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1 Introduction
In this note I will investigate reaction-diffusion equations that satisfy the com-

parison principle and possess a mass conservation property.
Motivated from mathematical analysis of transport models by molecular motors

and chemical reversible reaction models, recently we have obtained some funda-
mental results on the structure of stationary and time periodic solutions in a rather
general framework of order-preserving dynamical systems ([12]). More precisely, our
general results state that:

(1) if there exists at least one fixed point (which corresponds to a stationary or a
time periodic solution of the model equation), then there exist infinitely many
of them, and the set of all the fixed points is totally ordered, connected and
unbounded;

(2) any bounded orbit converges to some element of this continua of fixed points
as time tends to infinity.

In particular, our general results imply that if the model equation possesses a trivial
stationary or time periodic solution (such as zero), then there are automatically
infinitely many nontrivial stationary or time periodic solutions.

Results on the existence of stationary (or time periodic) solutions and the conver-
gence to stationary (or time periodic) solutions for the above mentioned molecular
motor models and chemical reversible reaction models have been already somewhat
known, though our theorems give an exceedingly simple proof. Furthermore, we
do not need specific assumptions (such as the existence of a Lyapunov function or
analyticity, and so on), which makes our theorems applicable to a wide range of
problems.

This is joint work with Hiroshi Matano (University of Tokyo) and Danielle Hil-
horst (CNRS and Universit\’e de Paris Sud).
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2 Basic concepts and results
Let $(X, d, \leq)$ be an ordered metric space, that is, a complete metric space with

partial order relation $\leq$ which is closed under the limiting procedure:

$u_{n}\leq v_{n}(n=1,2, \ldots) , u_{n}arrow u_{\infty}, v_{n}arrow v_{\infty} \Rightarrow u_{\infty}\leq v_{\infty}.$

For $u,$ $v\in X$ , we write

$u<v$ if $u\leq v$ and $u\neq v$

and let $[u, v]$ denote the order interval $\{w\in X|u\leq w\leq v\}.$

We assume that, for any $u\in X$ and any $\delta>0$ , there exists some $v$ satisfying
$u<v$ and $d(u, v)<\delta.$

We also assume that any pair of points $u,$ $v\in X$ has the least upper bound $u\vee v,$

namely the minimal element of the set $\{w\in X|u\leq w, v\leq w\}$ . We further assume
that the map $(u, v)\mapsto u\vee v:X\cross Xarrow X$ is continuous.

Let $F$ be a compact map from $X$ to $X$ , that is, $F$ is a continuous map that maps
any bounded set into a relatively compact set. We assume that $F$ is order-compact,
namely for any ordered pair $u<v\in X$ the image of the order interval $[u, v]$ by $F$

is relatively compact. We also assume that

(Fl) $F$ is order-preserving, namely, $u\leq v$ implies $F(u)\leq F(v)$ ;

(F2) $F(u\vee v)>F(u)\vee F(v)$ if $u\not\leq v$ and $u\not\geq v.$

Let $M:Xarrow \mathbb{R}$ be a continuous map satisfying

(Ml) $u<v$ implies $M(u)<M(v)$ ;

(M2) $M(F(u))=M(u)$ for $u\in X.$

As we will describe in Section 4, in the application to reaction-diffusion equations,
condition (Fl) corresponds to the comparison principle, and combination of (Fl)
with (F2) are slightly stronger version of the comparison principle which is weaker
than the strong comparison principle (the strong maximum principle). We also
note that condition (M2) is fulfilled if the equation under consideration has a mass
conservation property and (Ml) is the assumption that the conserved quantity $M(u)$

is monotone in $u.$

We obtain the following theorems:

Theorem 1. Let $E$ denote the set of all the fixed points of $F$ . If $E\neq\emptyset$ , then $E$

is a totally ordered and connected set. Furthermore, $E$ is unbounded from above,
that is, $E$ has no upper bound.
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Theorem 2. Any bounded orbit $F^{n}(u)$ converges to some fixed point of $F$ as
$narrow\infty.$

The following is an immediate consequence of Theorem 2.

