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1. INTRODUCTION

In the present note we consider the Cauchy problem for the spatially inhomoge-
neous Boltzmann equation,

(1.1) $\partial_{t}f+v\cdot\nabla_{x}f=Q(f, f) , f(O,x,v)=f_{0}(x, v)$ ,

where $f=f(t, x, v)$ is the density distribution function of particles with velocity
$v\in \mathbb{R}^{3}$ at time $t$ and position $x$ . The right hand side of (1.1) is given by the
Boltzmann bilinear collision operator

$Q(g, f)(v)= \int_{\mathbb{R}^{3}}\int_{\mathbb{S}^{2}}B(v-v_{*}, \sigma)\{g(v_{*}’)f(v’)-g(v_{*})f(v)\}d\sigma dv_{*},$

where the conservation of momentum and energy implies that for $\sigma\in \mathbb{S}^{2}$

$v’= \frac{v+v_{*}}{2}+\frac{|v-v_{*}|}{2}\sigma, v_{*}’=\frac{v+v_{*}}{2}-\frac{|v-v_{*}|}{2}\sigma.$

The non-negative cross section $B$ usually takes the form

(1.2) $B= \Phi(|v-v_{*}|)b(\cos\theta) , \cos\theta=\frac{v-v_{*}}{|v-v_{*}|} \sigma, 0\leq\theta\leq\frac{\pi}{2},$

where
$\Phi(|z|)=\Phi_{\gamma}(|z|)=|z|^{\gamma}$ , for some $\gamma>-3,$

$b(\cos\theta)\theta^{2+2s}arrow K$ when $\thetaarrow 0+$ , for $0<s<1$ and $K>0.$

In fact, for the physical model, if the inter-molecule potential satisfies the inverse
power law potential $U(\rho)=\rho^{-(q-1)},$ $q>2($ , where $\rho$ denotes the distance between
two interacting molecules), then $s$ and $\gamma$ are given by

$0<s=1/(q-1)<1, 1>\gamma=1-4_{\mathcal{S}}=(q-5)/(q-1)>-3.$

As usual, the hard $(\gamma>0)$ and soft $(\gamma<0)$ potentials correspond to $q>5$ and
$2<q<5$ , respectively, and the Maxwelhan potential $(\gamma=0)$ corresponds to $q=5.$

The angle $\theta$ is the deviation angle, i.e., the angle between post- and pre-collisional
velocities (see Figure 1 in the next page). Though the range of $\theta$ is originally a
full interval $[0, \pi]$ , it should be noted that the angle $\theta$ in (1.2) is now restricted to
$[0, \pi/2]$ , as in [1], by replacing $b(\cos\theta)$ by its ’symmetrized” version

$[b(\cos\theta)+b(\cos(\pi-\theta))]1_{0\leq\theta\leq\pi/2},$
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FIGURE 1. post- and pre-collisional velocities

which is possible due to the invariance of the product $f(v’)f(v_{*}’)$ in the collision
operator $Q(f, f)$ under the change of variables $\sigmaarrow-\sigma$ . This device enables us to
use the regular change of variables between post- and pre-collisional velocities (in
the proof of the celebrated cancellation lemma in [1] $)$ ,

$v \mapsto v’=\frac{v+v}{2}*+\frac{|v-v_{*}|}{2}\sigma,$

where the Jacobian is found to be

$| \frac{\partial v}{\partial v’}|=\frac{8}{|I+k\otimes\sigma|}=\frac{8}{|1+k\cdot\sigma|}=\frac{4}{\cos^{2}(\theta/2)}\leq 8, \theta\in[0, \pi/2].$

In [15, 2], the singular change of variables $v_{*}arrow v’$ (, whose Jacobian is computed
as

