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MATERIALS MICROSTRUCTURES: ENTROPY AND CURVATURE-DRIVEN COARSENING

ABSTRACT. Cellular networks are ubiquitous in nature. Most engineered materials are
polycrystalline microstructures composed of a myriad of small grains separated by grain
boundaries, thus comprising cellular networks. The grain boundary character distribution
($GBCD$) is an empirical distribution of the relative length $($ in $2D)$ or area $($ in $3D)$ of
interface with a given lattice misorientation and normal. Material microstructures evolve
by curvature driven growth, seeking to decrease their interfacial energy. During the
growth, or coarsening, process, an initially random grain boundary arrangement reaches
a steady state that is strongly correlated to the interfacial energy density. In simulation,
if the given energy density depends only on lattice misorientation, then the steady state
$GBCD$ and the energy are related by a Boltzmann distribution. This is amdng the simplest
non-random distributions, corresponding to independent trials with respect to the energy.

Here we an describe an entropy based theory which suggests that the evolution of the
$GBCD$ satisfies a Fokker-Planck Equation, an equation whose stationary state is a Boltz-
mann distribution. The properties of the evolving network that characterize the $GBCD$

must be identified and appropriately upscaled or ‘coarse-grained’. This entails identifying
the evolution of the statistic in terms of the recently discovered Monge-Kantorovich-
Wasserstein implicit scheme. The undetermined diffusion coefficient or temperature pa-
rameter is found by means of a convex optimization problem reminiscent of large deviation
theory.

1. INTRODUCTION

Cellular networks are ubiquitous in nature. They exhibit behavior on many different
length and time scales and are generally metastable. Most technologically useful materials
are polycrystalline microstructures composed of a myriad of small monocrystalline grains
separated by grain boundaries, and thus comprise cellular networks. Here we are concerned
with the boundary network whose energetics and connectivity play a crucial role in the
properties of a material across a wide range of scales. $A$ central problem of materials
science is to develop technologies capable of producing an arrangement of grains that
provides for a desired set of material properties. Raditionally the focus has been on
distributions of geometric features, like cell size, and a preferred distribution of grain
orientations, termed texture. Attaining these gives the configuration order in a statistical
sense. More recent mesoscale experiment and simulation permit harvesting large amounts
of information about both geometric features and crystallography, and subsequently the
energetics, of the boundary network, [2],[1],[37],[53],[54]. This has led us to the notion of
the Grain Boundary Character Distribution ($GBCD$).

The grain boundary character distribution ($GBCD$) is an empirical distribution of the
relative length $($ in $2D)$ or area $($ in $3D)$ of interface with a given lattice misorientation and
grain boundary normal.

We describe two discoveries about the $GBCD$ . First is that during the growth process, an
initially random grain boundary arrangement reaches a steady state that is strongly corre-
lated to the interfacial energy density. In simulation, a stationary $GBCD$ is always found.
Moreover there is consistency between experimental $GBCD$’s and simulated $GBCD$ ’s. The
boundary network of a cellular structure is naturally ordered. For a perspective on these
issues, we recommend the article by R. V. Kohn [39].
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A second discovery is that if the given interfacial energy density depends only on lattice
misorientation, then the steady state $GBCD$ and the density are related by a Boltzmann
distribution. This is among the simplest non-random distributions, corresponding to inde-
pendent trials with respect to the density. Such straightforward dependence between the
character distribution and the interfacial energy offers evidence that the $GBCD$ is a ma-
terial property. It is a leading candidate to characterize texture of the boundary network
[37].

Here we describe our recent work developing an entropy based theory that suggests that
the evolving $GBCD$ satisfies a Fokker-Planck Equation, [10],[15], cf. also [11], [9], [16],
to which we refer for a more complete exposition. Coarsening in polycrystalline systems
is a complicated process involving details of material structure, chemistry, arrangement
of grains in the configuration, and environment. In this context, we consider just two
competing global features, as articulated by C. S. Smith [55]:

$\bullet$ interface growth according to a local evolution law and
$\bullet$ space filling constraints, or, confining the configuration to a fixed region.

We shall impose the famihar curvature driven growth for the local evolution law, cf. Mulhns
[49]. Space filling requirements are managed by critical events, rearrangements of the net-
work involving deletion of small contracting cells and facets. The properties of this system
that characterize the $GBCD$ must be identffied and appropriately upscaled or ‘coarse-
grained’. $A$ general platform for this investigation is large scale computation. Numerical
simulations are well estabhshed as a major tool in the analysis of many physical systems,
see for example $[60],[42],[43],[26],[27],[21],[57],[56],[23],[24],$ $[40],[51],[22],[44],[46]$ . However,
the idea of large scale computation as the essential method for the modeling and compre-
hension of large complex systems is relatively new. Porous media and groundwater flow
is an important case of this, see for example [30],[5],[4],[7],[6]. For coarsening of cellular
systems, it is a natural approach as well. The laboratory is the venue to assess the validity
of the local evolution law. Once this law is adopted, we appeal to simulation, since we
cannot control all the other elements present in the experimental system, many of which
are unknown. On the other hand, in silico we may exercise, or at least we may attempt to
exercise, precise control of the variables appropriate to the evolution law and the constraint.