Corollary 3. For any integer $m\geq 2$ , let $E$ and $E_{m}$ denote the set of all the fixed
points of $F$ and $F^{m}$ , respectively. Then, $E=E_{m}.$

The above corollary states that $F$ possesses no periodic points other than fixed
points. Such a statement is not necessarily true for general order-preserving maps.
It is a remarkable feature of an order-preserving map satisfying the conservation
law.

3 Proof of the theorems
In this section, we prove the theorems. Since the space is limited, we only present

an outline of the proofs. We refer to the forthcoming paper [12] for more details.
First we prove Corollary 3 as a consequence of Theorem 2.

Proof of Corollary 3. We only prove that $E_{m}\subset E$ since the opposite inclusion is
obvious. Let $\overline{u}\in E_{m}$ . Then we have $F^{m}(\overline{u})=\overline{u}$. This shows that the orbit

$\{F^{n}(\overline{u})|n\in \mathbb{N}\}=\{\overline{u}, F(\overline{u}), \ldots, F^{m-1}(\overline{u})\}$

is bounded. Therefore, applying Theorem 2, we see that $F^{n}(\overline{u})$ converges to some
fixed point Of of $F$ as $narrow\infty$ . Thus we have

$F^{n}(\overline{u})=\overline{v}, n=0,1, \ldots, m-1$

and hence Of $=$ Of $\in E$ . The proof is completed. $\square$

Next we prove Theorem 2.

Proof of Theorem 2. Let $u$ be an element of $X$ such that $\{F^{n}(u)\}_{n=1,2},\ldots$ is bounded.
Then, as is well-known, since $F$ is a compact map, the omega-limit set $\omega(u)$ of $u$

defined by

$\omega(u)=\bigcap_{n=1}^{\infty}\{F^{k}(u)|k\geq n\}$

is a nonempty compact set. Therefore, by Lemma 1 below, there exists some $0\in X$

such that $\omega(u)=\{\overline{u}\}$ , which shows that $F^{n}(u)$ converges to a fixed point $0$ of $F$ as
$narrow\infty.$ $\square$
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Lemma 1. If an omega limit set $\omega(u)$ is not empty, then $\omega(u)=\{\overline{u}\}$ for some
$\overline{u}\in X.$

Proof. Suppose that $\omega(u)$ is not a singleton. Define a continuous map $G:X\cross Xarrow \mathbb{R}$

by
$G(v, w)=M(v\vee w)$ .

Since $\omega(u)$ is a compact set, the restriction of $G$ on the set $\omega(u)\cross\omega(u)$ attains its
maximum value at some point, which we denote by $(v_{1}, w_{1})$ . By $F(\omega(u))=\omega(u)$ ,
there exists $v_{0},$ $w_{0}\in\omega(u)$ satisfying $F(v_{0})=v_{1},$ $F(w_{0})=w_{1}$ , respectively.

Note that (M2) implies

$M(F^{n}(u))=M(u)$ for all $n\in \mathbb{N}$

and therefore
$M(w)=M(u)$ for all $w\in\omega(u)$ .

From this and (Ml) we see that any two points $w,$ $w’\in\omega(u)$ are non-ord\‘ered,
namely, $w\not\simeq w’$ and $w\neq w’$ . Hence $v_{0}\not\simeq w_{0}$ and $v_{0}\not\simeq w_{0}.$

If $v_{0}=w_{0}$ , then $v_{1}=w_{1}$ and we have

$v_{1}\vee w_{1}=v_{1}\vee v_{1}=v_{1}<v_{1}\vee u_{1}$

for $u_{1}\in\omega(u)$ satisfying $u_{1}\neq v_{1}$ . However, by (Ml), $v_{1}\vee w_{1}<v_{1}\vee u_{1}$ implies

$G(v_{1}, u_{1})>G(v_{1}, w_{1})= \max\{G(v, w)|v, w\in\omega(u)\}$

and we are lead to a contradiction. Thus $v_{0}\not\leq w_{0}$ and $v_{0}\not\geq w_{0}$ hold.
Therefore by (F2) we have

$F(v_{0}\vee w_{0})>F(v_{0})\vee F(w_{0})=v_{1}\vee w_{1}$

and hence

$G(v_{0}, w_{0})=M(v_{0}\vee w_{0})=M(F(v_{0}\vee w_{0}))>M(v_{1}\vee w_{1})=G(v_{1}, w_{1})$ ,

which again contradicts the definition of $v_{1},$ $w_{1}$ . The proof is completed. $\square$

