta$ , where $\alpha_{1}\neq 0$ since $\hat{f}^{2}\neq f$ . Hence

$d(\alpha_{1})_{ij}\hat{F}_{i}^{1}=d\hat{F}_{ij}^{2}-d(\alpha F+\beta Z)_{ij}-(\alpha_{1})_{j}d\hat{F}_{ij}^{1}=0mod c_{ij},$

so that $\alpha_{1}$ is constant since $\hat{c}_{i}^{1}\neq c_{ij}$ . Moreover, as $\hat{F}^{1},\hat{F}^{2}$ and $F$ are linearly inde-
pendent,

$\hat{F}^{2}-\alpha_{1}\hat{F}^{1}=\alpha F+\beta Z$

defines an envelQped sphere congruence and the claim follows from Lemma 4.9.
In the situation of the first theorem 4.13 we have

$\hat{F}^{2}=\alpha_{0}Q+\alpha_{1}\hat{F}^{1}+\alpha F+\beta Z$

and deduce

$d(\alpha_{1})_{ij}\hat{F}_{i}^{1}=d\hat{F}_{ij}^{2}-d(\alpha F+\beta Z)_{ij}-d(\alpha_{0})_{ij}Q-(\alpha_{1})_{j}d\hat{F}_{ij}^{1}=0mod e_{ij},$

so that, again, $\alpha_{1}$ is constant since $\hat{e}_{i}^{1}\neq e_{ij}$ . Then

$d(\alpha_{0})_{ij}Q=d\hat{F}_{ij}^{2}-d(\alpha F+\beta Z)_{ij}-(\alpha_{1})_{j}d\hat{F}_{ij}^{1}=0mod c_{\iota j},$

showing that $\alpha_{0}$ is constant as well, because $c_{ij}$ was assumed to be a proper circle.
Now

$\hat{F}^{2}-\alpha_{1}\hat{F}^{1}-\alpha_{0}Q=\alpha F+\beta Z,$

so that, again, the claim follows from Lemma 4.9. $\square$

Note that, in the first theorem, we obtain a normalized quadratic conserved quan-
tity as soon as we assume that the circles span $\{\hat{F}^{1},\hat{F}^{2}, F\}$ through corresponding
points of $f,$ $f^{1}$ and $\hat{f}^{2}$ do not become straight lines in the quadric given by $Q.$
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5. DISCRETE CMC NETS IN SPACE FORMS

We are $now$ prepared to define discrete cmc nets in space forms. $A$ smooth isother-
mic surface $f$ in the $conformal3$-sphere has constant mean curvature $H$ in a quadric
of constant curvature $\kappa=-|Q|^{2}$ , given by $Q\in \mathbb{R}^{4,1}$ , if and only if it has a linear
conserved quantity

$P(\lambda)=\lambda Z+Q,$

where $Z$ is the mean curvature sphere congruence36 of $f$ , see [10] or [12, Thm. 2.27]: for
smooth isothermic surfaces in the conformal 3-sphere (of codimension 1) it turns out
that the top coefficient of a polynomial conserved quantity is necessarily its conformal
Gauss map37. Note that, in the case of a spherical surface, the conformal Gauss map
$Z$ of $f$ is constant and $f$ has a constant conserved quantity $Q=Z$ (as in the discrete
case: see Theorem 3.14), hence a linear conserved quantity, e.g.,

$P(\lambda)=\lambda Z+Q=(\lambda+1)Z.$

In the discrete setting we use this characterization as a definition:
Definition 5.1. $A$ discrete isothermic net $f$ will be called $a$ discrete cmc net if it is
special isothermic of type $N\leq 1$ . In particular, if $f$ is special isothermic of type 1
with normalized linear conserved quantity

$P(\lambda)=\lambda Z+Q,$

we say that $Z$ is the mean curvature sphere congruence of $f$ in the quadric
$\mathcal{Q}=\{Y\in L^{4}|\langle Y, Q\rangle=-1\}$

of constant curvature $\kappa=-|Q|^{2}$ and that $f$ has (constant) mean curvature38
$H:=-\langle Z, Q\rangle.$

Thus discrete cmc nets in space forms are special isothermic nets and a transfor-
mation theory is readily available to us, cf. [18]: the B\"acklund transformation, see
Definition 4.4, yields a transformation for discrete cmc nets in a given space form
preserving the mean curvature,

$\tilde{Q}=Q$ and $\tilde{H}=-\langle\tilde{Z},\tilde{Q}\rangle=-\langle Z,$ $Q\rangle=H$

by Theorem 4.5, and satisfying Bianchi permutability by Theorem 4.7; the Calapso
transformation provides a Lawson correspondence $f\mapsto f^{\mu}$ for discrete cmc nets,
where both the mean and ambient curvature change,

$\kappa^{\mu}=-|Q^{\mu}|^{2}=\kappa+2\mu H-\mu^{2}$ and $H^{\mu}=-\langle Z^{\mu},$ $Q^{\mu}\rangle=H-\mu$

36The mean curvature sphere congruence of $f$ , consisting of spheres touching $f$ that have the same
mean curvature as the surface at the touching points, can be defined using any ambient space form
geometry: it can be characterized as the conformal Gauss map of $f$ , i.e., the unique enveloped sphere
congruence that induces the same conformal structure as $f$ , or as the central sphere congruence, i.e.,
the congruence of spheres that exchange the curvature spheres (via inversion) or, equivalently, that
have second order contact with the surface in orthogonal directions.

$37$Hence it follows directly that an isothermic surface with linear conserved quantity has constant
mean curvature $H=-\langle Z,$ $Q\rangle$ in the space form given by $Q.$

38$A$ change $a arrow\tilde{a}=\frac{a}{c}$ of the cross ratio factorizing function results in a change of the equation
(3.1) for a linear conserved quantity, hence of the linear conserved quantity, see Lemma 3.6; in
particular, $\tilde{Z}=Z$ and $\tilde{Q}=cQ$ . Hence we obtain the effect of an ambient homothety: $\tilde{\kappa}=c^{2}\kappa$ and
$\tilde{H}=cH.$
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since $Z^{\mu}=T^{\mu}Z$ and $Q^{\mu}=T^{\mu}(\mu Z+Q)$ by Theorem 3.13, but
$(H^{\mu})^{2}+\kappa^{\mu}=\kappa+H^{2}$

remains invariant.

Definition 5.2. The Calapso transformation for discrete $cmc$ nets will also be called
Lawson correspondence.

The main goal of this section will be to show that our definition generalizes and
truly extends previous definitions39 from [3], [17], [4] and [18].

5.1. Uniqueness and existence questions. However, before addressing the rela-
tion of our definition with previous approaches we shall discuss the construction and
uniqueness of linear conserved quantities for a given discrete isothermic net.

Clearly, given the value of a linear conserved quantity at one point of a discrete cmc
net $f$ with cross ratio factorizing function $a$ , the linear conserved quantity is uniquely
determined as it is a parallel section of the isothermic family of (flat) connections:
given an initial value of a linear (or polynomial) conserved quantity $P(\lambda)$ we can
use (3.1) to determine the values of $P(\lambda)$ at any point. Thus, starting with a linear
quantity $\lambda Z+Q$ at some point of a discrete isothermic net, there is a unique parallel
section of the isothermic family of $connections^{40}$ ; but the parallel section may fail to
be linear or even to be polynomial at other points of the isothermic net – hence we
may not obtain a linear conserved quantity if we use the “wrong” initial value or if
the isothermic net is not cmc.

