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STABILITY OF SOLITARY WAVES
FOR THE COUPLED BBM EQUATIONS
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1 Introduction

In this note, we consider large time behavior of the global solutions to the coupled BBM

equations:
G — Gwz+72+(qr)e =0, z€R t>0, (1.1)
Tt —Twe+ Qe+ qq:+7r7,=0, z€R, >0, (12)
q(z,0) = go(z), r(z,0) =ro(z). (1.3)
Here, for an integer s > 0, H*(IR) denotes the space of functions u = u(x) such that 8u
are L?-functions on R for 0 < ! < s, endowed, with the norm || - ||z, while H!(R) is a
space of functions whose element satisfy ||ulg: = [[e**ul g1 < oo for a € R. We can write

the system (1), (2) and (3) in the following system.

O = Lu+ f(u), (1.4)
u(z,0) = up(x) (1.5)
where u = ( 1 > and,
_ 0 —0,(1 = 5)7! _ =0, (I = 07) 7 (qr)
e < 01— 0 ) = ( —30(T = )M g +1?) ) |

The BBM equations have two parameter family of solitary wave. In [1], they show
that solitary waves uc,(x — cot + Y0) = ¢, (T — cot + Y0)(1,1)T exist for any speed ¢y > 1
and shift v, € R. Explicitly,

Dep(x) = 3—(00—2——23e(3h2 <%V:U>
= Ofexp(-v|z]) (|z|-= Fo0), (1.6)

where v = , /@C-'oil. By using the Lyapunov theory, they derive the following theorem on
orbital stability.
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Theorem 1.1. Let co > 1. For any ¢ > 0 there exists § > 0 such that if u €
C([0,t0); H'(R)) is a solution to (1.4) and (1.5) with |[ug — uc, || < 0, then u(t) can be
ertended to a solution in 0 < t < 400, and

sup inf [|u(:,t) — ue, (- — &)l < e (1.7)
t>0 £€R

However we can’t expect that if the initial data ug(z) is close to some solitary wave
ue, (T + 7o) With speed co, then the solution tends to the translate of same solitary wave
as t goes to oo asymptotically. Our aim is to describe the long-time asymptotic behavior
of solutions initially close to a solitary wave. Main result is following. Convergence in H}

means local uniform convergence.

Theorem 1.2. Let 0 < a < v. We assume uo(z) = ue,(z + 70) + vo(x) € H*N H,.
There exist € > 0, ¢; > 1 and b > 0 such that if co € (1,¢1) and ||vol|ar + ||vol|my < €, then

lu(-,t) = e, (- — c4t +v4) | m < C, (1.8)
lu(- + e4t =74, 8) = e, ()l < Cee™, (1.9)
for some ¢y > 1, v4 € R with | co — ¢4 |< Ce, | v0 — 7+ |< Ce.

We remark that the estimate similar to (6) and (7) were obtained for other types of
equation (see [2], [3], [4] and [5]).

2 Spectrum

In order to prove Theorem 1.2, we derive the equation for the perturbation. We put
y=z-— fot c(s)ds +y(t) and u(z,t) = uqe)(y) +v(y,t). Then v(y,t) satisfies

where v = ( p ) and,
n

A = 8,(I -0 "Le, (2.2)

L _ %(1‘8;3) — ¢y "‘(1 +¢60)
b ~(1+6e) -0 —0 )

dv = Av + F, (2.1)

1
F o= _(;Yay(lsc + ¢0cpc) ( 1 > +(c—co— 'y)ayv

2y-1 11 —0y(I — 82)_1,077
—8y(1-—3y) (¢c—¢a)) ( 11 >U+ < _%ay(l_ag)—l(p2+n2) ) ’



To study the weighted perturbation e®v, we deal with the spectrum of the operator
Ag = e Ae™¥. We can see that if 0 < a < v, then the essential spectrum of A, lie in the

open left half plane. We put

A® = D,(I - Dz)——l ( CO(]_——ID(%) CO(I:1D2) ) ) (2.3)

Since ¢., decays exponentially as | y |— oo, we obtain from (2.2) and (2.3)
Uess(Aa) = Uess(Azo)- (24)

Applying the Fourier transform to A%, we see

Goss(A%) = {z eC | 2= o “)(Ici’(fi__%f 0l pe IR} C (25)

Therefore, it follows that

Re 0ess(A4y) < —ac+ —b. < 0. (2.6)

= 21+a?)
Hence, if 0 < a < v, then the essential spectrum of A, lie in the open left half plane.

Proposition 2.1. Let 0 < a < v.
(1) There ezists v, € (0,1) such that for all v € (0,v,), the only eigenvalue X of A with
Re A > 015 A=0 and A = 0 is the eigenvalue with algebraic multiplicity 2.
(2) For each v € (0,v.), there exists e(v) > 0 such that the only eigenvalue \ of A, with
Re)l > —¢(v) is A= 0.