$| \frac{\partial v_{*}}{\partial v’}|=\frac{8}{|I-k\otimes\sigma|}=\frac{8}{|1-k\cdot\sigma|}=\frac{4}{\sin^{2}(\theta/2)}\sim\theta^{-2}, \theta\in[0, \pi/2],)$

was also introduced to show the existence of solutions to the‘linearized” Boltz-
mann equation, and was used in [3, 4, 9] to prove the uniqueness of solutions with
polynomial decay in the velocity variable to the nonlinear Boltzmann equation for
Maxwellian and soft potentials. Especially in [9], the uniqueness of solutions was
considered in the following function space; for $m\in \mathbb{R},$ $\ell\geq 0$ and $T>0,$

$\mathcal{P}_{\ell}^{m}([0, T]\cross \mathbb{R}_{x,v}^{6}) = \{f\in C^{0}([0, T];S’(\mathbb{R}_{x,v}^{6}))$;

$s.t. f\in L^{\infty}([0, T]\cross \mathbb{R}_{x}^{3};H_{\ell}^{m}(\mathbb{R}_{v}^{3}))\},$

$\Vert f\Vert_{H_{\ell}^{m}(\mathbb{R}_{v}^{3})}=(\int_{\mathbb{R}^{3}}|\langlev\rangle^{\ell}(\langle D_{v}\rangle^{m}f(v))|^{2}dv)^{1/2} \langle v\rangle=(1+|v|^{2})^{1/2}$

An effective use of the singular change of variables gives us
Theorem 1.1 ([9]). Assume that the cross section $B$ takes the form (1.2) with
$0<s<1$ and $\max\{-3, -3/2-2s\}<\gamma\leq 0$ . Suppose that the Cauchy problem
(1.1) admits two weak solutions $f_{1}(t),$ $f_{2}(t)\in \mathcal{P}_{\ell_{0}}^{2s}([0, T]\cross \mathbb{R}_{x,v}^{6})$ with $0<T<+\infty$
and $\ell_{0}\geq 14$ having the same initial datum $f_{0}\in L^{\infty}(\mathbb{R}_{x}^{3};H_{\ell 0}^{2s}(\mathbb{R}_{v}^{3}))$ . If one solution
is non-negative, then $f_{1}(t)\equiv f_{2}(t)$ .
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Here the weak solution to the Cauchy problem (1.1) is defined by

$\int_{\mathbb{R}^{6}}f(t, x, v)\eta(t, x, v)dxdv-\int_{\mathbb{R}^{6}}f_{0}(x,v)\eta(0, x, v)dxdv$

$- \int_{0}^{t}d\tau\int_{\mathbb{R}^{6}}f(\tau, x, v)(\partial_{\tau}+v\cdot\nabla_{x})\eta(\mathcal{T}, x, v)dxdv$

$= \int_{0}^{t}d\tau\int_{\mathbb{R}^{6}}Q(f, f)(\tau,x, v)\eta(\tau, x, v)dxdv,$

where $\eta\in C^{1}(\mathbb{R};C_{0}^{\infty}(\mathbb{R}^{6}))$ is a test function.
Compared with the uniqueness of polynomial decay solutions in the velocity vari-

ables, there are few results concerning the existence of such slowly decay solutions
in spatially inhomogeneous case (cf., renormalized solutions by [13, 11], and [12] in
the cutoff case). In fact, the existence of classical solutions for the spatially inho-
mogeneous Boltzmann equation has been usually discussed for solutions with the
Maxwellian decay weight in the velocity variables (see [3, 4, 5, 6, 8, 10, 14] in the
non-cutoff case). In the next section we state a local existence result concerning
polynomial decay solutions in the velocity variable to the full nonlinear Boltzmann
equation in a certain soft potential case, by an effective use of the singular change
of variables between post- and pre-colhsional velocities.