There are many large scale metastable material systems, for example, magnetic hystere-
sis, [18], and second phase coarsening, [45],[62]. In these, the theory is based on mesoscopic
or macroscopic variables simply abstracting the role of the smaller scale elements of the
system. There is no general‘multiscale’ framework for upscaling from the local behavior of
individual cells to behavior of the network when they interact and change their character.
This is the principal challenge of the theory for coarsening. We must attempt to tease
the system level information from the many coupled elements of which it consists. This
information will be available primarily from the dissipation relation (2.6) which is implied
by the balance of forces at triple junctions (2.3), due to Herring, [31],[32]. Lax resolution
of the Herring Condition gives rise to an unreliable $GBCD.$

Our strategy is to introduce a simplffied coarsening model that is driven by the boundary
conditions and reflects the dissipation relation of the grain growth system. This will be
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more accessible to analysis. It resembles an ensemble of inertia-free spring-mass-dashpots.
For this simpler network, we learn how entropic or diffusive behavior at the large scale
emerges from a dissipation relation at the scale of local evolution. The cornerstone is a
novel implementation of the iterative scheme for the Fokker-Planck Equation in terms of
the system free energy and a Kantorovich-Rubinstein-Waeserstein metric [34], cf. also [33],
which will be summarized later in the presentation.

The network level nonequilibrium nature of the scheme leaves undetermined the diffu-
sion constant in the Fokker-Planck Equation, or equivalently the ‘temperature parameter’
of the Boltzmann Distribution we are seeking. We employ the Kullback-Leibler relative
entropy, cf. (4.2), and find a convex duality problem for this parameter. It has a statistical
interpretation, or information theory interpretation, in terms of an optimal prefix code,
cf. eg. [52], and moreover has evident connections to large deviations. This suggests that
had we simply asked to identify an optimal distribution via a known statistical method,
we would have been led full circle to entropy methods.

In the Closing comments we address some general issues.

2. REPRISE OF MESOSCALE THEORY

Our point of departure is the common denominator theory for the mesoscale description
of microstructure evolution. This is growth by curvature, the Mulhns Equation (2.2)
below, for the evolution of curves or arcs individually or in a network, which we employ
for our local law of evolution. Boundary conditions must be imposed where the arcs meet.
This condition is the Herring Condition, (2.3), which is the natural boundary condition
at equihbrium for the Mulhns Equation. Since their introduction by Mulhns, [49], and
Herring, [31], [32], a large and distinguished body of work has grown about these equations.
Most relevant to here are [29], [19], [36], [50]. Curvature driven growth has old origins,
dating at least to Burke and Turnbull [20]. Let $\alpha$ denote the misorientation between two
grains separated by an arc $\Gamma$ , as noted in Figure 1, with normal $n=$ $(\cos\theta, \sin e)$ , tangent
direction $b$ and curvature $\kappa$ . Let $\psi=\psi(\theta, \alpha)$ denote the energy density on $\Gamma$ . So

$\Gamma$ : $x=\xi(s, t)$ , $0\leqq s\leqq L,$ $t>0$ , (2.1)

with
$b= \frac{\partial\xi}{\partial s}$ (tangent) and $n=Rb$ (normal)

$v= \frac{\partial\xi}{\partial t}$ (velocity) and $v_{n}=v\cdot n$ (normal velocity)

where $R$ is a positive rotation of $\pi/2$ . The Mulhns Equation of evolution is

$v_{n}=(\psi_{\theta\theta}+\psi)\kappa$ on $\Gamma$ . (2.2)

We assume that only triple junctions are stable and that the Herring Condition holds at
triple junctions. This means that whenever three curves, $\{\Gamma^{(1)}, \Gamma^{(2)}, \Gamma^{(3)}\}$ , meet at a point
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FIGURE 1. An arc $\Gamma$ with normal $n$ , tangent $b$ , and lattice misorientation $\alpha$ , illustrating
lattice elements.

$p$ the force balance, (2.3) below, holds:

$\sum_{i=1,..3},(\psi_{\theta}n^{(i)}+\psi b^{(i)})=0$
. (2.3)

It is easy to check that the instantaneous rate of change of energy of $\Gamma$ is

$\frac{d}{dt}\int_{\Gamma}\psi|b|ds=-\int_{\Gamma}v_{n}^{2}ds+v\cdot(\psi_{\theta}n+\psi b)|_{\partial\Gamma}$ (2.4)

Consider a network of grains bounded by $\{\Gamma_{i}\}$ subject to some condition at the border
of the region they occupy, like fixed end points or periodicity, cf. Figure 2. The typical

FIGURE 2. Example of an instant during the simulated evolution of a cellular network.
This is from a small simulation with constant energy density and periodic conditions at
the border of the configuration.
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simulation consists in initializing a configuration of cells and their boundary arcs, usually
by a modified Voronoi tessellation, and then solving the system (2.2), (2.3), eliminating
facets when they have neghgible length and cells when they have negligible area, [38],[35].
The total energy of the system is given by

$E(t)= \sum\int_{\Gamma_{i}}\psi|b|ds$ (2.5)
$\{\Gamma_{i}\}$

Owing exactly to the Herring Condition (2.3), the instantaneous rate of change of the
energy

$\frac{d}{dt}E(t)=-\sum_{\{\Gamma_{j}\}}\int_{\Gamma_{i}}v_{n}^{2}ds+\sum_{TJ}v\cdot\sum(\psi_{\theta}n+\psi b)$

$=- \sum\int_{\Gamma_{i}}v_{n}^{2}ds$

(2.6)

$\{\Gamma_{i}\}$

$\leqq 0,$

rendering the network dissipative for the energy in any instant absent of critical events.
Indeed, in an interval $(t_{0},t_{0}+\tau)$ where there are no critical events, we may integrate (2.6)
to obtain a local dissipation equation

$\sum\int_{t_{0}}^{t_{0}+\tau}\int_{\Gamma_{t}}v_{n}^{2}dsdt+E(t_{0}+\tau)=E(t_{0})$ (2.7)
$\{\Gamma.\}$

which bears a strong resemblance to the simple dissipation relation for an ensemble of
inertia free springs with friction. In the simulation, the facet interchange and cell deletion
are arranged so that (2.6) is maintained.