Before proving Theorem 1, we define the notion of stability from above of fixed
points of $F.$

A fixed point Of of $F$ is called stable from above if for any $\epsilon>0$ there exists some
$\delta>0$ such that

$d(u,\overline{u})<\delta, u>\overline{u} \Rightarrow d(F^{n}(u),\overline{u})<\epsilon(n=1,2, \ldots)$ .
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It is called asymptotically stable from above if it is stable from above and if there
exists some $\delta>0$ such that

$d(u, \overline{u})<\delta, u>\overline{u} \Rightarrow \lim_{narrow\infty}F^{n}(u)=\overline{u}.$

Proof of Theorem 1. By Lemma 2 below $E$ is totally ordered. Furthermore Lemma
3 shows that any fixed point Of of $F$ is stable from above and is not asymptotically
stable from above.

Now we show that $E$ is unbounded from above. Assume the contrary. Then $E$

has an upper bound, which we denote by $u^{+}$ . Fix $u_{0}\in E$ arbitrarily and set

$A=[u_{0}, u^{+}]\cap E.$

Since $F(A)=A$ and since $F$ is order-compact, $A$ is a compact subset of $E$ . There-
fore, by Lemma 4, $A$ possesses the maximal element, which is also the maximal
element of $E$ . This contradicts Lemma 5. Thus $E$ is unbounded from above.

Finally we show that $E$ is connected. Suppose that $E$ is not connected. Then
there exist open subsets $O_{1},$ $O_{2}$ in the relative topology of $E$ such that

$O_{1}, O_{2}\neq\emptyset, O_{1}\cap O_{2}=\emptyset, O_{1}\cup O_{2}=E.$

Take $u_{1}\in O_{1}$ and $u_{2}\in O_{2}$ . Since $E$ is totally ordered, without loss of generality we
may assume that $u_{1}<u_{2}$ . Put

$B=[u_{1}, u_{2}]\cap O_{1}.$

Clearly $u_{1}\in B,$ $u_{2}\not\in B$ and $B$ is a totally ordered set in $X$ . Furthermore, since
$B=([u_{1}, u_{2}]\cap E)\backslash O_{2}$ and since $F([u_{1}, u_{2}]\cap E)=[u_{1}, u_{2}]\cap E,$ $B$ is compact.
Hence, by Lemma 4, the maximal element of $B$ , denoted by $\max B$ , exists. Clearly
$u_{1} \leq\max B<u_{2}$ since $u_{1}\in B$ and $u_{2}\not\in B$ . By Lemma 5, there exists some
convergent sequence $\overline{v}_{k}\in O_{1}arrow\max B$ satisfying $\max B<\overline{v}_{k}$ . The inequality
$\max B<\overline{v}_{k}$ implies $\overline{v}_{k}\not\in B$ . Therefore, $\overline{v}_{k}$ cannot belong to $[u_{1}, u_{2}]$ . Since $E$ is
totally ordered, this implies $u_{2}<\overline{v}_{k}$ . Letting $karrow\infty$ yields $u_{2} \leq\max B$ . This
contradicts the fact that $\max B<u_{2}$ . Thus $E$ is connected. $\square$

Lemma 2. Let $\overline{u}_{1},$ $\overline{u}_{2}$ be fixed points of $F$ satisfying $\overline{u}_{1}\neq\overline{u}_{2}$ . Then either $\overline{u}_{1}<\overline{u}_{2}$

or $\overline{u}_{1}>\overline{u}_{2}.$

Lemma 3. Any fixed point Of of $F$ is stable from above and not asymptotically
stable from above.

Lemma 4. Let $A$ be a totally ordered and compact subset of $X$ . Then $A$ has the
maximal element.
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Lemma 5. For any $0\in E$ and any $\delta>0$ there exists some $\overline{v}\in E$ satisfying Of $<\overline{v}$

and $d(\overline{u},\overline{v})<\delta.$

Since the space is limited, we omit the proof of Lemmas 2-5. See the forthcoming
paper [12] for details.