We put
—bmaez = Inf{ —b | A =0 is the only eigenvalue of A, with ReA > —b > —b,}.

Then, the decay estimates for the linearized equations (2.7) below play a crucial role in
our analysis. By using (2.6) and The Priiss’s theorem [6], we obtain the following.

Proposition 2.2. Assume 0 < a < v and X\ = 0 is the only eigenvalue of A in the
closed right half plane. Then the problem

23

{ we = Aqw 2.7)

w(z,0) = wp(z) € range @
has a solution with
lw(, )z < Ce™®|lwol (2.8)

for some b with 0 < b < bmax. Here Q is a projection onto Ker{A:}* and A% is the
adjoint operator of A,.
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Next, we study a basis for the generalized zero eigen space Kery(A,). We can see
Kery(A,) = span{0yuc,, Octc, }- (2.9)

The solitary wave u,, satisfies the following.

co(I — 82) + 56c =1+ 16
. 00 =0. 2.10
( 1410 ol -8+ b ) (210)

Differentiating (2.10) with y and ¢, we obtain

Le,Byticy = 0, (2.11)
and
LeyBeticy = —(1 = 8ty (2.12)
From (2.11), we get
Alyuc, = 0. (2.13)

Hence, we obtain 9,u,, € Kery(A). From (2.12), we have
AlpUcy = — Oy, (2.14)
It follows that
A%B.ue, = 0. (2.15)
Hence, we obtain (2.9). Let us introduce &, §~2 by
g} = OylUcy, 52 = Oclcy-

We take biorthogonal bases {£1,€;} and {7}, 72} for Ker,(A) and Kerg(A*).
Let

& =e%g, m=e W,

for i = 1,2. Then {£;,&} and {n:,n2} are biorthogonal bases for Kerg(A,) and Kerg(A3).

3 Modulation Equation

To obtain the decay estimate of perturbation w = e®¥v, we need to let w belong to orthogo-
nal to Ker,(AZ). The following Proposition 3.1 concerned the existence of a decomposition
u(z,t) = (v(y,t),v(t), c(t)) satisfies the condition (3.3) below.
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Proposition 3.1. Let 0 < a < v and T > 0. Then there exists &g, 61 > 0 such that
for any v € R, if e**u(z) € C([0,T), H') and

sup [|e® ) (u(-, ) — uey (- — ot +Y0)) |l < bo (3.1)
0<t<T

holds, then there exists a unique function t — (y(t),c(t)) € C([0, ], R?) with

sup | y(t) —yo | + | c(t) —co |< & (3.2)
0<t<ty

such that
/]R[u<x’t) - uc(t)(y)]eaynk(y>dy = 01 (33)

fork=1,2and 0 <t<T.

Proposition 3.2. There ezist d5, 03 > 0 such that for any T > 0, if e**u(zx) €
C([0,T), H') and

sup [e*v(y, t)[lm < 62, (3.4)
0<t<T
and
sup | c(t) —co |< 0, (3:5)
0<t<T
hold, then a unique extension of (y,c) € C([0,T + t.],R?) exists for some t, > 0 with
Jfute,t) = vy @lemu(w)ay = (36)

fork=1,2 and 0 <t < T +t,.

To estimate the weighted perturbation, we need to estimate 4 and ¢. We shall derive
the modulation equations (3.11) below. We put 7 = fot c(s)ds — y(t). Then, w satisfies

1
wr = —Aqw+ J (3.7)
Co

where

J=-

e (¥Oyue + ¢Opue) + J, (3.8)

c—=7

Wherej——-Jl-{—Jg—I—Jg,Dazay—aand
Co 1 1

lc—c—% o1 11 01
Jy= 21D . ,
> c—7 ( 21 ® 11 )oY

1 _ e™qr
Jy = — D,(I —D*»™! : 3.9
3 c——"y ( a) ( —%e“y(q2+7'2) ) ( )

Iy = 2Du(1 = D2 (6, — ) ( bl ) w,
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P denotes the projection onto the zero eigenspace of A,. In order to prove the decay
estimate (1.9), we require PJ = 0. Then, we obtain

<mn,J >=0. (3.10)

for i = 1,2, where < -,- > denotes the L? inner product. It follows from (3.8) that

1
=7

{< mi, e®0yu, > 4+ < n;, €¥0uc > ¢} + <, J>=0.
We put e; = Oyuc — Oy, €2 = Octe — Oclc,- Since < 7, Ej >= 0,5, we derive

