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Abstract

We proffer a theoretical formulation of a “macroscopic hierarchy” as
a Casimir leaf of degenerate Poisson manifold. The infinite-dimensional
mechanics of a fluid or a plasma can be formulated as a noncanoni-
cal Hamiltonian system on a phase space of Eulerian variables. The
Poisson operator has a nontrivial kernel which fohates the phase space
by imposing topological constraints on dynamics. Here we propose
a physical interpretation of Casimir elements as adiabatic invariants;
coarse-graining microscopic angle variables, we obtain a macroscopic
hierarchy on which the separated action variables become adiabatic
invariants. On reflection, a Casimir element may be unfrozen by re-
covering a corresponding angle variable; such an increase in the number
of degrees of freedom is, then, formulated as a singular perturbation.
As an example, we propose a canonization of the resonant-singularity
of the Poisson bracket operator of the linearized magnetohydrodynam-
ics equations, by which the ideal obstacle (resonant Casimir element)
constraining the dynamics is unfrozen, giving rise to a tearing-mode
instability.

1 Introduction

A description of a physical system is composed of two distinct parts; one is
the matter that is represented by an “energy” (Hamiltonian), and the other
is its container, the space-time that is formulated by a group determining the
geometry. By deforming the geometry, we may derive different descriptions
of the system. The aim of this study is to delineate a scale hierarchy of a
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complex system by deforming the Poisson algebra and foliating the phase
space; we proffer a formulation of macroscopic hierarchy as a Casimir leaf
of noncanonized Poisson manifold [19].

Whereas canonical Hamiltonian mechanics is described by a Poisson op-
erator (field tensor) that has a full rank on a symplectic manifold, general
noncanonical Hamiltonian mechanics is endowed with a Poisson operator
that may have a nontrivial kernel; the corresponding Poisson manifold may
then be split into some local symplectic leaves (Lie-Darboux theorem). $A$

Casimir element foliates the Poisson manifold (with the gradient of a Casimir
element belonging to the kernel of the Poisson operator). Consequently, an
orbit is constrained to a leaf (level set) of a Casimir element, i.e. a Casimir
element is a constant of motion. The constancy of a Casimir element is in-
dependent of the Hamiltonian (whereas a usual constant of motion pertains
to some symmetry of a Hamiltonian), and it is due to a singularity of the
Poisson operator. Here we proffer an interpretation: “a Casimir element is
an adiabatic invariant that is separated from a microscopic angle variable
by coarse graining” –a Casimir leaf is then a macroscopic hierarchy. On
reflection, a Casimir invariant may be unfrozen by recovering a correspond-
ing angle variable. Such an increase in the number of degrees of freedom is,
then, formulated as a singular perturbation (cf. [15]).

In the next section, we begin by reviewing some aspects of the basic
framework of Hamiltonian mechanics. In Sec. 3, we then consider an example
of magnetized particles, in order to establish a connection between adiabatic
invariants and Casimir elements. In Sec. 4, we will formulate a systematic
method of canonization by adding “angle variables” that result in the un-
freezing of Casimir elements. As is now well known, the infinite-dimensional
mechanics of a plasma can be formulated as a noncanonical Hamiltonian
system on a phase space of Eulerian variables (see e.g. [8]). After a short
review of the Hamiltonian formalism of magnetohydrodynamics (MHD) and
its application to the tearing-mode theory (Sec. 5.1, [3, 4, 12]), we will for-
mulate $a$ (formal) singular perturbation that gives rise to a tearing-mode
instability, and finally discuss its physical implications (Sec. 5.2).

2 Preliminaries

We denote by $z=(q^{1}, \cdots, q^{m},p^{1}, \cdots,p^{m})$ the state vector, a point in an
affine space $X=\mathbb{R}^{2m}$ (to be called phase space).1 $A$ canonical Hamiltonian

lUsually, phase space is identified as a cotangent bundle $T^{*}M$ of a smooth manifold
$M$ of dimension $m$ , on which a symplectic 2-form $\omega=(1/2)J_{c,k\ell}dz^{k}\wedge dz^{\ell}$ (the vorticity
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system is endowed with a Hamiltonian $H(z)$ (a real function on the phase
space $X$ ) and a $2m\cross 2m$ antisymmetric regular matrix

$J_{c}:=(\begin{array}{ll}0_{m} I_{m}-I_{m} 0_{m}\end{array}),$

where $I_{m}$ and $0_{m}$ are the $m$-dimensional identity and nullity, respectively.
(In what follows, we will write just $I$ or $0$ without specifying the dimension,
especially when we consider an infinite-dimensional space.) We call $J_{c}$ the
canonical Poisson operator (matrix). The equations of motion (Hamilton’s
equations) are written as

$\frac{d}{dt}z=J_{c}\partial_{z}H(z)$ , (1)

whence an equilibrium point is seen to satisfy $\partial_{z}H(z)=0$ . Defining a
Poisson bracket by