Suppose, for simplicity, that the energy density is independent of the normal direction,
so $\psi=\psi(\alpha)$ . It is this situation that will concern us here. Then (2.2) and (2.3) may be
expressed

$v_{n}$ $=$ $\psi\kappa$ on $\Gamma$ (2.8)

$\sum_{i=1,..,3}.\psi b^{(i)}$

$=$ $0$ at $p$ , (2.9)

where $p$ denotes a triple junction. (2.9) is the same as the Young wetting law. When $\psi=$

const, then (2.9) means that the interior angles at triple junctions are $2\pi/3$ . In this case,
the celebrated Mulhns-von Neumann rule holds,[48],[61]. This states that the area $A_{n}(t)$

of an $n$-faceted cell grows according to the formula

$A_{n}’(t)=c(n-6)$ , (2.10)

This is thought to hold approximately when anisotropy is small. It has recently been
extended, in a dramatic and profound fashion, to arbitrary dimension by MacPherson and
Srolovitz, [47].
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For this situation we define the grain boundary character distribution, $GBCD,$

$\rho(\alpha, t)=$ relative length of arc of misorientation $\alpha$ at time $t,$

normahzed so that $\int_{\Omega}\rho d\alpha=1$ . (211)

We may express the energy of the boundary network in terms of $\rho$ as

$E_{0}(t)= \int_{\Omega}\psi\rho d\alpha$ , (2.12)

up to a scale factor involving the network total length. However we do not know how
to interpret the velocity term in (2.7). This is one of the motivations for turning to the
simplified problem below.

3. A SIMPLIFIED COARSENING MODEL WITH ENTROPY AND DISSIPATION

The coarsening process is irreversible because of its dissipative nature. Even in an in-
terlude when there are no rearrangement events, (2.7) shows that a configuration cannot
evolve to a former state from a later one. This could be viewed as a source of entropy for
the system. In our investigation, we view the principal source of entropy to be configu-
rational since we observe the evolution of an ‘upscaled’ ensemble represented by a single
statistic, the misorientation $\alpha$ , neglecting the remaining information. This is also a source
of irreversibility since we have forgotten information. We return to this shortly.

A significant difficulty in developing a theory for the $GBCD$ , and understanding texture
development in general, lies in the lack of understanding of consequences of rearrangement
events or critical events, facet interchange and grain deletion, on network level properties.
For example, in Fig. 3, the average area of five-faceted grains during a growth experiment
on an $Al$ thin film and the average area of five-faceted cells in a typical simulation both
increase with time. The von Neumann-Mullins Rule (2.10) mentioned above does not fail
in the example, of course, but cells observed at later times had 6, 7, 8, $\cdots$ facets at earher
times. Thus in the network setting, changes which rearrange the network play a major
role.

To address these issues, we will introduce a much simpler 1 $D$ model which retains
kinetics and critical events but neglects curvature driven growth of the boundaries. In our
view, there are two important features of the coarsening system:

$\bullet$ the evolution of the network by the dissipative mechanism of curvature driven
growth and

$\bullet$ the irreversible rearrangement of the network at certain discrete times, which is
necessary because the entire configuration is confined.

We have used this model to develop a statistical theory for critical events, $[13],[14],[12].$
It has been found to have its own $GBCD$ as well, [9],[11],[10],[15], which we shall now
review.

Our main idea in [9],[11],[10],[15] is that the $GBCD$ statistic for the simplffied model
resembles the solution of a Fokker-Planck Equation via the mass transport implicit scheme,
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FIGURE 3. The average area of five-sided cell populations during coarsening in two
different cellular systems showing that the von Neumann-Mullins n–6–Rule (2.10) does
not hold at the scale of the network. (left) In an experiment on $Al$ thin film, [8], and
(right) a typical simulation (arbitrary units).

[34]. In studying the $GBCD$ , we are not averaging some fine-level properties to arrive at
a mesoscale property. Rather, it represents some number of fine-level possibilities. This
change in the ensemble gives rise to an entropic contribution, which we take to be pro-
portional to configurational entropy. In [9],[11],[10],[15] the simplified model is formulated
as a gradient flow which results in a dissipation inequality analogous to the one found for
the coarsening grain network. Because of this simphcity, it will be possible to ‘upscale’
the network level system description to a higher level $GBCD$ description. $A$ more useful
dissipation inequality is obtained by modifying the viscous term to be a mass transport
term, which now brings us to the realm of the Kantorovich-Rubinstein-Wasserstein implicit
scheme. This then suggests the Fokker-Planck paradigm.