Using instead the equivalent condition (3.2) from Lemma 3.7 (see also Corollary
3.8 and (i-ii) of Corollary 3.9), we learn that $P(\lambda)=\lambda Z+Q$ is a linear conserved
quantity for an isothermic net $f$ with cross ratio factorizing function $a$ if and only if

(5.1) $Q\equiv$ const, $Z\perp F$ and $Z_{j}=Z_{i}+ \frac{a_{ij}}{\langle F_{i},F_{j}\rangle}\{\langle Q, F_{j}\rangleF_{i}-\langle Q, F_{i}\rangle F_{j}\}$

for any edge $(ij)$ of the domain graph $M$ . Again, we obtain a propagation formula
that fixes the linear conserved quantity uniquely once an initial value of $P(\lambda)$ is given
at some point of a discrete isothermic net; however, now the existence of $Z$ as well as
the incidence relation $Z\perp F$ are only satisfied if the isothermic net was, in fact, cmc
and if the initial value of $P(\lambda)$ was chosen correctly.

First we address the integrability of the difference equation for the mean curvature
sphere congruence $Z,$

(5.2) $Z_{j}=Z_{i}+ \frac{a_{ij}}{\langle F_{i},F_{j}\rangle}\{\langle Q, F_{j}\rangleF_{i}-\langle Q, F_{i}\rangle F_{j}\}.$

This equation does clearly not depend on the choice of lift $F$ of the isothermic net $f$ ;
to simplify the computation we may choose a Moutard lift, satisfying (2.5), so that

$Z_{k} = Z_{i}+\langle Q, F_{k}-F_{i}\rangle F_{j}-\langle Q, F_{j}\rangle(F_{k}-F_{i})$

(5.3)
$= Z_{i}+ \frac{a_{ij}-a_{il}}{\langle F_{j},F_{l}\rangle}\{\langle Q, F_{j}\rangle F_{l}-\langle Q, F_{l}\rangle F_{j}\}$

$39Note$ that the mean curvature in [22] is defined on the faces of a principal net and therefore
different from the mean curvature defined here, living on the vertices.

$40_{Here}$ we use the flatness of the connections in the family.
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on an elementary quadrilateral (ijkl), where we used the Moutard equation (2.6).
The last expression is symmetric in $j$ and $l$ ; hence the propagation equation (5.2) is
integrable.

Next we address the incidence relation $Z\perp F$ . First consider an edge $(ij)$ : from
(5.2)

$\langle Z_{j}, F_{j}\rangle=\langle Z_{i}, F_{j}\rangle+a_{ij}\langle Q, F_{j}\rangle.$

Consequently, incidence determines $Z_{i}$ at the center $i=i_{(0,0)}$ of a non-spherical vertex
$star^{41}$ : if we let $i_{(m,n)},$ $m,$ $n\in\{-1,0,1\}$ , denote the vertices of a $3\cross 3$-grid then the
equations

(5.4) $\langle Z_{i_{(0,0)}},$ $F_{i_{(0,0)}}\rangle=0$ and $\langle Z_{i_{(0,0)}},$ $F_{i_{(m,n)}}\rangle=-a_{i_{(0,0)}i_{(m,n)}}\langle Q,$ $F_{i_{(m,n)}}\rangle,$

where $m^{2}+n^{2}=1$ , have a unique solution $Z_{i_{(00)}}$ since the vertices $F_{i_{(0,0)}}$ and $F_{i_{(m,n)}}$

of a non-spherical vertex star form a basis of $\mathbb{R}^{4,1}$ . Thus an appropriate choice of the
initial value $Z_{i_{(0_{\}}0)}}$ for the mean curvature sphere congruence at the center of a vertex
star ensures that incidence is satisfied on all five vertices of the vertex star when
using (5.2) to define $Z$ on the corresponding $3\cross 3$-grid. At the diagonal vertices
$F_{i_{(m,n)}},$ $m,$ $n=\pm 1$ , we obtain incidence without further conditions: let (ijkl) denote
an elementary quadrilateral; then, using (5.3), (2.6) and (2.5), we get

$\langle Z_{k}, F_{k}\rangle = \langle Z_{i}+\frac{a_{ij}-a_{il}}{\langle F_{j)}F_{l}\rangle}\{\langle Q, F_{j}\rangle F_{l}-\langle Q, F_{l}\rangle F_{j}\}, F_{i}+\frac{a_{ij}-a_{il}}{\langle F_{j},F_{l}\rangle}\{F_{j}-F_{l}\}\rangle$

$= \langle Z_{i}, F_{i}\rangle+\frac{aij-a_{il}}{\langle F_{j},F_{l}\rangle}\{\langle Z_{i}+a_{ij}Q, F_{j}\rangle-\langle Z_{i}+a_{il}Q, F_{l}\rangle\}$

$= \langle Z_{i}, F_{i}\rangle+\frac{a_{ij}-a_{il}}{\langle F_{j},F_{l}\rangle}\{\langle Z_{j}, F_{j}\rangle-\langle Z_{l}, F_{l}\rangle\}$

$=$ $0,$

that is, incidence of $Z_{k}$ and $f_{k}$ . Thus we have proved the following, cf. Corollary 3.4:
Lemma 5.3. Let $f$ : $\{(m, n)|m, n\in\{-1,0,1\}\}arrow S^{3}$ be a non-spherical discrete
isothermic $3\cross 3$ -net and let $Q\in \mathbb{R}^{4,1}\backslash \{0\}$ . Then $f$ has a unique linear conserved
quantity $P(\lambda)=\lambda Z+Q.$

Note that, if the vertex star of $f_{(0,0)}$ is cospherical, then the corresponding $3\cross 3$-net
is necessarily also cospherical since $f$ is a discrete principal net, i.e., the vertices of
its faces are concircular. Hence, assuming that $f$ is non-spherical in Lemma 5.3, we
have that the vertex star used to define $Z$ at its center is non-spherical. Moreover,
since any two adjacent vertex stars (i.e., vertex stars at the endpoints of an edge) of a
discrete isothermic net have two face circles in common, they lie on the same sphere
if they are cospherical – thus, an isothermic net is either spherical, hence type $0$ , or
it has a non-spherical vertex star.

As $a$ (degenerate) example consider the Moutard lift $F$ of an isothermic $3\cross 3$-net,
i.e., let $F$ satisfy $\langle F_{i},$ $F_{j}\rangle=a_{ij}$ as in (2.5), and choose $Q$ so that
(5.5) $Q\perp F_{(1,0)}-F_{(-1},{}_{0)}F_{(0,1)}-F_{(0},{}_{-1)}F_{(0,1)}-F_{(1,0)} \Leftrightarrow \langle Q, F_{(m,n)}\rangle=c_{0}$

for $m^{2}+n^{2}=1$ and some $c_{0}\in \mathbb{R}$ ; further let $c_{1}$ $:=\langle Q,$ $F_{(0,0)}\rangle$ and observe that, from
(2.6),

$\langle F_{(m,n)}-F_{(0,0)}, Q\rangle=\frac{a_{(0,0)(m,0)}-a_{(0,0)(0,n)}}{\langle F_{(m},{}_{0)}F_{(0,n)}\rangle}\langle F_{(m,0)}-F_{(0,n)}, Q\rangle=0$

41Here we use the fact that any vertex has four neighbours; in a more general quad-graph this
argument only works at vertices of degree 4, i.e., not at “umbilics” of a discrete net.
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for $m,$ $n=\pm 1$ , so that