2. LOCAL EXISTENCE FOR SOFT POTENTIALS

Throughout this section we confine ourselves to the case

(2.3) $0<s< \frac{1}{2}, -\frac{3}{2}<\gamma\leq 0,$

because of the technical difficulties, though the uniqueness result,Theorem 1.1,
holds under the more general situation $0<s<1$ and $\max\{-3, -2_{\mathcal{S}}-3/2\}<\gamma\leq 0.$

We introduce our working function spaces as follows: Set

$\partial_{\beta}^{\alpha}=\partial_{x}^{\alpha}\partial_{v}^{\beta}, \alpha, \beta\in \mathbb{N}^{3}.$

and

(2.4) $\mathcal{W}=\{\begin{array}{ll}\langle v\rangle if 0<s\leq 1/4,\langle v\rangle^{2s/(1-2s)} if 1/4<s<1/2,\end{array}$

which ensures $\langle v\rangle^{2s}\leq \mathcal{W}^{1-2s}$ and $\langle v\rangle\leq \mathcal{W}$ for the later use. As in [4, 7], we use a
kind of cutoff function in both space and velocity variables,

(2.5) $\phi(x, v)=\frac{1}{1+|v|^{2}+|x|^{2}},$

which possesses the commutator property $|[v\cdot\nabla_{x},$ $\phi||=2|v\cdot x|\phi^{2}\leq\phi$. For $k\in \mathbb{N},$

$\ell\in \mathbb{R}$ with $k<\ell$ , we define

(2.6) $\mathcal{H}_{u}^{k}|^{\ell}(\mathbb{R}^{6})=\{g|\Vert g\Vert_{\mathcal{H}_{u}^{k}}^{2}i^{\ell_{(\mathbb{R}^{6})}}$

$= \sum_{|\alpha+\beta|\leq k}\sup_{a\in \mathbb{R}^{3}}\int_{\mathbb{R}^{6}}|\phi(x-a, v)\mathcal{W}^{\ell-|\alpha+\beta|}\partial_{\beta}^{\alpha}g(x, v)|^{2}dxdv<+\infty\}.$

The function space $\mathcal{H}_{u}^{k}|^{\ell}(\mathbb{R}^{6})$ is a variant of the uniformly local Sobolev space
$H_{u}^{k}i^{\ell}(\mathbb{R}^{6})$ employed in [8], which is defined by replacing $\mathcal{W}^{\ell-|\alpha+\beta|}$ and $\phi(x, v)$ by
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$\langle v\rangle^{\ell}$ and a usual smooth cutoff function $\phi_{1}(x)\in C_{0}^{\infty}(\mathbb{R}^{3})$ , respectively. In [8],
bounded classical solutions for the initial data $f_{0}(x, v)$ satisfying
(2.7) $\exists\rho_{0}>0s.t. e^{\rho_{0}\langle v\rangle^{2}}f_{0}\in H_{u}^{k}i^{0}(\mathbb{R}^{6})$

are constructed in the whole space without specifying any limit behaviors at the
spatial infinity and without the smallness condition on initial data, under the as-
sumptions on the cross section $B$ with

$0<s<1/2, -3/2<\gamma, \gamma+2s<1.$

From the point view of the local existence of polynomial decay solution in the
velocity variable, we have the following improvement of Theorem 1.1 of [8] for the
soft potential case;

Theorem 2.1. Assume that the cross section $B$ takes the form (1.2) with (2.3),
that is, $0<s<1/2,$ $-3/2<\gamma\leq 0$ . If the initial data $f_{0}$ is non-ne9ative and
belongs to $\mathcal{H}_{u}^{k}|^{\ell}(\mathbb{R}^{6})$ for $k\geq 6,\ell\geq k+7$ , then, there exists a $T_{*}>0$ such that the
Cauchy problem (1.1) admits a non-negative unique solution in the function space

$C^{0}([0, T_{*}];\mathcal{H}_{u}^{k}|^{\ell}(\mathbb{R}^{6}))$ .
Remark 2.2. The rectangle below expresses the domain of $(\gamma, s)$ covered by Theo-
rem 2.1. The previous local existence result under (2.7) in [8] covers an additional
triangle region below the line $\gamma=1-2s$ , which is contained in the hard potential
region $\gamma>0$ . Time global solutions near a global equilibrium,

$f=\mu+\sqrt{\mu}g, \mu=e^{-|v|^{2}/2}/(2\pi)^{3/2}.$

were given in [4, 5, 6], [14], which cover the full region $0<s<1$ , $\gamma>$

$\max\{-3, -3/2-2s\}$ indicated by the figure below.