However, we do not know that the statistic solves the Fokker-Planck PDE but we can
ask if it shares important aspects of Fokker-Planck behavior. We give evidence for this
by asking for the unique ‘temperature-like’ parameter, the factor noted above, such that
the Kullback-Leibler relative entropy achieves a minimum over long time. The empirical
stationary distribution and Boltzmann distribution with the special value of‘temperature’
are in excellent agreement. This gives an explanation for the stationary distribution and
the kinetics of evolution. At this point of our investigations, we do not know that the two
dimensional network has the detailed dissipative structure of the simphfied model, but we
are able to produce evidence that the same argument employing the relative entropy does
suggest the correct kinetics and stationary distribution.

3.1. Formulation. The simphfied coarsening model, driven by the boundary conditions,
reflects the dissipation relation of the grain growth system. It resembles an ensemble of
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inertia-free spring-mass-dashpots. It is an abstraction of the role of triple junctions in the
presence of the rearrangement events.

Let $I\subset R$ be an interval of length $L$ partitioned by points $x_{i},$ $i=1,$ $\ldots,$
$n$ , where

$x_{i}<x_{i+1},$ $i=1,$ $\ldots,$ $n-1$ and $x_{n+1}$ identffied with $x_{1}$ . For each interval $[x_{i}, x_{i+1}],$ $i=$
$1,$

$\ldots,$
$n$ select a random misorientation number $\alpha_{i}\in(-\pi/4, \pi/4]$ . The intervals $[x_{i}, x_{i+1}]$

correspond to grain boundaries (but not the $1D$ “grain”) with misorientations $\alpha_{i}$ and the
points $x_{i}$ represent the triple junctions. Choose an energy density $\psi(\alpha)\geqq 0$ and introduce
the energy

$E= \sum_{i=1,\ldots,n}\psi(\alpha_{i})(x_{i+1}-x_{i})$
. (3.1)

To have consistency with the evolution of the $2D$ cellular network, we impose gradient flow
kinetics with respect to (3.1), which is just the system of ordinary differential equations

$\frac{dx_{i}}{dt}=-\frac{\partial E}{\partial x_{i}},$ $i=1,$ $\ldots,$
$n$ , that is

(3.2)
$\frac{dx_{i}}{dt}=\psi(\alpha_{i})-\psi(\alpha_{i-1}),$ $i=2\ldots n$ , and $\frac{dx_{1}}{dt}=\psi(\alpha_{1})-\psi(\alpha_{n})$ .

The velocity $v_{i}$ of the $i^{th}$ boundary is

$v_{i}= \frac{dx_{i+1}}{dt}-\frac{dx_{i}}{dt}=\psi(\alpha_{i-1})-2\psi(\alpha_{i})+\psi(\alpha_{i+1})$ . (3.3)

The grain boundary velocities are constant until one of the boundaries collapses. That
segment is removed from the list of current $gra!^{n}$ boundaries and the velocities of its
two neighbors are changed due to the emergence of a new junction. Each such deletion
event rearranges the network and, therefore, affects its subsequent evolution just as in the
two dimensional cellular network. Actually, since the interval velocities are constant, this
gradient flow is just a sorting problem. At any time, the next deletion event occurs at
smallest positive value of

$\underline{x_{i}-x_{i+1}}.$

$v_{i}$

The length $l_{i}(t)$ of the $i^{th}$ interval is hnear in $t$ until it reaches $0$ or until a collision event,
when it becomes linear with a different slope. In any event, it is continuous, so $E(t),$ $t>0,$
the sum of such functions multiplied by factors, is continuous.

At any time $t$ between deletion events,

$\frac{dE}{dt}= =-\sum\frac{dx_{i}}{dt}2\leqq 0$ . (3.4)

Consider for the $1D$ system (3.2), a time interval $(t_{0}, t_{0}+\tau)$ with no critical events. Then we
obtain a grain growth analog of the spring-mass-dashpot-hke local dissipation inequality.

$\sum_{i=1\ldots n}\int_{0}^{\mathcal{T}}\frac{dx_{i}}{dt}dt2+E(t_{0}+\tau)=E(t_{0})$ (3.5)

79



MATERIALS MICROSTRUCTURES: ENTROPY AND CURVATURE-DRIVEN COAHSENING

With an appropriate interpretation of the sum, (3.5) holds for all $t_{0}$ and almost every $\tau$

sufficiently small. The dissipation equality (3.5) can also be rewritten in terms of grain
boundary velocities as:

$\frac{1}{4}\sum_{i=1\ldots n}\int_{0}^{\tau}v_{i}^{2}dt+E(t_{0}+\tau)\leqq E(t_{0})$ (3.6)

The energy of the system at time $t_{0}+\tau$ is determined by its state at time $t_{0}.$

As explained in [11],[10],[15], we can introduce the $GBCD$ for the simplified $1D$ model.
Let us consider a new ensemble based on the misorientation parameter $\alpha$ where we take
$\Omega$ : $- \frac{\pi}{4}\leqq\alpha\leqq\frac{\pi}{4}$ , for later ease of comparison with the two dimensional network for which
we are imposing “cubic” symmetry, i.e., “square” symmetry in the plane. The $GBCD$ or
character distribution $\rho(\alpha, t)$ in this context is, as expected, the histogram of lengths of
intervals sorted by misorientation $\alpha$ scaled to be a probabihty distribution on $\Omega$ . One may
express (3.6) in terms of the character distribution $\rho$ which amounts to