4 Applications

In this section we apply our general theory to reaction-diffusion equations and
study the existence of stationary (or time periodic) solutions and the asymptotic
behavior of solutions.

4.1 General strategy

In this subsection, we consider partial differential equations in a rather general
setting to explain how our theory is applied. Let $X$ be an ordered metric space
satisfying the conditions in Section 2. First we consider an initial value problem for
an abstract evolution equation on $X$ of the form:

$\{\begin{array}{ll}\frac{du}{dt}=A(u) , t>0,u(0)=u_{0}, \end{array}$ (1)

where $A$ is a map from some subset of $X$ to $X.$

We assume that (1) is well-posed on $X$ and defines a compact and order compact
semiflow $\Phi=\{\Phi_{t}\}_{t\geq 0}$ on $X$ , namely $\Phi$ is defined by

$\Phi_{t}(u_{0})=u(t;u_{0})$ for $u_{0}\in X,$ $t\geq 0,$

where $u(t;u_{0})$ denotes the solution of (1) with initial data $u(O)=u_{0}$ , and the map
$\Phi_{t}:Xarrow X$ is compact and order compact if $t>0$ . We also assume that there
exists a continuous map $M:Xarrow \mathbb{R}$ satisfying condition (Ml) in Section 2. We
further assume that, for each $t>0$ , the maps $F=\Phi_{t}$ and $M$ satisfy conditions
(Fl), (F2) and (M2).

Now, for an arbitrarily fixed $\tau>0$ , let $\overline{u}\in X$ be a fixed point of $\Phi_{\tau}$ . We
put $F=\Phi_{\tau/m}$ , where $m$ is an arbitrary positive integer. Then, Of is a fixed point
of $\Phi_{\tau}(=F^{m})$ and therefore, by virtue of Corollary 3, it is also a fixed point of
$\Phi_{\tau/m}(=F)$ . Hence it is a fixed point of $\Phi_{l\tau/m}$ for all $l,$ $m\in \mathbb{N}$ . In other words, ii

is a fixed point of $\Phi_{q\tau}$ for any rational number $q>0$ . By continuity, this implies
$\Phi_{t}(\overline{u})=\overline{u}$ for all $t\geq 0$ . Therefore $0$ is a stationary solution of (1). Thus, Theorems
1 and 2 imply the following:
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Theorem 4. (autonomous case)
(i) If there exists at least one stationary solution for (1), then (1) possesses in-

finitely many stationary solutions and the set of stationary solutions is a totally
ordered, unbounded and connected subset of $X.$

(ii) Any bounded solution of (1) converges to some stationary solution of (1) as
$tarrow\infty.$

By statement (i) of Theorem 4, if (1) possesses some trivial stationary solution,
such as $0$ , then there exist nontrivial stationary solutions for (1). Particularly, in
the case where $X$ is a linear space and $A(u)$ is linear, since $0$ is a trivial stationary
solution, we obtain the existence of nontrivial stationary solutions for (1).

From statement (ii) of Theorem 4, we see that (1) does not possess a time periodic
solution that is not stationary.

Next we apply our results to the time periodic problem. Let us consider the
problem of the form:

$\{\begin{array}{ll}\frac{du}{dt}=A(u, t) , t>0,u(0)=u_{0}, \end{array}$ (2)

where $A$ is $T$-periodic in $t$ for some $T>0.$

We assume that (2) is well-posed on $X$ and let $F$ be the time $T$-map associated
with (2), namely,

$F(u_{0})=u(T;u_{0})$ for $u_{0}\in X,$

where $u(t;u_{0})$ denotes the solution of (2) with initial data $u_{0}\in X$ . We assume that
all the assumptions in Section 2 is fulfilled. Then, Theorems 1 and 2 imply the
following:

Theorem 5. (time periodic case)
(i) If there exists at least one $T$-periodic solution for (2), then (2) possesses in-

finitely many $T$-periodic solutions and the set of $T$-periodic solutions is a
totally ordered, unbounded and connected subset of $X.$

(ii) Any bounded solution of (2) converges to some $T$-periodic solution of (2) as
$tarrow\infty.$

By statement (i) of Theorem 5, the existence of at least one trivial $T$-periodic
solution implies the existence of nontrivial $T$-periodic solutions. Especially, in the
case where $X$ is a linear space and $A(u, t)$ is linear in $u$ , since $0$ is a trivial $T$-periodic
solution for (2), we obtain the existence of nontrivial $T$-periodic solutions for (2).