I+ <m,e1 > <m,ex> ¥ _c0<1_0—00—7>_1 <m,J >

<t e > 1+ <1 e> ¢ c—4 <nyd> |
Hence, we obtain
10 Ay c—co—"y)"l <m,J>
+ O(] c(t) — = l——— - :

{(01> (ot %n}<é> w(1-52T) (e

Therefore, if | ¢(t) — co | + | ¥(t) | is small, then it follows that

19@) [+ 1e@) | < Ol
< Ol hillze + | Ballz2 + 113l za). (3.11)

4 Energy estimate

In order to prove the decay estimate given by Proposition 5.1, we prepare the following
Proposition 4.1. The proposition is concerned with the energy estimate for the BBM
equations (1.1), (1.2) and (1.3). A solitary wave u,, is a critical point of energy functional

Eluid] = Hlu] — coNlu] (1)

where u = (¢,r)T and
Hfu] = /R (qr+ 5% + %ri*)dz, (4.2)
N = % /}R (@ +7r°+ ¢ +rl)dz. (4.3)

We denote H(u] and Nu] are conserved integrals of BBM equations.

Proposition 4.1. If | ¢(t) — co | +||v(-,t)|| g is sufficiently small for 0 <t < T, then
we have

lo(,)llar < C(VIOE |+ | e(t) — o | +llw(-,8)l|z2) (4.4)
for0 <t < T, where 6E = E[u(-,0)] — Elug(+)]-



PROOF. Put z(y,t) = (21,22)7 = u(z,t) — ug(y). Since §F is constant in time, it
follows that

6E = El2(y,t) + ue(y)] — Elug (v)]

1 1 1
= ——/zTLcOzdy+—/zfzzdy+—/.z§dy. (4.5)
2 Jr 2 Jr 6 Jr

From the Sobolev inequality, we have

1 1
E / Pgdy + 1 / Bdy| < Cll
2 R 6 R
< O elt) = o |+l (46)

where 2(y,t) = v(y, 1) + Ueey(¥) — e, (¥)-
We obtain

5 | MLosty = =5 [ Lty — [ o7 Lo fuly) ~ ua )y
_.;_ /R (Ue(y) = oo (1)) Leg () = tteo (4))dy
_% /R VT Leyvdy + /R ™ Loy (ue(y) —uco(y))dy'
[ 1) ~ ) La00) ~ )

1 2 2
- / o Legwdy + C(| clt) — ¢o |2 +]w]2), (4.7)

IA

R
2

IN

and

1 1
=5 [ Lavdy = =geallol.Olla + oy 0l) = [ (14 )urvndy

2
- / ¢co ’UTUdy
R
1

1
< —gallvCOllzz + llvy G Dllze) + 5 llo( 22

1 11
= —ay T d

< —2{leo— Dl DI + colloy (DI} + Clollzs iz
< —5l5le0 = DleC DI + collog(, B} + CluC, ) 2. (48)

Summarizing (4.5), (4.6), (4.7) and (4.8), we get

A

%{(Co = Dllo(, )12 + collvy ()17} < CUSE | + | eft) = co [* +llw(-, D)lIZ2).  (49)

This completes the proof. O
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5 Decay estimate

Proposition 5.1. There exist 64 > 0 and €, > 0 such that if the decomposition ezists
for t € [0,T] and the following conditions hold:

i) VOB + t)||H1+|C(t)~Co|+‘ L |+||v( Dl <86 (5.1)
(i) [ (0) = co | +y/TOE ] + w(-0)|m < € < e, (5.2)

then we have

e (-, Oll -+ t) = co | + %] + o Dl < Ce, (5.3)

where k = 1 + 204/ cy.

PROOF. First, we evaluate | (t) | + | é(t) |. If | e(t) —co | + | %ﬁ is small, then
we have from (3.11) and (3.9)

Y@ 1+ 1e@) | < Cllllize + 1 2llze + 1 sllz2)

<

< C(le®) —eo |+ 14@) [ +HlvC Olla)llwl Ol (5.4)
Therefore, We get from (5.4) and (5.1)

4@ [+ 1e) | < Cd. (5.5)

Next, we evaluate ||w(-,t)||;:. By the Duhamel principle, we see from (3.7)

w(r) = ec_lo'A“Tw(O) + /T e%A"(T_S)QJ(S)ds. (5.6)

0

Let b < b < byge. For 0 < 7 < 7(T), we find from Proposition 2.2
—ir T—8
Jw(-, 7)< Ce™ <o [w(:, 0)|| g +/ S| Q | mids. (5.7)
0
We obtain from (3.8), (3.9) and (5.4)

— Co — % . :
Wl < € (14 Z2220) (1500 141 60 ) + Cululn
< Coilulm. (58)

Now, we define M(T') by

b
M(T)= sup e ||w(,7)|m.
0<7<7(T)



It follows from (5.7) and (5.8) that

e#wnﬂmgcwmmecwmﬂA¥4ﬁ“%s
Cllw(,0)||gr + CoM(T).

