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Abstract

In this brief note, we review recent results on the analyticity of the Stokes semigroup
in spaces of bounded functions. The Stokes equations are well understood on $L^{p}$ space,
$p\in(1, \infty)$ , for various kinds of domains such as bounded or exterior domains with smooth
boundaries. However, the situation is very different on $L^{\infty}$ since in this case the Helmholtz
projection does not act as a bounded operator on $L^{\infty}$ anymore. The purpose of this note is
to review an approach to prove the analyticity of the semigroup on $L^{\infty}$ , especially, on $L_{\sigma}^{\infty}$

$($and $BUC_{\sigma})$ for exterior domains and perturbed half spaces. Note that for merely bounded
initial data, even existence of solutions are non-trivial. We approximate merely bounded
initial data on $L_{\sigma}^{\infty}$ and prove the unique existence of solutions together with the analyticity
of the semigroup. This note is based on joint works with Y. Giga [2], [3] and the thesis [1].

1 Introduction

We consider the initial-boundary problem for the Stokes equations in the domain $\Omega\subset \mathbb{R}^{n},$ $n\geq 2$ :

$v_{t}-\Delta v+\nabla q=0$ in $\Omega\cross(0, T)$ , (1.1)

$divv=0$ in $\Omega\cross(0, T)$ , (1.2)

$v=0$ on $\partial\Omega\cross(0, T)$ , (1.3)

$\nu=v_{0}$ on $\Omega\cross\{t=0\}$ . (1.4)

It is well known that the solution operator (called the Stokes semigroup)

$S(t);v_{0}\mapsto v(\cdot, t) , t\geq 0,$

forms an analytic semigroup on the solenoidal $L^{p}$ space, $L_{\sigma}^{p}(\Omega),$ $p\in(1, \infty)$ , for various kind of
domains $\Omega$ , such as bounded and exterior domains with smooth boundaries [25], [13]. However,
it had been a long-standing open problem whether or not the Stokes semigroup $\{S(t)\}_{t\geq 0}$ is
analytic on $L^{\infty}$ -type spaces even if $\Omega$ is bounded. When $\Omega$ is a half space, it is known that the
Stokes semigroup $\{S(t)\}_{t\geq 0}$ is analytic on $L^{\infty}$-type spaces since explicit solution formulas are
available [6], [19], [26].

In [2], Y. Giga and the author gave an affirmative answer to this open problem at least when
$\Omega$ is bounded as a typical example. Later, this approach was extended to exterior domains [3]

and perturbed half spaces $(n\geq 3)[1]$ . The propose of this note is to review an approach to
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prove the existence of solutions for merely bounded initial data as well as the analyticity of the
semigroup on $L^{\infty}$ -type spaces.

We begin with a typical statement for bounded domains. Let $C_{0,\sigma}(\Omega)$ denote the $L^{\infty}$-closure
of $C_{c,\sigma}^{\infty}(\Omega)$ , the space of all smooth solenoidal vector fields with compact support in $\Omega$ . When
$\Omega$ is bounded, $C_{0,\sigma}(\Omega)$ agrees with the space of all solenoidal vector fields continuous in 2
vanishing on $\partial\Omega[18].$ $A$ typical result proved in [2, Theorem 1.1] is the following:

Theorem 1.1 (Analyticity on $C_{0,\sigma}$). Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}$ with $C^{3}$ -boundary. Then,
the solution operator (the Stokes semigroup) $S(t)$ : $v_{0}\mapsto v(\cdot, t)$ is a $C_{0}$-analytic semigroup on
$C_{0,\sigma}(\Omega)$ .

The approach to prove Theorem 1.1 was to establish an priori estimate for

$N(v,q)(x, t)=|v(x, t)|+t^{\frac{1}{2}}|\nabla v(x, t)|+t|\nabla^{2}v(x, t)|+t|\partial_{t}v(x, t)|+t|\nabla q(x, t)|$ (1.5)

of the form
$\sup_{0<r<T_{0}}\Vert N(v, q)\Vert_{\infty}(t)\leq C||v_{0}\Vert_{\infty}$ (1.6)

for some $T_{0}>0$ and $C$ depending only on the domain $\Omega$ , where $||v_{0}||_{\infty}=||v_{0}||_{L^{\infty}(\Omega)}$ denotes
the $\sup$-norm of $|v_{0}|$ in $\Omega$ . The a priori estimate (1.6) was proved by an indirect argument
called a blow-up argument which is often used in the study of non-linear elliptic and parabolic
equations [12], [14], [21], [20] (see also [17], [16] for the Navier-Stokes equations). Later, a
direct approach to prove Theorem 1.1 was found in [4]. The approach in the paper is to derive
$L^{\infty}$ -estimates for solutions of the resolvent problem colresponding to $(1.1)-(1.4)$ based on the
Masuda-Stewart technique for elliptic operators.