$[a, b]:=(\partial_{z_{i}}a)J_{ij}(\partial_{z_{j}}b)$ ,

the rate of change of an observable $f(z)$ is determined by

$\frac{d}{dt}f=[f, H].$

One may generalize the Poisson operator $J$ to be a function $J(z)$ of
an arbitrary dimension $n\cross n$ (here we assume a finite $n$ , while we will
consider infinite-dimensional systems later). $A$ noncanonical Hamiltonian
system allows $J(z)$ to be singular, i.e., Rank $J(z)$ may be less than $n$ and
can change as a function of $z$ (while the corresponding Poisson bracket must
satisfy Jacobi’s identity). The equations of motion are, then,

$\frac{d}{dt}z=J(z)\partial_{z}H(z)$ . (2)

A Casimir element $C(z)$ is a solution to a partial differential equation (PDE)

$J(z)\partial_{z}C(z)=0$ , (3)

which implies that $[C, F]=0$ for every $F$ . Therefore, $C$ is a constant of
motion $(dC/dt=[C, H]=0 for any$ Hamiltonian $H)$ .

Obviously, if Rank $J(z)=n$ (the dimension of the phase space), (3) has
only the trivial solution ($C=$ constant). If the dimension $\nu$ of $Ker(J(z))$

of a canonical 1-form) defines symplectic geometry.
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does not change, the solution of (3) may be constructed by “integrating” the
elements of $Ker(J(z))$ –then the Casimir leaves are symplectic manifolds.
This expectation turns out to be true provided the Poisson bracket satisfies
the Jacobi identity and $m-\nu$ is an even number (Lie-Darboux theorem).
However, the point where the rank of $J(z)$ changes is a singularity of the
PDE (3) [8], from which singular Casimir elements are generated [16].

When we have a Casimir element $C(z)$ in a noncanonical Hamiltonian
system, a transformation of the Hamiltonian $H_{(}z$ ) such as

$H(Z)\mapsto H_{\mu}(z)=H(z)-\mu C(z)$ (4)

(with an arbitrary real constant $\mu$) does not change the dynamics. In fact,
Hamilton’s equations (2) are invariant under this transformation. We call
the transformed Hamiltonian $H_{\mu}(z)$ an energy-Casimir function [5, 8, 1].

Interpreting the parameter $\mu$ as a Lagrange multiplier of the equilibrium
variational principle, $H_{\mu}(z)$ is the effective Hamiltonian with the constraint
that restricts the Casimir element $C(z)$ to be a given value (since $C(z)$ is a
constant of motion, its value is fixed by its initial value). As we will see in
some examples, Hamiltonians are rather simple, often being “norms” on the
phase space. However, an energy-Casimir functional may have a nontrivial
structure. Geometrically, $H_{\mu}(z)$ is the distribution of $H(z)$ on a Casimir
leaf (hyper-surface of $C(z)=$ constant). If Casimir leaves are distorted with
respect to the energy norm, the effective Hamiltonian may have a complex
distribution on the leaf, which is, in fact, the origin of various interesting
structures in noncanonical Hamiltonian systems.

3 Foliation by adiabatic invariants

Here we study an example of noncanonical Hamiltonian mechanics (and cre-
ation of interesting structures on Casimir leaves) in which Casimir elements
originate from adiabatic invariants.

The Hamiltonian of a charged particle is the sum of the kinetic energy
and the potential energy: $H=mv^{2}/2+q\phi$ , where $v;=(P-qA)/m$ is
the velocity, $P$ is the canonical momentum, $(\phi, A)$ is the electromagnetic
-potential, $m$ is the particle mass, and $q$ is the charge. Needless to say, a

magnetic field does not change the value of energy, and the standard Boltz-
mann distribution function is independent to the magnetic field. However,
in the vicinity of a dipole magnetic field rooted in a star or planet, for exam-
ple, we often find a plasma clump with a rather steep density gradient. In
such a situation, so-called inward diffusion drives charged particles toward
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the inner higher-density region, which is seemingly opposite to the natural
direction of diffusion (normally, diffusion is a process of flattening distribu-
tions of physical quantities). Creation of such a macroscopic structure can
be explained only by delineating a fundamental difference between a macro-
scopic hierarchy and basic microscopic mechanics. Since the magnetic field
does not cause any change in the energy of particles, there is no way to revise
the energy in the calculation of the equilibrium state. Instead, the problem
is solved by finding an appropriate “phase space” (or an ensemble) on which
the Boltzmann distribution is achieved; the identification of an appropriate
macroscopic phase-space is nothing but the formulation of what we call a
“scale hierarchy”

Magnetized particles live in an effective phase space that is foliated by
adiabatic invariants associated with periodic motions of particles. Denot-
ing by $v_{\Vert}$ and $v\perp$ the parallel and perpendicular (with respect to the local
magnetic field) components of the velocity, we may write