$\mu 0\int_{t_{0}}^{t_{0}+\tau}\int_{\Omega}|\frac{\partial\rho}{\partial t}(\alpha, t)|^{2}d\alpha dt+\int_{\Omega}\psi(\alpha)\rho(\alpha, t_{0}+\tau)d\alpha\leqq\int_{\Omega}\psi(\alpha)\rho(\alpha, t_{0})d\alpha$, (3.7)

where $\mu_{0}>0$ is some constant.
The expression (3.7) is in terms of the new misorientation level ensemble, upscaled from

the local level of the original system. We now introduce, as discussed earlier, the modehng
assumption, consistent with the lack of reversibihty when rearrangement/or critical events
occur, consisting of an entropic contribution to (3.7). We consider a standard configura-
tional entropy,

$+ \int_{\Omega}\rho\log\rho d\alpha$ , (3.8)

although this is not the only choice. Minimizing (3.8) favors the uniform state, which would
be the situation were $\psi(\alpha)=$ constant. $A$ tantalizing clue to the development of texture
will be whether or not this entropy strays from its minimum during the simulation.

Given that (3.7) holds, we assume now that there is some $\lambda>0$ such that for any $t_{0}$

and $\tau$ sufficiently small that

$\mu 0\int_{t_{0}}^{t_{0}+\tau}\int_{\Omega}(\frac{\partial\rho}{\partial t})^{2}d\alpha dt+\int_{\Omega}(\psi\rho+\lambda\rho\log\rho)d\alpha|_{t_{0}+\tau}\leqq\int_{\Omega}(\psi\rho+\lambda\rho\log\rho)d\alpha|_{t_{0}}$ (3.9)

$E(t)$ was analogous to an internal energy or the energy of a microcanonical ensemble and
now

$F( \rho)=F_{\lambda}(\rho)=E(t)+\lambda\int_{\Omega}\rho\log\rho d\alpha$ (3.10)

is a free energy. The value of the parameter $\lambda$ is unknown and will be determined in the
Validation Section 4
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3.2. The mass transport paradigm. The kinetics of the simplified problem will be
understood by interpreting the dissipation principle for the $GBCD$ in terms of a mass
transport implicit scheme. In fact, (3.9) fails as a proper dissipation principle because the
first term

$\mu 0\int_{t_{0}}^{t_{0}+\tau}\int_{\Omega}(\frac{\partial\rho}{\partial t})^{2}dadt$ (3.11)

does not represent lost energy due to frictional or viscous forces. For a deformation path
$f(\alpha, t),$ $0\leqq t\leqq\tau$, of probabihty densities, this quantity is

$\int_{0}^{\tau}\int_{\Omega}v^{2}fd\alpha dt$ (3.12)

where $f,$ $v$ are related by the continuity equation and initial and terminal conditions

$f_{t}+(vf)_{\alpha}=0$ in $\dot{\Omega}\cross(0, \tau)$ , and
(3.13)

$f(\alpha, 0)=\rho(\alpha, 0), f(\alpha, \tau)=\rho(\alpha, \tau)$ ,

by analogy with fluids [41], p.53 et seq., and elementary mechanics. (We have set $t_{0}=0$

for convenience.)
On the other hand, by a result of Benamou and Brenier [17], given two probability

densities $f^{*},$ $f$ on $\Omega$ , the Wasserstein distance $d(f, f^{*})$ between them is given by

$\frac{1}{\tau}d(f, f^{*})^{2}= inf\int_{0}^{\tau}\int_{\Omega}v^{2}fd\xi dt$

over deformation paths $f(\xi, t)$ subject to (3.14)
$f_{t}+(vf)_{\xi}=0$ , (continuity equation)
$f(\xi, 0)=f^{*}(\xi),$ $f(\xi, \tau)=f(\xi)$ (initial and terminal conditions)

Let us briefly review the notion of Kantorovich-Rubinstein-Wasserstein metric, or simply
Wasserstein metric. The reader can consult [59], [3] for more detailed exposition of the
subject and [15] for additional discussion of its application in this context.

Let $D\subset R$ be an interval, perhaps infinite, and $f^{*},$ $f$ a pair of probabihty densities on $D$

(with finite variance). The quadratic Wasserstein metric or 2-Wasserstein metric is defined
to be

$d(f, f^{*})^{2}= \inf_{P}\int_{D\cross D}|x-y|^{2}dp(x, y)$

(3.15)
$P=$ joint distributions for $f,$ $f^{*}$ on $\overline{D}\cross\overline{D},$

i.e., the marginals of any $p\in P$ are $f,$ $f^{*}$ . The metric induces the $weak-*$ topology on
$C(\overline{D})’$ . If $f,$ $f^{*}$ are strictly positive, there is a transfer map which reahzes $p$ , essentially the
solution of the Monge-Kantorovich mass transfer problem for this situation. This means
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that there is a strictly increasing
$\phi$ : $Darrow D$ such that

$\int_{D}\zeta(y)f(y)dy=\int_{D}\zeta(\phi(x))f^{*}(x)dx,$ $\zeta\in C(\overline{D})$ , and (3.16)

$d(f, f^{*})^{2}= \int_{D}|x-\phi(x)|^{2}f^{*}dx$

In this one dimensional situation, as was known to Frech\’et, [25],
$\phi(x)=F^{*-1}(F(x)),$ $x\in D$ , where

$F^{*}(x)= \int_{-\infty}^{x}f^{*}(x’)dx’$ and $F(x)= \int_{-\infty}^{x}f(x’)dx’$