$\langle F_{(m,n)},$ $Q\rangle=\{\begin{array}{ll}c_{O} if m^{2}+n^{2}=1,c_{1} if m^{2}-n^{2}=0.\end{array}$

Now, (5.4) yields $Z_{(0,0)}+c_{0}F_{(0,0)}\perp F_{(0},{}_{0)}F_{(m,n)}$ for $m^{2}+n^{2}=1$ , that is, $Z_{(0,0)}+c_{0}F_{(0,0)}$

is orthogonal to a basis of $\mathbb{R}^{4,1}$ , hence vanishes. Consequently, (5.2) yields

$Z_{(m,n)}=\{\begin{array}{ll}-c_{0}F_{(m,n)} if m^{2}-n^{2}=0,-c_{1}F_{(m,n)} if m^{2}+n^{2}=1.\end{array}$

Thus $Z\Vert F$ becomes isotropic and yields another Moutard lift of $f$ . Note that, if we
choose $Q$ so that $c_{0}=0$ , i.e., so that $Q$ represents the (unique) sphere containing the
outer points of the vertex star, then $Z$ vanishes for $m^{2}-n^{2}=0$ , that is, we are in
the situation that we excluded from consideration in Lemma 3.11. This last situation
is a worst-case scenario for a non-spherical isothermic net and that, by (5.2), $Z$ does
not vanish as soon as $\langle F,$ $Q\rangle$ does not, that is, as soon as $f$ does not hit the infinity
boundary of the space form given by $Q.$

Now recall from Lemma 3.11 that, if $Z$ is null but does not vanish, then it is
necessarily a Moutard lift of $f$ . In particular,

$Z_{(m,n)}=\{\begin{array}{ll}-c_{0}F_{(m,n)} if m^{2}-n^{2}=0,-c_{1}F_{(m,n)} if m^{2}+n^{2}=1\end{array}$

for some $c_{0},$ $c_{1}\in \mathbb{R}$ and a Moutard lift $F$ satisfying (2.5) as any two Moutard lifts are
related in this way. Hence, for $m^{2}+n^{2}=1,$

$\langle F_{(m,n)},$ $Q \rangle=-\frac{1}{c_{1}}\langle Z_{(m,n)},$ $Q\rangle\equiv$ const,

so that we are back in the situation of (5.5). Thus avoiding (5.5) we can ensure that $Z$

becomes spacelike and hence a suitable rescaling of the constructed linear conserved
quantity will leave us with a normalized linear conserved quantity; hence, according
to Definition 5.1:

Lemma 5.4. Let $f$ : $\{(m, n)|m, n\in\{-1,0,1\}\}arrow S^{3}$ be a non-spherical discrete
isothermic $3\cross 3$ -net and choose $Q\in \mathbb{R}^{4,1}$ to satisfy, for $m,$ $n\in\{-1,0,1\},$

(5.6) $Q_{7}\angle F_{(m,n)}$ and $Q\not\in\{F_{(1,0)}-F_{(-1},{}_{0)}F_{(0,1)}-F_{(0},{}_{-1)}F_{(0,1)}-F_{(1,0)}\}^{\perp},$

where $F$ is a Moutard lift of $f$ . Then $f$ is a discrete $cmc$ net in a space form defined
by a suitable rescaling of $Q.$

Thus, as (5.6) imposes only open conditions on $Q$ , any given isothermic $3\cross 3$-net
is cmc in a 4-parameter family of possible space forms. Enlarging the net and using
(5.2) to propagate $Z$ will add more incidence conditions, hence conditions on $Q$ ; it
is therefore natural to expect that a large enough generic isothermic net will have a
unique linear conserved quantity and being cmc becomes a condition. In particular,
the conditions (5.1) for a linear conserved quantity on an isothermic $5\cross 5$-net

$f$ : $\{(m, n)|m, n\in\{-2, -1_{7}0,1,2\}\}arrow S^{3}$

can be reduced to the incidence conditions on an extended vertex star
$\{f_{(0,0)}, f_{(\pm 1,0)}, f_{(0,\pm 1)}, f_{(\pm 2,0)}, f_{(0,\pm 2)}\}$
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by the arguments that proved Lemma 5.3: this yields nine linear equations for the
linear conserved quantity at the center vertex $f_{(0,0)}$ of the net – hence we get existence
of a linear conserved quantity on any isothermic $5\cross 5$-net, and we expect uniqueness
up to scaling generically, i.e., using the scaling freedom to normalize the obtained
linear conserved quantity we expect a generic isothermic $5\cross 5$-net to be a discrete
cmc net in a unique way.

However, the following example shows that even “arbitrarily large” isothermic nets
can be cmc in different space forms – and even with their respective mean curvature
sphere congruences defining the same contact elements at each vertex.

For this purpose we reconsider our example (3.5). However, instead of thinking
of $f$ as part of a “zigzag-plane” as in (3.5), we now think of it as part of a discrete
circular cylinder by letting

$\alpha$ $:=\cos\varphi$ and $\beta$ $:=\sin\varphi$

for some $\varphi\in(0, \frac{\pi}{2})$ , so that42

(5.7) $f_{(m,n)}=( \eta m, \frac{1+\cos\varphi}{2}+(-1)^{n}\frac{1-\cos\varphi}{2}, n\sin\varphi)=(\eta m, \cos n\varphi, \sin n\varphi)$ .

Further we introduce43
$f_{(m,n)}^{*}:=(\eta m, -\cos n\varphi, -\sin n\varphi)$ .

Now let

(5.8) $Z:= \frac{1}{2}F^{*}-Q$ and $Q:=(1,0,0,0, -1)$ ,

where $F^{*}=( \frac{1+|f^{*}|^{2}}{2}, f^{*}, \frac{1-|f^{*}|^{2}}{2})$ denotes again the Euclidean lift of $f^{*}$ , and note that

$\langle F, F^{*}\rangle=-\frac{1}{2}|f-f^{*}|^{2}\equiv-2,$

so that $\langle\lambda Z+Q,$ $F\rangle\equiv-1$ . Now observe that $|f^{*}|^{2}=|f|^{2}$ do not depend on $n$ and
hence

$dF_{(m,n)(m+1,n)}^{*}-dF_{(m,n)(m+1,n)}=dF_{(m,n)(m,n+1)}^{*}+dF_{(m,n)(m,n+1)}=0$;

consequently, $Z$ and $Q$ define a linear conserved quantity by Lemma 3.7: for all edges
$(ij)$

$d( \lambda Z+Q)_{ij}-\frac{\lambda a_{ij}}{\langle F_{i},F_{j}\rangle}\{\langle\lambda Z+Q, F\rangle_{j}F_{i}-\langle\lambda Z+Q, F\rangle {}_{i}F_{j}\}=0,$

where $a_{ij}= \pm\frac{1}{2}\langle F_{i},$ $F_{j}\rangle$ as in the example (3.5). Since $|Z|^{2}\equiv 1$ the linear conserved
quantity is normalized, characterizing $f$ as a discrete net of constant mean curvature

$H=- \langle Z, Q\rangle=\frac{1}{2}$

in Euclidean space $(as |Q|^{2}=0)$ according to Definition 5.1, as one would expect.