In both approaches, a key is to estimate pressure gradient in terms of velocity, i.e.,

$\sup_{x\in\Omega}d_{\Omega}(x)|\nabla q(x, \cdot)|\leq C||w||_{L^{\infty}(\partial\Omega)}$
, (1.7)

where
$w(v)=-(\nabla v-\nabla^{T}v)n_{\Omega}$. (1.8)

Here, $d_{\Omega}$ denotes the distance from $x\in\Omega$ to $\partial\Omega$, i.e., $d_{\Omega}(x)= \inf_{v\in\partial\Omega}|x-y|$ and $n_{\Omega}$ denotes the
unit outward normal vector field on $\partial\Omega$ . For $n=3,$ $w(v)$ is nothing but a tangential component
of vorticity, i.e., -curl $v\cross n_{\Omega}$ . For $n=2,$ $w(v)$ agrees with-curl $vn_{\Omega}^{\perp}$ , where $n_{\Omega}^{\perp}=(n_{\Omega}^{2}, -n_{\Omega}^{1})$ .
The estimate (1.7) plays an important role for estimating pressure gradient $\nabla q=(I-\mathbb{P})\Delta v$ by
the velocity $v$ on $L^{\infty}$ since the Helmholtz projection $\mathbb{P}$ does not act as a bounded operator on
$L^{\infty}$ . Actually, the estimate (1.7) is a special case of the estimate for the homogeneous Neumann
problem of the form

$\Delta q=0$ in $\Omega,$ $\frac{\partial q}{\partial n_{\Omega}}=div_{\partial\Omega}w$ $\partial\Omega$ , (1.9)

where $div_{\partial\Omega}$ denotes the surface divergence on $\partial\Omega$ . Since the divergence-free condition for
velocity implies

$\Delta v\cdot n_{\Omega}=div_{\partial\Omega}w(v)$ on $\partial\Omega,$

the pressure $q$ solves the Neumann problem (1.9) for $w=w(v)$ . The estimate (1.7) is valid for
various domains, but it may not be true for general domains so we call $\Omega$ strictly admissible if
the a priori estimate (1.7) holds for all solutions of the Neumann problem (1.9). Of course, a
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half space is strictly admissible. Moreover, it was proved that bounded domains [2, Theorem
2.5] and exterior domains [3, Theorem 3.1] of class $C^{3}$ are strictly admissible. However, layer
domains are not strictly admissible. In fact, in a layer domain, $\Omega=\{x=(x’, x_{n})\in \mathbb{R}^{n}|0<x_{n}<$

$1\},$ $P=x_{1}$ does not satisfy the estimate (1.9) for $w=0$ . We conjecture that quasi-cylindrical
domains, i.e., $\varlimsup_{|x|arrow\infty}d_{\Omega}(x)<\infty$ , are not strictly admissible.

Actually, it is possible to extend Theorem 1.1 for general strictly admissible, uniformly $C^{3_{-}}$

domains [2, Theorem 1.3] by using the $\tilde{L}^{\rho}$ -theory developed in [8], [9], [10] since the space $C_{0,\sigma}$

is the $L^{\infty}$ -closure of $C_{c,\sigma}^{\infty}$ . Once we have the a priori estimate (1.6) for $v_{0}\in C_{c,\sigma}^{\infty}$, it is extendable
for $v_{0}\in C_{0,\sigma}$ . Note that the $L^{p}$-theory is also available for uniformly $C^{3}$ -domains for which the
Helmholtz projection is bounded on $L^{p}[11]$ so we are able to extend Theorem 1.1 through the
$L^{\rho}$ -theory for domains such as exterior domains or perturbed half spaces.

2 Non-decaying solenoidal spaces

It is natural to extend Theorem 1.1 for the larger space than $C_{0,\sigma},$

$L_{\sigma}^{\infty}(\Omega)=\{f\in L^{\infty}(\Omega)$ $\int_{\Omega}f\cdot\nabla\varphi dx=0$ for all $\varphi\in\hat{W}^{1,1}(\Omega)\},$

where $\hat{W}^{1.1}(\Omega)$ denotes the homogeneous Sobolev space $W^{1,1}(\Omega)=\{\varphi\in L_{toc}^{1}(\Omega)|\nabla\varphi\in L^{1}(\Omega)\}.$

Since the space $L_{\sigma}^{\infty}$ includes discontinuous functions, we approximate $v_{0}\in L_{\sigma}^{\infty}(\Omega)$ by elements
of $C_{c,\sigma}^{\infty}$ by the pointwise convergence in $\Omega$ . We extend the Stokes semigroup $S(t)$ to $L_{\sigma}^{\infty}$ by the
following approximation [2, Lemma 6.3].