$(317)$

are the distribution functions of $f^{*},$ $f$ . In one dimension there is only one transfer map.
The conditions (3.14) are in ‘Eulerian’ form. Therefore, our goal is to replace (3.11) with
(3.12). Since the associated metrics induce different topologies, an estimate must involve
additional terms. Assume that our statistic $\rho(\alpha, t)$ satisfies

$\rho(\alpha, t)\geqq\delta>0$ in $\Omega,$ $t>0$ . (3.18)

This is a necessary assumption for our estimates below. In fact, to proceed with the implicit
scheme introduced later, it is sufficient to require (3.18) just for the initial data $\rho_{0}(\alpha)$ since
this property is. inherited by the iterates. We now use the representation (3.14) and the
deformation path given by $\rho$ itself, that is $f=\rho$ and $v$ determined so that

$\rho_{t}+(v\rho)_{x}=0.$

Then calculate that for some $c_{\Omega}>0,$

$\frac{1}{\tau}d(\rho, \rho^{*})^{2}\leqq\int_{0}^{\tau}\int_{\Omega}v^{2}\rho dxdt\leqq\frac{c_{\Omega}}{\min_{\Omega\rho}}\int_{0}^{\tau}\int_{\Omega}\frac{\partial\rho}{\partial t}(x, t)^{2}dxdt$,
(3.19)

$\rho^{*}(x)=\rho(x, 0)$ and $\rho(x)=\rho(x, \tau)$ ,
where $0$ represents an arbitrary starting time and $\tau$ a relaxation time.

Thus from (3.9) there is a $\mu>0$ such that for any relaxation time $\tau>0,$

$\frac{\mu}{2}\int_{0}^{\tau}\int_{\Omega}v^{2}\rho d\alpha dt+F_{\lambda}(\rho)\leqq F_{\lambda}(\rho^{*})$ (3.20)

We next replace (3.20) by a minimum principle, arguing that the path given by $\rho(\alpha, t)$

is the one most likely to occur and the minimizing path has the highest probabihty. For
this step, let $\rho^{*}=\rho(\cdot, t_{0})$ and $\rho=\rho(\cdot, t+\tau)$ . We then have that, ffom (3.14), a minimum
principle in the form

$\frac{\mu}{2\tau}d(\rho, \rho^{*})^{2}+F_{\lambda}(\rho)=\inf\{\frac{\mu}{2\tau}d(\eta, \rho^{*})^{2}\{\eta\}+F_{\lambda}(\eta)\}$ (3.21)

For each relaxation time $\tau>0$ we determine iteratively the sequence $\{\rho^{(k)}\}$ by choosing
$\rho^{*}=\rho^{(k-1)}$ and $\rho^{(k)}=\rho$ in (3.21) and set

$\rho^{(\tau)}(\alpha,t)=\rho^{(k)}(\alpha)$ in $\Omega$ for $k\tau\leqq t<(k+1)\tau$. (3.22)
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We then anticipate recovering the $GBCD\rho$ as
$\rho(\alpha, t)=\lim_{\tauarrow 0}\rho^{(\tau)}(\alpha, t)$ , (3.23)

with the limit taken in a suitable sense. It is known that $\rho$ obtained from (3.23) is the
solution of the Fokker-Planck Equation, [34],

$\mu\frac{\partial\rho}{\partial t}=\frac{\partial}{\partial\alpha}(\lambda\frac{\partial\rho}{\partial\alpha}|+\psi’\rho)$ $in$ $\Omega,$ $0<t<\infty$ . (3.24)

We might point out here, as well, that a solution of (3.24) with periodic boundary conditions
and nonnegative initial data is positive for $t>0.$

4. VALIDATION OF THE SCHEME

We now begin the validation step of our model. The procedure which leads to the
implicit scheme, based on the dissipation inequahty (3.6), holds for the entire system but
does not identify individual intermediate ‘spring-mass-dashpots’. The consequence is that
we cannot set the temperature-like parameter $\sigma$ , but in some way must decide if one exists.
Introduce the notation for the Boltzmann distribution with parameter $\lambda$

$\rho_{\lambda}(\alpha)=\frac{1}{Z_{\lambda}}e^{-\frac{1}{\lambda}\psi(\alpha)},$ $\alpha\in\Omega$ , with $Z_{\lambda}= \int_{\Omega}e^{-\frac{1}{\lambda}\psi(\alpha)}d\alpha$. (4.1)

With validation we would gain qualitative properties of solutions of (3.24):
$\bullet$ $\rho(\alpha, t)arrow\rho_{\sigma}(\alpha)$ as $tarrow\infty$ , and
$\bullet$ this convergence is exponentially fast.

The Kullback-Leibler relative entropy for (3.24) is given by

$\Phi_{\lambda}(\eta)=\Phi(\eta\Vert\rho_{\lambda})=\int_{\Omega}\eta\log\frac{\eta}{\rho_{\lambda}}d\alpha$ where
(4.2)

$\eta\geqq 0$ in $\Omega,$ $\int_{\Omega}\eta d\alpha=1,$

with $\rho_{\lambda}$ from (4.1). By Jensen’s Inequality it is always nonnegative. In terms of the free
energy (3.10) and (4.1), (4.2) is given by

$\Phi_{\lambda}(\eta)=\frac{1}{\lambda}F_{\lambda}(\eta)+\log Z_{\lambda}$. (4.3)

$(Note: In our$ earlier $work [10, 15], we$ defined relative entropy $to be \lambda$ times $(4.2)$ .) $A$

solution $\rho$ of (3.24) has the property that
$\Phi_{\lambda}(\rho)arrow 0$ as $tarrow\infty$ . (4.4)