From statement (ii) of Theorem 5, we see that (2) possesses no subharmonic
solution; in other words, there exists no periodic solution whose minimal period is
$mT$ with $m\in \mathbb{N},$ $m\geq 2.$
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4.2 Molecular motor model
First let us consider the following cooperative system, which comes from a model

for intracellular transportation by molecular motors:

$\{\begin{array}{l}\frac{}{}=\frac{\partial x\partial\partial}{\partial x}\frac{\partial u_{1}}{\partial u_{2},\partial t\partial t}=\frac{}{}\}_{\sigma_{2}\frac{\partial u_{2}\partial u_{1}\partial x}{\partial x}+\psi_{2}’(x)u_{2}}^{\sigma_{1}\frac{}{}+\psi_{1}’(x)u_{1}}1+a_{1}(x)u_{1}-a_{1}(x)u_{1}+a_{2}(x)u_{2}-a_{2}(x)u_{2}, x\in x\in(0,1)(0,1), t>0t>0,\sigma_{i}\frac{\partial u_{i}}{\partial x}+\psi_{i}’(x)u_{i}=0, x=0,1, t>0, i=1,2,\end{array}$ (3)

where $\sigma_{i}>0$ is a constant and $a_{i}(x)\geq 0,$ $\not\equiv 0,$ $\psi_{i}(x)$ are smooth functions. It
is assumed that the molecular motor is two-headed and its state switches between
state 1 and state 2. For each $t\geq 0,$ $u_{1}(x, t)$ and $u_{2}(x, t)$ denote the probability
density at position $x$ . Thus one has $u_{1}(x, t),$ $u_{2}(x, t)\geq 0$ and

$\int_{0}^{1}(u_{1}(x, t)+u_{2}(x, t))dx=1, t\geq 0$ . (4)

Derivation of system (3) from a mass transport viewpoint is given in the paper [6] by
Chipot, Kinderlehrer and Kowalczyk. For a mathematical analysis and for further
references we refer to [4], [9], [10], [14] and [15]. In what follows, for convenience,
we consider all nonnegative solutions of (3) without setting (4).

Set $X=(C([O, 1])_{+})^{2}$ , where $C([O, 1])_{+}$ denotes the set of nonnegative continuous
functions on $[0,1]$ . Then $X$ is an ordered metric space endowed with metric induced
by the uniform convergence topology and order relation defined by

$u\leq v$ if $u_{i}(x)\leq v_{i}(x),$ $x\in[O, 1],$ $i=1,2$ (5)

for $u=(u_{1}, u_{2}),$ $v=(v_{1}, v_{2})\in X$ . Note that the symbol $u<v$ then means that
$u\leq v$ and that either $u_{1}(x_{0})<v_{1}(x_{0})$ or $u_{2}(x_{0})<v_{2}(x_{0})$ holds at some point
$x_{0}\in[0,1]$ . The least upper bound $u\vee v$ of $u,$ $v$ is defined by

$u \vee v(x)=(\max\{u_{1}(x), v_{1}(x)\}, \max\{u_{2}(x), v_{2}(x)\}) , x\in[0,1].$

By the standard a priori estimate it is known that (3) defines a compact semfflow
on $X$ , which we denote by $\{\Phi_{t}\}_{t\geq 0}$ . Furthermore, it follows from the comparison
principle and the strong maximum principle that, if

$u_{i}(x, 0)\leq v_{i}(x, 0) , x\in[O, 1], i=1,2, u(x, 0)\not\equiv v(x, 0)$

hold for solutions $u(x, t)=(u_{1}(x, t), u_{2}(x, t)),$ $v(x, t)=(v_{1}(x, t), v_{2}(x, t))$ of (3), then

$u_{i}(x, t)<v_{i}(x, t) , x\in[O, 1], t>0, i=1,2.$
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We define a continuous map $M:Xarrow \mathbb{R}$ by