Lemma 2.1 (Approximation). Let $\Omega$ be a bounded domain in $\mathbb{R}^{n},$ $n\geq 2$ , with Lipschitz bound-
ary. There exists a constant $C=C_{\Omega}$ such that for $v_{0}\in L_{\sigma}^{\infty}(\Omega)$ , there exists a sequence
$\{v_{0,m}\}_{m=1}^{\infty}\subset C_{c,\sigma}^{\infty}(\Omega)$ such that

$||\nu_{0,m}||_{L^{\infty}(\Omega)}\leq C||v_{0}||_{L^{\infty}(\Omega)},$

(2.1)
$v_{0,m}arrow v_{0}$ a.e. in $\Omega$ as $marrow\infty.$

If we do not care about the divergence-free condition for the sequence $\{v_{0,m}\}_{m=1}^{\infty}$ , it is easy to
construct the sequence satisfying (2.1). Lemma 2.1 says that we are able to approximate $v_{0}\in L_{\sigma}^{\infty}$

by solenoidal vector fields $\{v_{0,m}\}_{m=1}^{\infty}\subset C_{c,\sigma}^{\infty}$ keeping the $\sup$-norm, i.e., $||v_{0,m}||_{\infty}\leq C||v_{0}||_{\infty}$ . If $\Omega$

is star-shaped, i.e., $\lambda\overline{\Omega}\subset\Omega,$ $\lambda<1$ , it is easy to construct the sequence satisfying (2.1). In
fact, for $v_{0}\in L_{\sigma}^{\infty}(\Omega)$ , set $v_{0_{}l}(x)=\nu_{0}(\lambda x)$ for $x\in\lambda\Omega$ and $v_{0,\lambda}(x)=0$ for $x\in\Omega\backslash \lambda\Omega$ so that $\nu_{0,\lambda}$

is a compactly supported solenoidal vector field in $\Omega$ . Then, we get the desired sequence with
$C=1$ in (2.1) by multiplying the mollifier $\eta_{\epsilon}$ to $v_{0.\lambda}$ , i.e., $v_{0.m}=\eta_{1/m}*v_{0,\lambda_{m}}$ . For general bounded
domains, we are able to prove Lemma 2.1 by decomposing $\Omega$ into star-shaped domains.

By the above approximation, we are able to prove that the Stokes semigroup $S(t)$ is $a$ (non-
$C_{0^{-}})$analytic semigroup on $L_{\sigma}^{\infty}(\Omega)$ [ $2$ , Theorem 1.5]. Note that the semigroup $S(t)$ is not type $C_{0}$

since $S(t)v_{0}$ is smooth for $t>0$ so $S(t)v_{0}arrow v_{0}$ on $L^{\infty}$ as $t\downarrow 0$ may not hold for general $\nu_{0}\in L_{\sigma}^{\infty}.$

This means that $S(t)$ is a non$-C_{0}$ -analytic semigroup.

Now, we observe the extension of $S(t)$ to $L_{\sigma}^{\infty}(\Omega)$ for unbounded domains $\Omega$ . Note that
the space $L_{\sigma}^{\infty}$ includes non-decaying functions as $|x|arrow\infty$ so the existence of solutions for
$v_{0}\in L_{\sigma}^{\infty}(\Omega)$ are non-trivial problem. However, if Lemma 2.1 is valid for the unbounded domain
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$\Omega$ (satisfying the strictly admissibility), we are able to prove the existence of solutions for
$v_{0}\in L_{\sigma}^{\infty}(\Omega)$ satisfying the estimate (1.6) (called $L^{\infty}$ -solutions). Although the approximation
(2.1) is unknown in general, it is known to hold for exterior domains [3, Lemma 5.1] and
perturbed half space [1, Lemma 4.3.10]. Let us sketch the approach to prove the existence of
solutions for $v_{0}\in L_{\sigma}^{\infty}$ based on [3] (and [1]) for exterior domains and perturbed half spaces.

Our approach is by the $L^{\infty}$ -estimate (1.6) and the approximation (2.1). We find a solution
$(v, q)$ for $v_{0}\in L_{\sigma}^{\infty}$ by a sequence of $L^{p}$-solutions $\{(v_{m}, q_{m})\}_{m=1}^{\infty}$ for $v_{0,m}\in C_{c,\sigma}^{\infty}$ . By the estimates
(1.6) and (2.1), the sequence $(v_{m}, q_{m})$ is uniformly bounded, i.e.,

$\sup_{0<t<T_{0}}\Vert N(v_{m}, q_{m})\Vert_{\infty}(t)\leq C||v_{0}||_{\infty}$. (2.2)