Therefore, we seek to identify the particular $\lambda=\sigma$ for which $\Phi_{\sigma}$ defined by the $GBCD$
statistic $\rho$ tends monotonically to the minimum of all the $\{\Phi_{\lambda}\}$ as $t$ becomes large. We
then ask if the terminal, or equilibrium, empirical distribution $\rho$ is equal to $\rho_{\sigma}$ . Note that
since

$f(x, y)=x\log x-x\log y, x, y>0,$
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is convex, $\Phi(\eta\Vert\rho_{\lambda})$ is a convex function of $(\eta, \rho_{\lambda})$ . We assign a time $t=T_{\infty}$ and seek to
minimize (4.2) at $T_{\infty}$ . With

$\psi_{\lambda}=\frac{\psi}{\lambda}+\log Z_{\lambda}$ , (4.5)

this minimization is a convex duality type of optimization problem, namely, to find the $\sigma$

or $\psi_{\sigma}$ for which
$\int_{\Omega}\{\psi_{\sigma}\rho+\rho\log\rho\}d\alpha=\inf_{\{\psi_{\lambda}\}}\int_{\Omega}\{\psi_{\lambda}\rho+\rho\log\rho\}d\alpha-$ (4.6)

Note that
$\int_{\Omega}e^{-\psi_{\lambda}}d\alpha=1$

which gives the minimization in (4.6) the form of finding an optimal prefix code, eg. [52].
Here the potential $\psi_{\lambda}$ , the code, is minimized in a family rather than the unknown density
$\rho$ itself, which corresponds to the given alphabet. For practical purposes, note that

$\Phi(\rho\Vert\rho_{\lambda})=\int_{\Omega}\rho\log\rho d\alpha+\frac{1}{\lambda}\int_{\Omega}\psi\rho d\alpha+\log Z_{\lambda}$ (4.7)

is a strictly convex non-negative function of the ‘inverse temperature’ $\beta=\perp\lambda,$ $\beta>0$ , and
thus admits a unique minimum.

The information theory interpretation is that we are minimizing the information loss
among trial encodings of the alphabet represented by the statistic $\rho$ . In this sense we see
that asking for an optimal distribution $\rho_{\sigma}$ to represent our statistic $\rho$ , necessarily introduces
(relative) entropy in our considerations, returning us, as it were, full circle.

In addition, the method is known in statistics as an $M$ estimator or a $Z$ estimator, $[58].$

From a given simulation, we harvest the $GBCD$ statistic. It is a trial. The convexity of
$\Phi(\rho\Vert\rho_{\lambda})$ suggests that we can average trials. For trials $\{\rho_{1}, \ldots\rho_{N}\},$

$\Phi(\frac{1}{N}\sum_{i=1\ldots N}\rho_{i}\Vert\rho_{\lambda})\leqq\frac{1}{N}\sum_{i=1\ldots N}\Phi(\rho_{i}\Vert\rho_{\lambda})$ . (4.8)

So we can seek the optimal $\lambda=\sigma$ by optimizing with the averaged trial. We shall illustrate
this for the validation process for the two dimensional simulation.

4.1. An example of the simplified problem. For the simplified coarsening model, we
consider

$\psi(\alpha)=1+2\alpha^{2}$ in $\Omega=(\begin{array}{l}\pi\pi-\overline{4}’\overline{4}\end{array})$ , (4.9)

and shall identify a unique such parameter, which we label $\sigma$, by seeking the minimum of the
relative entropy (4.2), namely by inspection of plots of (4.6) and (4.7), and then comparing
$\rho$ with the found $\rho_{\sigma}$ . This $\psi$ the development to second order of $\psi(\alpha)=1+0.5\sin^{2}2\alpha$

used in the $2D$ simulation. Moreover, since the potential is quadratic, it represents a
version of the Ornstein-Uhlenbeck process. We agree that $T\infty=T$(80%) $=6.73$ represents
time equals infinity. This is the time at which 80% of the segments have been deleted
and corresponds to the stationary configuration in the two-dimensional simulation. For
the simplified critical event model we are considering, it is clear that by computing for a
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sufficiently long time, all cells will be gone. This time may be quite long. For comparison,
$T$ (90%) $=30$ and $T$(95%) $=103$ . There may be additional criteria for choosing a $T$ in the
neighborhood of $T$(80%) and we may wish to discuss this later. The results are reported
in Fig. 4.

FIGURE 4. Graphical results for the simplified coarsening model. (left) Relative entropy
plots for selected values of $\lambda$ with $\Phi_{\sigma}$ noted in red. The value of $\sigma=0.0296915$ . (right)
Empirical distribution at time $T=T_{\infty}$ in red compared with $\rho_{\sigma}$ in black.