$M(u)= \int_{0}^{1}(u_{1}(x)+u_{2}(x))dx$ (6)for $u=(u_{1}, u_{2})\in X.$

Since (3) is a linear problem, $0=(0,0)$ is a stationary solution of (3) and
therefore, by statement (i) of Theorem 4, there exists some non-zero stationary
solution $\overline{u}=(\overline{u}_{1}(x), \overline{u}_{2}(x))>0$ of (3). Clearly $\lambda\overline{u}$ is also a stationary solution of (3)
for any $\lambda>0$ and from the strong maximum principle it follows that

$\overline{u}_{i}(x)>0, x\in[O, 1], i=1,2.$

Let $u(x, t)=(u_{1}(x, t), u_{2}(x, t))$ be an arbitrary solution of (3) and put

$\mu=\max\{u_{i}(x, 0)/\overline{u}_{i}(x)|x\in[0,1], i=1,2\}.$

Then
$u(x, 0)\leq\mu\overline{u}(x) , x\in[0, \infty)$

and hence, by virtue of the comparison principle,

$u(x, t)\leq\mu\overline{u}(x) , x\in[0, \infty), t>0,$

which shows that $u(\cdot, t)$ is bounded from above by $\mu\overline{u}$ for all $t\geq 0.$

Thus Theorem 4 implies the following:

Proposition 1. (autonomous model)
(i) (3) possesses a unique (up to multiplication by positive constant) positive

stationary solution $\overline{u}(x)=(\overline{u}_{1}(x), \overline{u}_{2}(x))$ .
(ii) Any solution $u(x, t)$ of (3) converges to a stationary solution $\lambda\overline{u}(x)$ in $(C([O, 1])_{+})^{2}$

as $tarrow\infty$ , where a constant $\lambda$ is determined by the initial data $u(\cdot, 0)$ as
$\lambda=M(u(\cdot, 0))/M(\overline{u})$ .

Next we apply our result $to\backslash$ a time periodic model, that is, a flashing ratchet
model, proposed by [11], [7], which is represented as Fokker-Plank equation with a
time periodic potential $\psi(x, t)$ :

$\{\begin{array}{ll}\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}(\sigma\frac{\partial u}{\partial x}+\psi_{x}(x, t)u) , x\in(O, 1), t>0,\sigma\frac{\partial u}{\partial x}+\psi_{x}(x, t)u=0, x=0,1, t>0,\end{array}$ (7)

where $\sigma>0$ is a constant and $\psi(x, t)$ is a smooth function which is $T$-periodic in
$t$ for some $T>0$ . Here the molecular motors are represented by the probability
density $u(x, t)$ and thus $u(x, t)\geq 0$ and

$\int_{0}^{1}u(’x, t)dx=1, t\geq 0.$
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In what follows, as for (3), we consider all nonnegative solutions of (7).
Now we set $X=C([O, 1])_{+}$ endowed with metric induced by the uniform conver-

gence topology and order relation defined by

$u\leq v$ if $u(x)\leq v(x),$ $x\in[O, 1]$

for $u,$ $v\in X$ and put

$M(u)= \int_{0}^{1}u(x)dx$ for $u\in X.$

Then, applying Theorem 5 we obtain the following:

Proposition 2. (time periodic model)
(i) (7) possesses a unique (up to multiplication by positive constant) positive time

$T$-periodic solution $\overline{u}(x, t)$ .
(ii) Any solution $u(x, t)$ of (7) converges to a time $T$-periodic solution $\lambda\overline{u}(x, t)$ in

$C([O, 1])_{+}$ as $tarrow\infty$ , where a constant $\lambda$ is determined by the initial data as
$\lambda=M(u(\cdot, 0))/M(\overline{u}(\cdot, 0))$ .