Since $\nu_{0,m}arrow v_{0}$ , it is natural to expect that $(v_{m}, q_{m})$ converges to a solution $(v, q)$ for $v_{0}\in L_{\sigma}^{\infty}.$

In fact, by (1.6) and (2.1), we are able to estimate the H\"older semi-norms of $\nabla q$ in the interior
of $\Omega\cross(0, T]$ both in space and time variables. Thus, from the parabolic regularity theory,
$\{(v_{m}, q_{m})\}_{m=1}^{\infty}$ (subsequently) converges to a limit $(v, q)$ locally uniformly in $\Omega\cross(0, T]$ up to
second orders. Actually, the limit $(v, q)$ is continuous in $\overline{\Omega}\cross(0, T]$ up to second derivatives
since we have local H\"older estimates up to the boundary based on the Solonnikov’s H\"older

estimate for $(1.1)-(1.4)[25],$ $[28],$ $[29]$ (see [2, Theorem 3.5]). The uniqueness of $L^{\infty}$ -solutions
follows from the a priori estimate (1.6) for $v_{0}=0$ so the limit $(v, q)$ is independent of a choice
of the sequence $\{v_{0,m}\}_{m=1}^{\infty}\subset C_{c,\sigma}^{\infty}.$

To state a result, let us define solutions of $(1.1)-(1.4)$ for $v_{0}\in L_{\sigma}^{\infty}(\Omega)$ [ $3$ , Definition 2.7].

Definition 2.2 ($L^{\infty}$-solutions). Let $\Omega$ be a domain in $\mathbb{R}^{n},$ $n\geq 2$ , with $\partial\Omega\neq\emptyset$ . Let $(v, \nabla q)\in$

$C^{2,1}(\Omega-\cross(0, T])\cross C(\overline{\Omega}\cross(0, T])$ satisfy $(1.1)-(1.3)$ and (1.4) for $v_{0}\in L_{\sigma}^{\infty}(\Omega)$ in the sense that
$v(\cdot, t)arrow\nu_{0}$ weakly$-*$ on $L^{\infty}(\Omega)$ as $t\downarrow 0$ . We call $(v, q)$ an $L^{\infty}-soluti\mathfrak{o}n$ if (1.5) and

$t^{1/2}d_{\Omega}(x)|\nabla q(x, t)|$ (2.3)

are bounded in $\Omega\cross(0, T)$ .
Once we know the unique existence of $L^{\infty}$-solutions, we are able to extend the Stokes semi-

group $S(t)$ : $v_{0}\mapsto v(\cdot, t),$ $t\geq 0$ , for $v_{0}\in L_{\sigma}^{\infty}$ together with the estimate (1.6). The following
statement was proved in [3, Theorem 3.2] for exterior domains and [1, Theorem 4.1.2] for
perturbed half spaces.
Theorem2.3. Let $\Omega$ be an exterior domain in $\mathbb{R}^{n},$ $n\geq 2$ , or a perturbed halfspace in $\mathbb{R}^{n},$ $n\geq 3,$

with $C^{3}$ -boundary.
(i) (Unique existence of $L^{\infty}$ -solutions)
For $v_{0}\in L_{\sigma}^{\infty}(\Omega)$ , there exists a unique $L^{\infty}$ -solution $(v, \nabla q)$ satisfying (1.6) for anyfixed $T_{0}$ with
some constant $C$ depending only on $T_{0}$ and $\Omega.$

(ii) (Analyticity on $L_{\sigma}^{\infty}$ )
The Stokes semigroup $S(t)$ is uniquely extendable to $a(non-C_{0^{-}})$analytic semigroup on $L_{\sigma}^{\infty}(\Omega)$ .
Remark 2.4 (Continuity at time zero). It is natural to restrict $S(t)$ to the space of uniformly con-
tinuous functions $BUC_{\sigma}(\Omega)$ so that $S(t)$ is a $C_{0}$-analytic semigroup on $BUC_{\sigma}(\Omega)$ . Let $BUC(\Omega)$

be the space of all uniformly continuous functions in $\Omega$ . Define the space $BUC_{\sigma}(\Omega)$ by

$BUC_{\sigma}(\Omega)=\{f\in BUC(\Omega)|divf=0$ in $\Omega,$ $f=0$ on $\partial\Omega\}.$

Then, $S(t)$ is a $C_{0^{-}}($analytic) semigroup on $BUC_{\sigma}(\Omega)$ at least when $\Omega$ is an exterior domain.
Note that $C_{0,\sigma}(\Omega)\subset BUC_{\sigma}(\Omega)\subset L_{\sigma}^{\infty}(\Omega)$. When $\Omega$ is bounded, the space $BUC_{\sigma}(\Omega)$ agrees with
$C_{0,\sigma}(\Omega)[18],$ [ $2$ , Lemma 6.3].
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