$

FIGURE 2. dashed line: $\gamma=1-4s$ in case of inverse power law potential

For the proof of Theorem 2.1, we construct the approximate solutions by angular
cutoff approximation. That is, for $0<\epsilon\ll 1$ , we approximate (cutoff) the cross
section by

$b_{\epsilon}(\cos\theta)=\{\begin{array}{ll}b(\cos\theta) (\theta\geq 2\epsilon) ,0 (\theta<2\epsilon) .\end{array}$
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Theorem 2.3 (Cutoff case). Assume that $-3/2<\gamma\leq 0$ and replace the angular
factor of the cross section $b$ by $b_{\epsilon}$ . If the initial data $f_{0}$ is non-negative and belongs
to $\mathcal{H}_{u}^{k}|^{\ell}(\mathbb{R}^{6})$ for $k\geq 5,$ $\ell\geq k+7$ , then, there exists a $T_{\epsilon}>0$ such that the Cauchy
problem (1.1) admits a non-negative unique solution $f^{\epsilon}(t, x, v)$ in the function space
$C^{0}([0, T_{\epsilon}];\mathcal{H}_{u}^{k}|^{\ell}(\mathbb{R}^{6}))$ .

Remark 2.4. In the cutoff case. the order of derivative $k$ can be taken not less
than 5 instead of 6 for the non-cutoff case in our analysis. We might improve the

$\partial_{x},\partial_{v}$order.$of$ derivatives by use of the fractional derivatives employed in [10], instead of

Another key ingredient is to obtain a uniform estimate for solutions in the given
function space. Let $T>0$ and $f(t)\in C^{0}([0, T];\mathcal{H}_{u}^{k}|^{\ell}(\mathbb{R}^{6}))$ with $k\geq 6$ and $\ell\geq k+7.$

If we put
$\mathcal{E}(t)=\Vert f(t)\Vert_{\mathcal{H}_{u}^{k}}^{2}i^{\ell}$ ’

then there exists a $C>0$ depending only on $s,$ $\gamma,$ $k,$ $P$ and $K>0$ in the hypothesis
of $b$ such that

(2.8) $\mathcal{E}(t)\leq \mathcal{E}(0)+C\int_{0}^{t}\mathcal{E}(\tau)(1+\mathcal{E}(\tau))d\tau, t\in[0, T],$

where we refer [16] to the detail derivation of this estimate, by means of both regular
and singular changes of variables between post- and pre-collisional velocities. It
follows from (2.8) that we have

$\mathcal{E}(t)\leq\frac{\mathcal{E}(0)e^{Ct}}{1-(e^{Ct}-1)\mathcal{E}(0)},$

by exactly the same calculation as the one after (4.3.11) of [3]. If we choose $T_{*}>0$

small enough such that

$T_{*}= \frac{1}{C}\log(1+\frac{3}{1+4\Vert f_{0}\Vert_{\mathcal{H}_{u}^{k}}i^{\ell_{(\mathbb{R}^{6})}}})$

then we obtain a uniform estimate

(2.9) $\Vert f(t)\Vert_{\mathcal{H}_{u}^{k}}i^{\ell_{(\mathbb{R}^{6})}}\leq 2\Vert f_{0}\Vert_{\mathcal{H}_{u}^{k}}i^{\ell_{(\mathbb{R}^{6})}}$ for $t\in[O, T_{*}].$

The proof of Theorem 2.1 can be completed in the almost same way as in the proof
of Theorem 4.11 of [3] and the subsequent paragraph there, taking into account the
uniform estimate (2.9) and Theorem 2.3.
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