The above proposition implies, in particular, that (7) possesses no subharmonic
solution, that is, no periodic solution whose minimal period is $mT$ with $m\in \mathbb{N},$

$m\geq 2.$

We remark that, we can relax the smoothness assumption on the coefficients of
equations (3) and (7), by setting, for example, $X=L^{2}([0,1])_{+}$ or $X=(L^{2}([0,1])_{+})^{2}$

instead of $C([O, 1])_{+}$ or $(C([O, 1])_{+})^{2}$ , where $L^{2}([0,1])_{+}$ denotes the set of square-
integrable nonnegative functions on $[0,1].$

We also remark that there are earlier related results concerning (3) and (7)..
The paper [4] deals with (3) and proves results that are basically the same as our
Proposition 1 above. Their proof relies on the spectrum theory of compact linear
operator. The paper [7], [16] deal with (7) and proves results that are basically the
same as our Proposition 2 above. The proof in [7] relies on the entropy analysis.
Furthermore, though the paper [16] proves its homogenization, it mentions briefly

the existence and stability of time periodic solutions by Floquet theory. On the other
hand, Propositions 1 and 2 follow immediately from a much more general result
without relying on further information such as spectrum, entoropy and Floquet
exponents. Therefore it is easy to extend the results in Propositions 1 and 2 to
more general equations including nonlinear equations.

4.3 Reversible chemical reaction model

In this subsection we consider the following reaction-diffusion system which
models a reversible chemical reaction between two mobile reactants $A$ and $B$ . See
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[2] and [8] and references therein for details.

$\{\begin{array}{ll}\frac{\partial u_{1}}{\partial t}=d_{1}\triangle u_{1}-\alpha(r_{A}(u_{1})-r_{B}(u_{2})) , x\in\Omega, t>0\frac{\partial u_{2}}{\partial t}=d_{2}\triangle u_{2}+\beta(r_{A}(u_{1})-r_{B}(u_{2})) , x\in\Omega, t>0\frac{\partial u_{i}}{\partial\nu}=0, x\in\partial\Omega, t>0, i=1,2,\end{array}$ (8)

where $\Omega$ is a bounded domain in $\mathbb{R}^{n}$ with smooth boundary $\partial\Omega,$ $\nu$ is the outward
normal at each point of $\partial\Omega,$ $d_{1},$ $d_{2},$ $\alpha,$ $\beta>0$ are constants and $r_{A}(u),$ $r_{B}(u)$ are
strictly increasing functions satisfying $r_{A}(0),$ $r_{B}(0)=0$ . Here, for each $t\geq 0,$

$u_{1}(x, t),$ $u_{2}(x, t)\geq 0$ represents concentration of $A,$ $B$ at $x\in\overline{\Omega}$, respectively.
$Now$ we set $X=(C(\overline{\Omega})_{+})^{2}$ and define the metric induced by the uniform con-

vergence topology and order relation by (5) replaced $[0,1]$ by St. We further put

$M(u)= \int_{\Omega}(u_{1}(x)/\alpha+u_{2}(x)/\beta)dx$ for $u=(u_{1}, u_{2})\in X.$

Take $v_{0}=(a_{0}, b_{0})\in[0, \infty)^{2}$ arbitrarily and let $v(t)=(v_{1}(t), v_{2}(t))$ denote a
solution of (8) satisfying $v(O)=(a_{0}, b_{0})$ . Then, since condition (Ml) in Section 2
holds, we have

$v(t)\in\{(a, b)\in[0, \infty)^{2}|a/\alpha+b/\beta=a_{0}/\alpha+b_{0}/\beta\}, t>0,$

which shows that a solution whose initial value is a constant function is bounded.
Furthermore, for any $u_{0}\in X$ , if we we choose $v_{0}\in[0, \infty)^{2}$ satisfying

$u_{0}\leq v_{0},$

then the comparison principle implies

$u(\cdot, t)\leq v(t) t>0,$

where $u(x, t),$ $v(t)$ is a solution of (8) with initial data $u(\cdot, 0)=u_{0},$ $v(O)=v_{0},$

respectively. This shows that any solution of (8) is bounded.
Denote by $E$ the set of stationary solutions of (8). Clearly

$\{(a, b)\in[O, \infty)^{2}|r_{A}(a)=r_{B}(b)\}\subset E.$

Applying Theorem 4, we obtain the following:
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Proposition 3. Let $E$ denote the set of all the stationary solutions of (8). Then,

(i) $E=\{(a, b)\in[O, \infty)^{2}|r_{A}(a)=r_{B}(b)\}.$

(ii) Any solution $u(x, t)=(u_{1}(x, t), u_{2}(x,t))$ of (8) converges to some stationary
solution $(\overline{a},\overline{b})\in E$ in $(C(\overline{\Omega})_{+})^{2}$ as $tarrow\infty$ , which is determined by the initial
data as $M((u_{1}(\cdot, 0), u_{2}(\cdot, 0))=|\Omega|(\overline{a}/\alpha+\overline{b}/\beta)$ .