$42$Remember that $m,n\in\{-1,0,1\}.$
$4s_{This}$ is the (parallel) Christoffel transform of $f$ , which is the net of centers of the mean curvature

sphere congruence in Euclidean space.
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Superposition of the linear conserved quantities given by (3.6) and by (5.8) then
yields a 1-parameter family of normalized linear conserved quantities for $f$ , given by

$Z_{\alpha}:= \frac{1}{2}(F^{*}+\alpha(-1)^{n}F)-Q_{0}$

and

$Q_{\alpha}:=Q_{0}- \frac{2\alpha}{1-\cos\varphi}(\frac{1+\cos\varphi}{2}, 0,1,0, -\frac{1+\cos\varphi}{2})$ ,

where $Q_{0}=(1,0,0,0, -1)$ and $\alpha\in \mathbb{R}$ . Thus the isothermic net has constant mean
curvatures

$H_{\alpha}=- \langle Z_{\alpha}, Q_{\alpha}\rangle=\frac{1}{2}(1+\alpha^{2})-\frac{1+\cos\varphi}{1-\cos\varphi}\alpha$

in the hyperbolic spaces

$\mathcal{Q}_{\alpha}=\{Y\in L^{4}|\langle Y, Q_{\alpha}\rangle=-1\}$

of curvatures $\kappa_{\alpha}=-\frac{4\alpha^{2}}{(1-\cos\varphi)^{2}}$ . Note that all $Z_{\alpha}$ define the same contact element at a
vertex of $f$ , that is, they all define the same “normal direction” at a vertex.

Finally observe that, ae for the discrete net (3.5) with degenerate linear conserved
quantity (3.6), the restriction of the domain to $\{-1,0,1\}^{2}$ is again not necessary: the
circular cylinder in (5.7) can be defined on all of $\mathbb{Z}^{2}$ with linear conserved quantity
given by (5.8). As the two nets, the “zigzag-plane” and the circular cylinder, coincide
on $\mathbb{Z}\cross\{-1,0,1\}$ we obtain an example of an isothermic $N\cross 3$-net, $N\in \mathbb{N}$ arbitrary,
that is cmc in different space forms.

5.2. Relation with previous approaches. At this point we are prepared to link
the present approach to discrete cmc nets to previous approaches; in particular, we
shall discuss how our definition relates to:

$\bullet$ the notion of discrete minimal surface in Euclidean space introduced in [3,
Def. 7];

$\bullet$ the notion of discrete cmc net in Euclidean space introduced in [17, Sect. 5];
$\bullet$ the notion of discrete horospherical net (cmc 1 net) in hyperbolic space in [18,

Def. 4.3];
$\bullet$ the definition of a net of constant mean curvature $H$ in a space form of cur-

vature $\kappa$ , where $H^{2}+\kappa\geq 0$ , suggested in [18].

In this context we shall also discuss the relation of our notion of “mean curvature
sphere” with that of [4, Sect. 4.5] and the notion of “central sphere congruence” in
[7, Sect. 3].

First we wish to make contact with the definition of a discrete cmc net in Euclidean
space given in [17]: recall that a discrete isothermic net $f$ : $M^{2}arrow \mathbb{R}^{3}$ is called cmc in
[17] if it has a parallel (isothermic) net, i.e., a simultaneous Christoffel and Darboux
transform $f^{*}$ . The (constant) distance of this parallel net yields $($up to $sign)$ the mean
curvature of both nets,

$H:= \frac{1}{|f^{*}-f|}.$
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Note that any constant multiple of $\langle df,$ $df^{*}\rangle$ is a cross ratio factorizing function44,
so that, without loss of generality,

$a_{ij}=- \frac{H}{2}\langle df_{ij},$
$df_{ij}^{*}\rangle$ , that is, $df_{ij}^{*}=- \frac{2a_{ij}}{H|df_{ij}|^{2}}df_{ij}.$

Further, since $|f^{*}-f|^{2}\equiv$ const, $(2.2)$ yields

$(f^{*}-f)_{ij}\perp df_{ij}, df_{ij}^{*},$

that is, $H(f^{*}-f)$ defines $a$ (unit) normal field for $f$ as well as for $f^{*}$ in the sense of
[22], cf. [17]. Consequently,

$d(|f^{*}|^{2})_{ij}=2 \langle f_{ij}^{*}, df_{ij}^{*}\rangle=-\frac{4a_{ij}}{H|df_{ij}|^{2}}\langle f_{ij}, df_{ij}\rangle=-\frac{2a_{ij}}{H|df_{ij}|^{2}}d(|f|^{2})_{ij}.$

Now suppose $f$ : $M^{2}arrow \mathbb{R}^{3}$ is a discrete cmc net in this sense, with parallel cmc net
$f^{*}$ and (constant) mean curvature $H$ . Let $F$ and $F^{*}$ denote the respective Euclidean
lifts and let

$Z:=HF^{*}- \frac{1}{2H}Q$ and $Q=(1,0,0,0, -1)$

as in the above example of a discrete circular cylinder, see (5.8). Then

$\langle Z, F\rangle=-\frac{H}{2}|f^{*}-f|^{2}+\frac{1}{2H}=0$

and
$dZ_{ij}- \frac{a_{ij}}{\langle F_{i},F_{j}\rangle}dF_{ij}=HdF_{ij}^{*}+\frac{2a_{ij}}{|df_{ij}|^{2}}dF_{ij}=0,$

so that $\lambda Z+Q$ defines $a$ (normalized) linear conserved quantity of $f$ by Lemma 3.7.
Moreover,

$\kappa=-|Q|^{2}=0$ and $-\langle Z,$ $Q\rangle=H.$

Conversely, suppose that $f$ is a discrete isothermic net with cross ratio factorizing
function $a$ and normalized linear conserved quantity $\lambda Z+Q$ so that

$\kappa=-|Q|^{2}=0$ and $H=-\langle Z,$ $Q\rangle\neq 0.$

Let
$F^{*}:= \frac{1}{H}(Z+\frac{1}{2H}Q)=\frac{1}{2H^{2}}(2HZ+Q)$

denote the complementary net of $f$ , see Definition 4.8. Clearly, $F^{*}$ defines a Darboux
transform of $f,$

$T^{2H}F^{*}\equiv$ const,
and $\langle F^{*},$ $Q\rangle\equiv-1$ . Choosing a Euclidean lift $F$ of $f$ , i.e., $\langle F,$ $Q\rangle\equiv-1,$ $(3.2)$ yields

(5.9)
$dF_{ij}^{*}=\overline{HF_{j}\rangle}^{dF_{ij}}.$

$44$Given a cross ratio factorizing function $a$ of an isothermic net one defines the Christoffel trans-
form $f^{*}$ by

$df_{ij}^{*}=a_{ij}(df_{ij})^{-1}=- \frac{a_{ij}}{|df_{ij}|^{2}}df_{ij}$ ;

as $a$ is only defined up to constant multiples, so is $df^{*}$ . In the case of the parallel net of a discrete
cmc net, however, there is a canonical scaling for $f^{*}.$
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Now let, without loss of generality, $Q=(1,0,0,0, -1)$ so that

$F^{*}=( \frac{1+|f^{*}|^{2}}{2}, f^{*}, \frac{1-|f^{*}|^{2}}{2})$ and $F=( \frac{1+|f|^{2}}{2}, f, \frac{1-|f|^{2}}{2})$ .

Then (5.9) gives

$df_{ij}^{*}=- \frac{2a_{ij}}{H|df_{ij}|^{2}}df_{ij}.$

Hence $f^{*}$ is also the Christoffel transform of $f$ : $M^{2}arrow \mathbb{R}^{3}$ , so that $f$ is a cmc net
with parallel cmc net $f^{*}$ in the sense of [17].