5. THE ENTROPY METHOD FOR THE GBCD
5.1. Quadratic interfacial energy density. We shall apply the method of Section 4 to
the $GBCD$ harvested from the $2D$ simulation. For reasons of limited space, we consider a
single typical simulation with the energy density

$\psi(\alpha)=1+\epsilon(\sin 2\alpha)^{2}, -\frac{\pi}{4}\leqq\alpha\leqq\frac{\pi}{4}, \epsilon=1/2$, (5.1)

Figure 5, initiahzed with $10^{4}$ cells and normally distributed misorientation angles and
terminated when 2000 cells remain. At this stage, the simulation is essentially stagnant.
Five trials were executed and we consider the average of $\rho$ of the empirical $GBCD$ ’s.
Possible ‘temperature’ parameters $\lambda$ and $\rho_{\lambda}$ in (4.1) for the density (5.1) are constructed.
This $\rho_{\lambda}$ then defines a trial relative entropy via (4.2). We now identify the parameter $\sigma,$

which turns out to be $\sigma\approx 0.1$ , and the value of the relative entropy $\Phi_{\sigma}(T_{\infty})\approx 0.01$ , which
is about 10% of its initial value, Figure 6. $\mathbb{R}om$ Figure 7 (left), we see that this relative
entropy $\Phi_{\sigma}$ has exponential decay until it reaches time about $t=1.5,$ $aft|$er which it remains
constant. The averaged empirical $GBCD$ is compared with the Boltzmann distribution in
Figure 7 (right). The solution itself then tends exponentially in $L^{1}$ to its hmit $\rho_{\sigma}$ by the
Kullback-Csiszar Inequality.
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$\alpha$ (radians)

FIGURE 5. (left) The energy density $\psi(\alpha)=1+\epsilon\sin^{2}2\alpha,$ $|\alpha|<\pi/4,$ $\epsilon=\frac{1}{2}$ . (right)
The entropy of $\rho(\alpha, t)$ as a function of time $t$ is increasing, suggesting the development of
order in the configuration.

FIGURE 6. In these plots, the $GBCD\rho$ is averaged over 5 trials. (left) The relative
entropy of the grain growth simulation with energy density (5.1) for a sequence of $\Phi_{\lambda}$ vs.
$t$ with the optimal choice $\sigma\approx 0.1$ noted in red. (right) Relative entropy for an indicated
range of values of temperature parameter $\lambda$ at the terminal time $t=2.3$. The minimum
value of the relative entropy is $\approx 0.01.$

5.2. Remarks on a Theory for the Diffusion Coefficient $\sigma$ or the Temperature-
Like Parameter. The network level nonequlibrium nature of the iterative scheme intro-
duced in our theory Sections 3-4, leaves free a temperature-hke parameter $\sigma$ . However,
as we showed in Section 4, we can uniquely identify $\sigma$ . But can we a priori determine or
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FIGURE 7. In these plots, the $GBCD$ is averaged over 5 trials. (left) Plot of-log $\Phi_{\sigma}$

vs. $t$ with energy density (5.1). It is approximately linear until it becomes constant
showing that $\Phi_{\sigma}$ decays exponentially.(right) $GBCD\rho$ (red) and Boltzmann distribution
$\rho_{\sigma}$ (black) for the potential $\psi$ of (5.1) with parameter $\sigma\approx 0.1$ as predicted by our theory.

control this temperature-like parameter? There are different approaches to this question,
none of which have been especially successful at this point. One possible approach is to
consider a different theory that is developed for the simplffied model based on the kinetic
equations description in [14]. However, this particular description [14] would have to be
improved, since it does not produce a very good result for $\sigma$ at this point. However, this
method would still have only an empirical flavor: the value of $\sigma$ will be obtained once
the solution of kinetic equations is computed. Another direction to consider here is based
on the statistical analysis of the data obtained from many trials and to understand the
possible connection to branching processes.

6. CLOSING COMMENTS

Engineering the microstructure of a material is a central task of materials science and
its study gives rise to a broad range of basic science issues, as has been long recognized.

Central to these issues is the coarsening of the cellular structure. Here we have outlined
an entropy based theory of the $GBCD$ which is an upscahng of cell growth according to the
two most basic properties of a coarsening network: a local evolution law and space filling
constraints. The theory \‘accomodates the irreversibility conferred by the critical events or
topological rearrangements which arise during coarsening. It adds to the body of evidence
that the evolution of the boundary network is the primary origin of texture development.
It accounts both for the $GBCD$ and its kinetics.

Finally we remark about the scope of the theory. The dissipation relation, (2.6) and
(2.7), shows that only interfacial energy and functions of it, hke the Herring Condition,
are responsible for coarsening. This gives rise to the $GBCD$ . Other statistics, like cell size
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and orientations, although they may be easily measured and well behaved, are secondary.
The evolution should have a Markov character. The initial conditions at a given state
determine subsequent evolution. Perhaps this is not the case precisely as correlations tend
to develop over time and simple coarsening is impeded by configurational hinderance, but
let us suppose so for the moment. Then the $GBCD$ is a solution of the forward Kolmogorov
equation of the process, which is hnear.

Now consider momentarily an upscaled dissipation relation. It would have a form, using
the mass transport paradigm we have been discussing derived from the gradient flow

$\frac{\mu}{2\tau}d(\rho, \rho^{*})^{2}+\int_{\Omega}\Phi(\rho, x)dx=\min$ (6.1)

The stationary equation corresponding to this is

$A \rho=\frac{d^{2}}{dx^{2}}(-\rho\Phi_{\rho}+\Phi)-\frac{d}{dx}\Phi_{x}$ (6.2)

As a function of $\rho$ it must be linear. To check this in a simple way, compute the adjoint
pairing, which is the backward Kolmogorov equation. This reveals that

$\Phi(\rho, x)=a\rho\log\rho+b(x)\rho$ , with $a$ constant. (6.3)

which yields the Fokker-Planck equation already found with, notably, constant diffusion.
In sum, a dissipation relation gives rise to essentially only one Markov process, the one we
have discovered. We do not know the imphcations of this.
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