A

Therefore, if 04 is small, then (5.9) gives the desired estimate
M(T) < Cluw(-,0)]lm.
In order to evaluate | ¢(7) — ¢ |, we shall use
er) = e0) = [ GEopas
J g
d :

By using (5.2) and (5.4), we have

'C(T)_COI < lC(O)—c()'—f— sup — |dT
0<r<(T) | €
< | (0) = co | +C8M(T) / b5 45

< C(1 e(0) = co | +Hw(-, 0)[[g1)
< Ce.

Next, we consider ||v(-,t)||z:. From Proposition 4.1, we get

C(VISE [+ | c(t) = co | +]w(-, )]l a)

(- Dl <
< (.

Finally, we deal with

I From (5.12) and (5.4), it follows thata

c—@—7'< lc—col+17]
c—7 el =171

Ce + Cllw(-, )|l
Ce.

IN A

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

Summarizing (5.10), (5.12), (5.13) and (5.14), we obtain (5.3). This completes the proof.

O

29



30

6 Proof of Theorem 1.2

PROOF. We assume that
up(z) = u(x,0) = ugy (T + 70) + vo(z) € H2ﬂH;. (6.1)

Since the map ¢ — |ju(-,t)|| g1 + ||u(-,)|| 42 is continuous for ¢ € [0, 00), there exist ¢; > 0
and t; > 0 such that if [|u(,0) — ue (- +0)||mz < €1, then
sup [|e®™) (u(-,t) = ugy (- = cot +10)) |l < do, (6.2)

0<t<t,

where g is as in Proposition 3.1. Hence, there exists the decomposition u(z,t) —
(v(y,t),v(t), c(t)) exists for 0 < t < ¢5.

Next, we shall prove (5.2). If ||e®vg| g1 is small, then the map u(-,0) — (v(0),c(0)) is
locally Lipschitz on H} and uc (- + Y0) — (Y0, co). Therefore, we obtain

[7(0) = [ +1c(0) —co| < Cllu(-,0) — e (- + 7o)l

= C”’U()“Hé. (63)
Also it follows from (6.3) that
lw(,0)l[lm = llul-t) — te)(- +7(0)ll 2
< Jul8) = ueo (- + 70) |z + llteo (- +7%0) = ue(o) (- +7(0)) .3
< Cllvollay, (6.4)
and we get from (4.5)
| 6E |< CllvollF, - (6.5)

Hence, if ||vo[l g1 + [|[vol| 2 is small, then (5.2) holds.
Next, we derive (5.1). From (5.14), (5.12) and (5.4), we obtain

3] < O+ | e(0) = o+t O)n)
< Clul. (6

Since the left-hand side of (5.1) is continuous in ¢, there exist €3 > 0 and to > 0 (t3 < t;)
such that if ||vo|| g1 + ||vo||my < €2, then (5.1) holds for 0 < ¢ < 2.
We put

Tmax =sup{ T > 0 | the decomposition (3.3) and (5.1) hold for 0 < ¢ < T'}.



If Thax = 400, then we can show Theorem 1.2. If T,,,, < +o0o, then we let Ce <
min{8z, 3, 64/2} where C is as in Proposition 5.1. From proposition 5.1, if | ¢(0) — ¢ |
+/| OF |+ |lw(-, )|z < €, then we have

lw(, O)||g < Ce < b,
| e(t) — ¢ |[< Ce < 63,

for 0 <t < T. From Proposition 3.2, the decomposition can be extended. Then, it
follows that there exists t3 such that the decomposition and the estimate (5.1) hold for
0 <t < Thax + t3. This contradicts the definition of Tp,x. Hence Tipax = +00.

Finally, we shall prove (1.9). From (5.4), we have

< Cee™, (6.7)

el + 171 < Cllwi,t)lla

Therefore, there exists ¢, = tlim c(t) and | c(t) — ¢y |< Cee™™. Also, there exists
—00

ve = Jim(2(0) = [ (els) = ex)is). (6.9)
We put
510 = = [ () = ex)ds +(0) = . (6.9)

Then, it follows from (5.3)

lu(- + eyt — v4,t) — Ue, ()| m2

Sl 4 et =74 t) = ey (- + FO) g + Nuew (- +5(8) — e, ()l az

< Qv+ 3@ Ol + C(e(t) —er [+ 15(8) 1)

< CllwC )l +C(le(t) —ex [+ [7(2) 1)

< Cee™. (6.10)
This completes the proof O
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