Thus we have proved the following

Theorem 5.5. $A$ discrete isothermic net in $\mathbb{R}^{3}$ is $cmc$ in Euclidean space in the sense
of [17] if and only if it is $cmc$ in the sense of Definition 5.1.

In [4, Sect. 4.5], a notion of mean curvature sphere for a discrete isothermic net in
Euclidean space is introduced. We shall see that this mean curvature sphere is the
same as our mean curvature sphere $Z$ in the case of a discrete cmc net.

First recall [4, Def. 12]: given a vertex star $\{f_{i_{(m,n)}}\in \mathbb{R}^{3}|m^{2}+n^{2}\leq 1\}$ of a discrete
isothermic net with constant (negative) cross ratio function $q_{ijkl}=\Delta^{a_{i}}a_{il}$ there is a
unique point $c_{i_{(0,0)}}$ so that

(5.10) $|f_{i_{(1,0)}}-c_{i_{(0,0)}}|=|f_{i_{(-1,0)}}-c_{i_{(0,0)}}|$ and $|f_{i_{(0,1)}}-c_{i_{(0,0)}}|=|f_{i_{(0,-1)}}-c_{i_{(0,0)}}|$

and

(5.11) $\frac{|f_{i_{(1,0)}}-c_{i_{(0,0)}}|^{2}-|f_{i_{(0,0)}}-c_{i_{(0,0)}}|^{2}}{a_{i_{(0,0)}i_{(1,0)}}}=\frac{|f_{i_{(0,1)}}-c_{i_{(0,0)}}|^{2}-|f_{i_{(0,0)}}-c_{i_{(0,0)}}|^{2}}{a_{i_{(0,0)}i_{(0,1)}}}.$

This point $c_{i_{(0,0)}}$ is the center of the mean curvature sphere at $f_{i_{(0,0)}}$ and its radius

(5.12) $r_{i_{(0,0\rangle}} :=|f_{i_{(0,0)}}-c_{i_{(0,0)}}|.$

Now suppose that $f$ is a discrete cmc net in Euclidean space, with $Q$ as above
and mean curvature sphere congruence $Z$ , and go back to (5.4): let $F$ denote the
Euclidean lift for $f$ as before and write

$Z= \frac{1}{r}(1+|c|^{2}-r^{2}, c, 1-|c|^{2}+r^{2})$

in terms of its center $c$ and radius $r$ ; then

$0= \langle Z_{i_{(0,0)}}, F_{i_{(0,0)}}\rangle=-\frac{1}{2r_{i_{(0,0)}}}(|f_{i_{(0,0)}}-c_{i_{(0,0)}}|^{2}-r_{i_{(0,0)}}^{2})$

is equivalent to (5.12), while the remaining four equations of (5.4) read

$1= \frac{\langle Z_{i_{(0,0)}},F_{i_{(m,n)}}\rangle}{a_{i_{(0,0)}i_{(m,n)}}}=-\frac{1|f_{i_{(m,n)}}-c_{i_{(0,0)}}|^{2}-r_{i_{(0,0)}}^{2}}{2r_{i_{(0,0)}}a_{i_{(0,0)}i_{(m,n)}}},$

clearly implying (5.11); the equations (5.10) follow since the cross ratio function is
constant, so that

$a_{i_{(0,0)}i_{(1,0)}}=a_{i_{(0,0)}i_{(-1,0)}}$ and $a_{i_{(0,0)}i_{(0,1)}}=a_{i_{(0,0)}i_{(0,-1)}}.$

Hence we have proved:
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Theorem 5.6. The mean curvature sphere $Z$ of a discrete $cmc$ net $f$ : $Marrow \mathbb{R}^{3}$ in
Euclidean space in the sense of Definition 5.1 is the mean curvature sphere of $f$ in
the sense of [4, Sect. 4.5].

In fact, we have seen slightly more: the equations (5.4) $define^{45}$ the mean curvature
sphere of [4] for any isothermic net in Euclidean space with constant cross ratio
function46.

This suggests to use (5.4) to define the mean curvature sphere of an isothermic net
in any space form. Note that these mean curvature spheres of an isothermic net are,
in contrast to the smooth case, not M\"obius invariant: different choices of the ambient
space form given by $Q$ will, in general, lead to different mean curvature spheres $Z.$

In particular, this also shows that the mean curvature sphere defined in this way is
generally47 different from the central sphere of [7], which is M\"obius invariantly related
to the isothermic net as it is characterized by incidence only.

Following ideas from [18], the Lawson correspondence of Definition 5.2 can be used
to define discrete cmc nets in space forms with

$H^{2}+\kappa>0$

ae Calapso transforms of cmc nets in Euclidean space. Using permutability theorems
the above characterization of cmc nets in Euclidean space by the existence of a si-
multaneous $Da\dot{r}boux$ and Christoffel transform, i.e., the existence of a parallel cmc
net can then be carried over to other space forms to obtain an alternative character-
ization, similarly to the way in which horospherical nets in hyperbolic space can be
characterized in two ways, see [18, Lemma 4.2] or [19, \S 5.7.37].

Namely, let $f^{*}$ denote the parallel cmc net of a discrete cmc net $f$ in Euclidean space
and consider their Calapso transforms $f^{\lambda}$ and $(f^{*})^{\lambda}$ – which are only determined up
to M\"obius transformation. Then $f^{\lambda}$ and $(f^{*})^{\lambda}$ can be positioned in $S^{3}$ so that:

$\bullet$ (i) they form a Darboux pair with parameter $-\lambda$ since $f$ and $f^{*}$ form a
Christoffel pair, see [18, Cor. 3.24] or [19, \S 5.7.34];

$\bullet$ (ii) they form a Darboux pair with parameter $\mu-\lambda$ since $f$ and $f^{*}$ form a
Darboux pair with some parameter $\mu$ , see [18, Cor. 3.27] or [19, \S 5.7.35].

That is, there are two ways to position $(f^{*})^{\lambda}$ in $S^{3}$ so that it is a Darboux transform
of $f^{\lambda}$ with different parameters or, otherwise said, $f^{\lambda}$ has a pair of M\"obius equivalent
Darboux transforms. More precisely, given a Calapso transform of a discrete cmc net

$45$Besides the sphere, the equations (5.4) also determine the scaling of its representative in
Minkowski space.

$46$Recently, a new approach has come into focus, where the “mean curvature” of a discrete prin-
cipal net in $\mathbb{R}^{3}$ is defined, as a function on faces, via the area change of a face when varying through
parallel nets, see [22] and [8]. This approach leads to the same class of discrete minimal or constant
mean curvature nets as the one discussed here [9].

$47$Using a Moutard lift satisfying (2.5), as for (5.5), (2.6) and (5.4) yield

$\langle Z_{i_{(0,0)}}, F_{i_{(m,n)}}\rangle=0 \Leftrightarrow a_{i_{(0,0)}i_{(m,O)}}\langle Q, F_{i_{(m,0)}}\rangle=a_{i_{(0,0)}i_{(O,n)}}\langle Q, F_{i_{(0,n)}}\rangle$

for $m,$ $n=\pm 1$ . Hence the “mean curvature sphere” defined by (5.4) is the “central sphere” of [7]
(cf. Lemma 2.2) if and only if, for $m^{2}+n^{2}=1,$

$\langle Q,a_{i_{(0,0)}i_{(m,n)(m,n)}}F_{i}\rangle=$ const.
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in Euclidean space, (4.13) provides two antipodal Darboux transforms: the antipodal
map identifies the ambient space form.