In [2], Bothe and Hilhorst studied (8) and proved the convergence of solutions as
reaction rates $\alpha,$

$\beta$ tend to infinity. The limiting problem is given by a single diffusion
equation with nonlinear diffusion. They also described the asymptotic behavior of
solutions as $tarrow\infty$ by using the existence of Lyapunov function (entoropy).

On the other hand, our method is applicable to more general problems. For
example, we can consider the case where functions $r_{A},$ $r_{B}$ depend on $x,$ $t$ and they
are $T$-periodic in $t$ . In this case, applying Theorem 5 we can prove the existence of
time $T$-periodic solutions and convergence to time $T$-periodic solutions.

4.4 Cooperative reaction-diffusion system

The last example is a cooperative reaction-diffusion system, whose special cases
include (3) and (8). Now we consider the cooperative system of the form

$\{\begin{array}{ll}\frac{\partial u_{i}}{\partial t}=div(\sigma_{i}\nabla u_{i}+u_{i}\nabla\psi_{i})+\alpha_{i}\sum_{j=1}^{N}\lambda_{ij}r_{j}(u_{j}, x) , x\in\Omega, t>0, i=1, \ldots, N,\sigma_{i}\frac{\partial u_{i}}{\partial\nu}+u_{i}\frac{\partial\psi_{i}}{\partial v}=0, x\in\partial\Omega, t>0, i=1, \ldots, N,\end{array}$

(9)
where $\Omega$ is a bounded domain in $\mathbb{R}^{n}$ with smooth boundary $\partial\Omega,$ $v$ is the outward
normal at each point of $\partial\Omega,$ $\sigma_{i}>0$ and $\alpha_{i}>0$ are constants and $\lambda_{ij}$ is a constant
such that

$\lambda_{ii}\leq 0,$ $\lambda_{ij}\geq 0$ if $i\neq j,$ $\sum_{i=1}^{N}.\lambda_{ij}=0$

and that a matrix $(\lambda_{ij})$ is irreducible. We assume that functions $\psi_{i}(x),$ $r_{i}(u, x)$ are
smooth and $r_{i}(u, x)$ is nondecreasing in $u$ and satisfies $r_{i}(0, x)=0$ . As is the case
of previous examples, we consider nonnegative solutions for (9).

Now we set $X=(C(\overline{\Omega})_{+})^{N}$ associated with order relation

$u\leq v$ if $u_{i}(x)\leq v_{i}(x),$ $x\in\overline{\Omega},$ $i=1,$ $\ldots,$
$N$

for $u=(u_{1}, \ldots, u_{N}),$ $v=(v_{1}, \ldots, v_{N})\in X$ . Put

$M(u)= \int_{\Omega}\sum_{i=1}^{N}u_{i}(x)/\alpha_{i}dx$ for $u=(u_{1}, \ldots, u_{N})\in X.$
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Note that $0=(0, \ldots, 0)$ is a stationary solution of (9). Therefore Theorem 4
implies the following:

Proposition 4.

(i) The set of stationary solutions of (9) is a nonempty, totally ordered, unbounded
connected subset of $(C(\overline{\Omega})_{+})^{N}.$

(ii) Any bounded solution of (9) converges to some stationary solution in $(C$ (St) $)^{N}$

as $tarrow\infty.$

In [5], Chipot, Hilhorst, Kinderlehrer and Olech proved $L^{1}$-contraction property
for solutions of (9). They then proved the existence of stationary solutions for the
case where (9) is linear, especially the case where $r_{i}(u, x)\equiv u$ . Our theorems are
also applicable to nonlinear problems.

Finally let us mention that, similarly to (8), applying Theorem 5 we can consider
the case where problem (9) is time periodic, more precisely, the case where constants
$\sigma_{i},$ $\lambda_{ij}$ and functions $\psi_{i},$

$r_{i}$ depend on $t$ and they are $T$-periodic in $t$ . In this case,
our Theorem 5 immediately yields the existence of time $T$-periodic solutions and
convergence to time $T$-periodic solutions.
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