Theorem 4.11 provides the precise formulation of the converse: normalizing the
linear conserved quantity from the proof,

$(1+\lambda\mu_{1})\alpha_{1}\hat{F}^{1}+(1+\lambda\mu_{2})\alpha_{2}\hat{F}^{2},$

we obtain $|P( \lambda)|^{2}=\frac{(1+\lambda\mu_{1})(1+\lambda\mu_{2})}{\mu_{1}\mu_{2}}$ as its squared norm, hence

$H^{2}+ \kappa=(\frac{\mu_{1}+\mu_{2}}{2\mu_{1}\mu_{2}})^{2}-\frac{1}{\mu_{1}\mu_{2}}=\frac{(\mu_{1}-\mu_{2})^{2}}{4\mu_{1}^{2}\mu_{2}^{2}}>0$

since $\mu_{1}\neq\mu_{2}$ , so that the isothermic net $f$ is indeed a Calapso transform of a cmc
net in Euclidean space.

Finally we discuss minimal nets in Euclidean space and horospherical nets in hy-
perbolic space, that is, the discrete constant mean curvature nets with

$H^{2}+\kappa=0.$

First recall that horospherical nets in hyperbolic space can be defined as Darboux
transforms of their hyperbolic Gauss maps [18, Def. 4.3], that is, as Darboux trans-
forms of a spherical net: hence Lemma 4.10 identifies them as the discrete cmc nets
with

$H^{2}+\kappa=0$ and $\kappa\neq 0$

in the sense of Definition 5.1. On the other hand, horospherical nets can equivalently
be characterized as Calapso transforms of a discrete minimal net in Euclidean space
in the sense of [3] and, conversely, any discrete minimal net in Euclidean space gives
rise to a Lawson family of horospherical nets, see [18, Lemma 4.2]. Hence we can
reverse the argument to conclude that the discrete minimal nets in the sense of [3]
are those discrete cmc nets with

$H^{2}+\kappa=0$ and $\kappa=0$

in the sense of Definition 5.1. Note that [3, Thm. 8] provides two equivalent charac-
terizations of discrete minimal nets in Euclidean space:

$\bullet$ (i) as Christoffel transforms of spherical isothermic nets (their “Gauss maps”)
and

$\bullet$ (ii) by the fact that their mean curvature sphere congruence consists of planes48.
We summarize these discussions in the following

Theorem 5.7. $A$ discrete isothermic net is
$\bullet$ (i) minimal in $\mathbb{R}^{3}$ in the sense of [3] iff it is $cmc$ with $H=\kappa=0$ in the sense

of Definition 5.1;
$\bullet$ (ii) horospherical in the sense of [18] iff it is $cmc$ with $-H^{2}=\kappa<0$ in the

sense of Definition 5.1.
$48$Assuming, as in [3], that $a_{ij}=\pm\delta$ a very similar computation as the one leading to Theorem

5.6 shows that our statement here is equivalent to [3, Def. 7]: with the Euclidean lift $F$ and $Z=$

$(d, n, -d)$ , where $n$ is the unit normal of the plane described by $Z$ and $d=\langle n,$ $f\rangle$ its distance from
the origin, the equations (5.4) become

$\langle n_{i_{(0,0)}},f_{i_{(m,n)}}-f_{i_{(0,0)}}\rangle=\langle Z_{i_{(0,0)}},F_{i_{(m,n)}}\rangle=a_{i_{(0,0)}i_{(m,n)}}=\pm\delta.$
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5.3. Discrete cmc surfaces of revolution. We conclude by discussing our example
of a discrete surface of revolution in more detail: here we will be interested in the
construction of discrete cmc surfaces of revolution with prescribed mean curvature in
a given ambient space form.

Thus we consider a discrete surface of revolution

(5.13) $(m, n)\mapsto F_{(m,n)}=(-1)^{m}(M_{m}+\Phi_{n}C)\in \mathbb{R}^{2,1}\oplus \mathbb{R}^{2},$

see (2.8), with cross ratio factorizing function

(5.14) $a_{ij}=\alpha\langle F_{i}, F_{j}\rangle$

since $F$ is a Moutard li$ft^{49}$ . By Corollary 3.16 a linear conserved quantity $P(\lambda)=$

$\lambda Z+Q$ has the same rotational symmetry as the net if and only if the vector $Q$

defining the ambient space form has this symmetry; in particular, the linear conserved
quantity of an equivariant cmc net is rotationally symmetric with

$P_{(m,n)}(\lambda)=P_{m}^{\perp}(\lambda)+(-1)^{m+1}\lambda p_{m}(\lambda)\Phi_{n}C=\lambda\{Z_{m}^{\perp}-\alpha\langle Q, M_{m}\rangle\Phi_{n}C\}+Q,$

where $Z^{\perp},$ $Q\in \mathbb{R}^{2,1}$ , see (3.8) and Lemma 3.6. Hence

(5.15) $Z_{(m,n)} = Z_{m}^{\perp}+\alpha\langle Q, M_{m}\rangle M_{m} \alpha\langle Q, M_{m}\rangle(M_{m}+\Phi_{n}C)$

$= S_{m} \alpha\langle Q, F_{(m,n+1)}\rangle F_{(m,n)},$

where $S_{m}=S_{(m,n)(m,n+1)}$ is the curvature sphere (3.4) on an edge in the rotational
direction: note that this family of curvature spheres does only depend on $m$ , so that
our discrete surface of revolution is the envelope of a 1-parameter family of spheres
in the sense of Definition 3.10.

Our first aim is to formulate the condition (3.2) for a linear conserved quantity of
the given form: clearly

$0=\langle Z, F\rangle=(-1)^{m}\langle S, M\rangle,$

that is, the incidence relation is again expressed by orthogonality; further,

$0 = dZ_{(m,n)(m+1,n)}+\alpha\{\langle Q, F_{(m,n)}\rangle F_{(m+1,n)}-\langle Q, F_{(m+1,n)}\rangle F_{(m,n)}\}$

$= dS_{m,m+1}-2\alpha\langle Q, M_{m,m+1}\rangle dM_{m,m+1}$

and
$0 = dZ_{(m,n)(m,n+1)}+\alpha\{\langle Q, F_{(m,n)}\rangle F_{(m,n+1)}-\langle Q, F_{(m,n+1)}\rangle F_{(m,n)}\}$

are identically satisfied. Hence we obtain:

Lemma 5.8. Let $Q\in \mathbb{R}^{2,1}$ and $Z_{(m,n)};=S_{m}-\alpha\langle Q,$ $F_{(m,n)}\rangle F_{(m,n)}$ , where $F$ is a
Moutard lift (5.13) of a discrete surface of revolution and $m\mapsto S_{m}\in \mathbb{R}^{2,1}$ is a discrete
1-parameter family of spheres. Then $P(\lambda)$ $:=\lambda Z+Q$ defines a linear conserved
quantity for $f$ with respect to (5.14) as a cross ratio factorizing function if and only
if
(5.16) $0\equiv\langle S,$ $M\rangle$ and $dS=2\alpha\langle Q,$ $M\rangle dM.$

$49We$ shall use the scaling freedom $\alpha$ in the cross ratio factorizing function later to normalize the
linear conserved quantity that we will construct, see Lemma 3.6.
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Note that the equations (5.16) determine $S_{m}$ and $S_{m+1}$ $(and,$ hence, $Z_{m} and Z_{m+1})$

up to a common orthogonal offset from the $plane^{5}$ spanned by $M_{m}$ and $M_{m+1}$ . Also
prescribing the mean curvature $H,$

(5.17) $\langle S, Q\rangle=\langle Z, Q\rangle+\alpha\langle M, Q\rangle^{2}=-H+\alpha\langle M, Q\rangle^{2},$

we obtain six equations51
$\langle S_{m}, Q\rangle=-H+\alpha\langle M_{m}, Q\rangle^{2}$

$\langle S_{m+1}, Q\rangle=-H+\alpha\langle M_{m+1}, Q\rangle^{2}$

$\langle S_{m}, M_{m}\rangle=0$

$\langle S_{m+1}, M_{m}\rangle=-\alpha\langle Q, M_{m,m+1}\rangle|dM_{m,m+1}|^{2}$

$\langle S_{m}, M_{m+1}\rangle=-\alpha\langle Q, M_{m,m+1}\rangle|dM_{m,m+1}|^{2}$

$\langle S_{m+1}, M_{m+1}\rangle=0$

that determine $S_{m}$ and $S_{m+1}$ as soon as $(Q, M_{m}, M_{m+1})$ is a basis of $\mathbb{R}^{2,1}.$

In order to understand this restriction geometrically we analyze what happens
when $M_{m},$ $M_{m+1}$ and $Q$ are linearly dependent, that is, when $Q$ is in the $(1, 1)$-plane
spanned by $M_{m}$ and $M_{m+1}$ . First recall that the light cone in $\mathbb{R}^{2,1}$ is the axis of our
discrete surface of revolution (2.8); similarly, for fixed $n,$

span$\{F_{(m},{}_{n)}F_{(m+1,n)}, \Phi_{n}C\}=$ span$\{M_{m}, M_{m+1}, \Phi_{n}C\}=:c_{m,m+1}$

defines the circle through $F_{(m,n)}$ and $F_{(m+1,n)}$ that intersects the axis orthogonally –
which becomes a geodesic in the quadric $\mathcal{Q}$ of constant curvature (3.3) given by $Q$ as
soon as

$Q\in c_{m,m+1}.$

Thus prescribing an edge of a meridian curve, $M_{m}$ and $M_{m+1}$ , and a space form, $Q,$

so that the orthogonal circle $c_{m,m+1}$ of the axis passing through $F_{(m,n)}$ and $F_{(m+1,n)}$

does not become a straight line, any choice of $H$ will lead to a unique solution $S_{m}$ and
$S_{m+1}$ of the equations (5.16) and (5.17), hence to a unique linear conserved quantity
for the discrete net obtained by rotating the edge.

The top coefficient $Z$ of a linear conserved quantity constructed from a solution
$S$ of (5.16) and (5.17) is, with $S$ , spacelike since $S\perp M$ and has constant length
by Lemma 3.5. The idea is then to use our scaling freedom $\alpha$ in the cross ratio
factorizing function (5.14) to obtain a normalized linear conserved quantity, as sought
in Definition 5.1: note that, in contrast to Lemma 3.6, where only the conserved
quantity condition played a role, the prescribed mean curvature equation (5.17) causes
a more complicated dependence of $S$ on $\alpha$ . In $particular^{52},$

$|S|^{2}= \frac{C^{2}}{A}H^{2}-\frac{A}{\triangle}(\alpha+\frac{B}{A}H)^{2},$

$50_{Recal1}$ that $M$ in (2.8) takes values in one component of the hyperbolic quadric $|Y|^{2}=-1$ in
$\mathbb{R}^{2,1}.$

51Note that $d(\langle M, Q\rangle^{2})=2\langle M,$ $Q\rangle\langle dM,$ $Q\rangle$ by (2.2) so that (5.17) only adds one real equation to
(5.16).

52Note that the symmetry of the formula confirms that $|S_{m}|^{2}=|S_{m+1}|^{2}.$
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where we let
$\triangle := |Q\wedge M_{m}\wedge M_{m+1}|^{2},$

$C := |dM_{m,m+1}|^{2}\langle M_{m,m+1}, Q\rangle,$

$B := -|dM_{m,m+1}|^{2}\{|M_{m,m+1}|^{2}\langle M_{m}, Q\rangle\langle M_{m+1}, Q\rangle+2\langle M_{m,m+1}, Q\rangle^{2}\},$

$A := - \frac{B^{2}-\triangle C^{2}}{|M_{m}\wedge M_{m+1}|^{2}}.$

Note that $|Q\wedge M_{m}\wedge M_{m+1}|^{2},$ $|M_{m}\wedge M_{m+1}|^{2}<0$ . Also, the assumption $M_{m},$ $M_{m+1_{7}}LQ$

that the endpoints of our meridian edge do not lie in the infinity boundary of the
space form defined by $Q$ implies that $B$ and $C$ do not simultaneously vanish; as a
consequence $A>0.$

Thus the equation $|S|^{2}=1$ can be solved for $\alpha$ if and only if $C^{2}H^{2}\leq A.$

Moreover, as $\alpha$ is a factor of our cross ratio factorizing function, we seek a non-zero
solution of the equation: since $A=C^{2}H^{2}$ clearly implies $H\neq 0$ we need to exclude

$A-C^{2}H^{2}=B=0 \Rightarrow H^{2}=\frac{\triangle}{|M_{m}\wedge M_{m+1}|^{2}}.$

Thus the equation $|S|^{2}=1$ has a non-zero solution $\alpha$ if and only if

(5.18) $C^{2}H^{2}\leq A$ and $C^{2}H^{2}=A \Rightarrow H^{2}\neq\frac{\triangle}{|M_{m}\wedge M_{m+1}|^{2}}.$

Note that, in the case of strict inequality in (5.18), $C^{2}H^{2}<A$ , our construction will,
in general, provide two different linear conserved quantities53. However, in the case
$H=0$ of a minimal surface, the equation $|S|^{2}=1$ has always exactly one non-zero
solution $\alpha.$

Lemma 5.9. Prescribing an ambient space form and a mean curvature, the equivari-
ant discrete surface of revolution obtained by rotating a single edge in the space form
has a normalized linear conserved quantity as soon as:
(i) the orthogonal circle of the axis of revolution passing through the endpoints of the
edge is not a straight line in the ambient constant curvature geometry, and
(ii) the mean curvature is not chosen too large; more precisely, the mean curvature
$H$ satisfies the constraint (5.18).

Having equipped an initial edge of a meridian curve for a discrete equivariant cmc
net with prescribed mean curvature $H$ and ambient space form $Q$ with a suitable
mean curvature sphere at both endpoints, we shall $now$ investigate how to propagate
the meridian curve $M$ and its enveloped 1-parameter family of spheres $S$ to “build”
a larger equivariant cmc net. That is, we aim to construct $M_{m+1}$ and $S_{m+1}$ from the
data at the other endpoint of the edge, $M_{m},$ $S_{m},$ $Q.$

As a discrete analogue of a constant speed parametrization in the hyperbolic plane
of the meridian curve54 we prescribe a constant cross ratio factorizing function $a$ along
the meridian curve so that

$\langle M_{m+1}, M_{m}\rangle=-(1+\frac{a_{(m,n),(m+1,n)}}{\alpha})\equiv-(1+\frac{c}{\alpha})$

$53As$ a consequence, our discrete net will have a polynomial conserved quantity of degree $0$ by
Corollary 3.4 – which is not too surprising since the net is clearly spherical, cf. Theorem 3.14.

$54$Recall that a hyperbolic constant speed parametrization of the meridian curve of $a$ (smooth)
surface of revolution leads to a conformal curvature line parametrization of the surface up to constant
rescaling of the parameters.
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for all $m$ and some $c\in \mathbb{R}$ , see (5.14). Note that, since we seek $M_{m}$ and $M_{m+1}$ to take
values in the same hyperbolic plane,

$\frac{c}{\alpha}=\frac{1}{2}|dM_{m,m+1}|^{2}>0.$

A second equation obtained from (5.16),

$0=\langle M_{m+1},$ $S_{m}\rangle+\alpha\langle Q,$ $M_{m,m+1}\rangle|dM_{m,m+1}|^{2}=\langle M_{m+1},$ $S_{m}+cQ\rangle+c\langle M_{m},$ $Q\rangle,$

then confines $M_{m+1}$ to a line in $\mathbb{R}^{2,1}$ as soon as $M_{m}$ and $S_{m}+cQ$ are linearly inde-
pendent or, equivalently, as soon as

$X_{m}:=S_{m}+c(Q+\langle Q, M_{m}\rangle M_{m})\neq 0.$

Observe that, requiring the meridian curve to not cross the axis of rotation into the
other hyperbolic half plane nor to hit the infinity boundary $Q^{\perp}$ of the ambient space
$form^{55},$

$0\neq c\langle Q, M_{m}\rangle\{\langle M_{m+1}, M_{m}\rangle-1\}=\langle M_{m+1}, X_{m}\rangle,$

so that $X_{m}\neq 0$ describes a sphere intersecting the axis of rotation orthogonally
and containing the point of the meridian curve given by $M_{m}$ since $X_{m}\perp M_{m}$ . In
particular, $X\neq 0$ at both endpoints of a “proper” meridian curve edge.

Thus

$M_{m+1}= \{\frac{\alpha+c}{\alpha}M_{m}-\frac{((\alpha+c)^{2}-\alpha^{2})\langle Q,M_{m}\rangle X_{m}}{\alpha|X_{m}|^{2}}\}+t\frac{Y_{m}}{|Y_{m}|^{2}}$

for a suitable $t\in \mathbb{R}$ , where $Y_{m}’is$ orthogonal to $X_{m}$ in the (Euclidean) plane $M_{m}^{\perp}$ in
$\mathbb{R}^{2,1}$ and has the same length,

$Y_{m}\perp M_{m},$ $X_{m}$ and $|Y_{m}|^{2}=|X_{m}|^{2}.$

As we wish $M$ to take values in the hyperbolic plane

$0=!1+|M_{m+1}|^{2}= \frac{1}{|X_{m}|^{2}}\{t^{2}-\frac{((\alpha+c)^{2}-\alpha^{2})(1-2cH-c^{2}\kappa)}{\alpha^{2}}\},$

where we have used (5.17), so that we obtain two candidates for $M_{m+1}$ as soon as

(5.19) $1-2cH-c^{2}\kappa>0.$

When propagating the meridian curve with constant cross ratio factorizing function,
then one of the two solutions must give the predecessor $M_{7\prime l-1}$ of $M_{rn}$ ; hence the
propagation of a meridian curve is unique if it is possible. Observe that the condition
(5.19) does not depend on $m$ ; hence it is automatically satisfied as soon as a “seed”
meridian curve contains more than one edge56

Once $M_{m+1}$ is constructed (5.16) yields
$S_{m+1} :=S_{m}+2\alpha\langle Q, M_{m,m+1}\rangle dM_{m,m+1}$ ;

$55_{We}$ do, however, not exclude the possibility of the meridian curve crossing the infinity boundary.
$56In$ case we have one edge of a seed meridian curve we infer that the quadratic equation has at

least one solution, i.e.,
$1-2cH-c^{2}\kappa\geq 0.$

In the case $1-2cH-c^{2}\kappa=0$ of one solution, the described propagation procedure will then alternate
the two endpoints of one edge.

176



FIGURE 5.1. Discrete cmc torus in $S^{3}$

it is then straightforward to verify $incidence^{57}$

$\langle S_{m+1}, M_{m+1}\rangle=\langle M_{m+1}, S_{m}+cQ\rangle+c\langle Q, M_{m}\rangle=0$

and the mean curvature (5.17) being constant,
$\langle Q, S_{m+1}\rangle-\alpha\langle Q, M_{m+1}\rangle=\langle Q, S_{m}\rangle-\alpha\langle Q, M_{m}\rangle.$

Hence, by Lemma 5.8, we have succeeded in propagating the meridian curve of a
discrete cmc net of revolution:

Lemma 5.10. Let a point and unit normal of the meridian curve of a discrete $cmc$ net
of revolution in a space form be given. Prescribing $a$ (constant) cross ratio factorizing
function $c$ and a Moutard factor $\alpha$ , the meridian curve can be propagated uniquely in
either of two directions to obtain a discrete $cmc$ surface of revolution as long as:
(i) $\frac{c}{\alpha}>0$ and the point of the meridian curve does not lie in the infinity boundary of
the space form, and
(ii) $1-2cH-c^{2}\kappa>0$ , where the mean curvature $H$ is given by (5.17) and $\kappa$ is the
ambient curvature.

These two lemmas now provide a method of construction for discrete cmc nets of
revolution in a prescribed ambient space form and with prescribed mean curvature:

Construction: Choose an ambient space form $Q\in \mathbb{R}^{2,1}$ and a mean curvature
$H\in \mathbb{R}$ . Choose an initial edge $M_{0},$ $M_{1}\in H^{2}\subset \mathbb{R}^{2,1}$ so that:

$\bullet$ (i) $\langle Q,$ $M_{0}\rangle,$ $\langle Q,$ $M_{1}\rangle\neq 0$ , that is, $M_{0}$ and $M_{1}$ do not lie in the infinity boundary
of the space $form^{58}Q$ ;

$\bullet$ (ii) $(Q, M_{0}, M_{1})$ is a basis of $\mathbb{R}^{2,1}$ , that is, the straight line in $H^{2}$ through $M_{0}$

and $M_{1}$ is not straight in the chosen space form $Q$ ; and
$57$Recall that the equations (5.16) also ensure that $|S|^{2}$ is constant.
$58Note$ that this condition is sufficient but not necessary, as Figure 1.1 suggests.
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$\bullet$ (iii) the constraint (5.18) is satisfied with the chosen mean and ambient cur-
vatures.

Next, construct the spheres $S_{0},$ $S_{1}\in S^{2}\subset \mathbb{R}^{2,1}$ to satisfy the conserved quantity
and mean curvature conditions (5.16) and (5.17), see Lemma 5.9; generically, there
is a choice of two such sets of spheres.

Then, propagate this “seed” meridian curve using a constant cross ratio factorizing
function, see Lemma 5.10; this yields a unique and proper propagation of the meridian
curve if (5.19) is satisfied.

A variant of this construction was used to obtain the discrete cmc torus in $S^{3}$

shown in Figure 5.1 as well as to construct the discrete minimal net in two copies of
$H^{3}$ shown in Figure 1.1: the plane shown in the figure indicates the common infinity
boundary of the two copies of the ambient $H^{3}.$
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