$m2 m2$
$H=v_{\perp}+v_{\Vert}\overline{2}\overline{2}+q\phi$ . (5)

The velocities are related to the mechanical momentum via $p:=mv,$ $p_{||}$ $:=$

$mv_{\Vert}$ , and $p\perp:=mv\perp$ . In a strong magnetic field, $v\perp$ can be decomposed
into a small-scale cyclotron motion $v_{c}$ and a macroscopic guiding-center drift
motion $v_{d}$ . The periodic cyclotron motion $v_{c}$ can be “quantized” to write
$mv_{c}^{2}/2=\mu\omega_{c}(x)$ in terms of the magnetic moment $\mu$ and the cyclotron
frequency $\omega_{c}(x)$ ; the adiabatic invariant $\mu$ and the gyration phase $\theta_{c}:=\omega_{c}t$

constitute an action-angle pair. The macroscopic part of the perpendicular
kinetic energy is expressed as $mv_{d}^{2}/2=(P_{\theta}-q\psi)^{2}/(2mr^{2})$ , where $P_{\theta}$ is
the angular momentum in the $\theta$ direction and $r$ is the radius from the
geometric axis. In terms of the canonical-variable set $z=(\theta_{c}, \mu, \zeta,p_{\Vert}, \theta, P_{\theta})$ ,
the Hamiltonian of the guiding center (or, the quasi-particle) becomes

$H_{c}= \mu\omega_{c}+\frac{1}{2m}p_{||}^{2}+\frac{1}{2m}\frac{(P_{\theta}-q\psi)^{2}}{r^{2}}+q\phi$ . (6)

Note that the energy of the cyclotron motion has been quantized in term
of the frequency $\omega_{c}(x)$ and the action $\mu$ ; the gyro-phase $\theta_{c}$ has been coarse
grained (integrated to yield $2\pi$).

Now, we formulate the “macroscopic hierarchy” on which charged parti-
cles create a thermal equilibrium. The adiabatic invariance of the magnetic
moment $\mu$ imposes a topological constraint on the motion of particles; it
is this constraint that is the root-cause of a macroscopic hierarchy and of
structure formation. The Poisson operator on the total (microscopic) phase
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space, spanned by the canonical variables $z=(\theta_{c}, \mu, \zeta,p_{\Vert}, \theta, P_{\theta})$ , is a canon-
ical symplectic matrix:

$J:=(\begin{array}{lll}J_{c} 0 00 J_{c} 00 0 J_{c}\end{array}), J_{c}:=(\begin{array}{ll}0 1-1 0\end{array})$ (7)

The equations of motion for the Hamiltonian $H_{c}$ are written as $dz^{j}/dt=$

$[z^{j}, H_{c}]$ . Notice that the quantization of the cyclotron motion in $H_{c}$ sup-
presses change in $\mu.$

To extract the macroscopic hierarchy, we “separate out” the microscopic
variables $(\theta_{c}, \mu)$ by modifying the Poisson operator as follows [18, 19]:

$J_{nc}:=(\begin{array}{lll}0 0 00 J_{c} 00 0 J_{c}\end{array})$ (8)

The Poisson bracket $[F, G]_{nc}$ $:=\langle\partial_{z}F,$ $J_{nc}\partial_{z}G\rangle$ determines the kinematics
on the macroscopic hierarchy; The corresponding kinetic equation $\partial_{t}f+$

$[H_{c}, f]_{nc}=0$ reproduces the familiar drift-kinetic equation. The kernel
of $J_{nc}$ makes the Poisson bracket $[,$ $]_{nc}$ noncanonical [8]. Evidently, $\mu$ is
a Casimir element (more generally $C=g(\mu)$ with $g$ being any smooth
function). The level-set of $\mu$ , a leaf of the Casimir foliation, identifies what
we may call the macroscopic hierarchy.

By applying Liouville’s theorem to the Poisson bracket $[,$ $]_{nc}$ , the in-
variant measure on the macroscopic hierarchy is $d^{4}z=d^{6}z/(2\pi d\mu)$ , the the
total phase-space measure modulo the microscopic measure. The most prob-
able state (statistical equilibrium) on the macroscopic ensemble maximizes
the entropy $S=- \int f\log fd^{6}z$ for a given particle number $N= \int fd^{6}z$ , a
quasi-particle number $M= \int\mu fd^{6}z$ , and an energy $E= \int H_{c}fd^{6}z$ . Then,
the distribution function is

$f=f_{\alpha}:=Z^{-1}e^{-(\beta H_{c}+\alpha\mu)}$ , (9)

where $\alpha,$ $\beta$ , and $\log Z-1$ are, respectively the Lagrange multipliers on $M,$

$E$ , and $N$ . In this grand-canonical distribution function, $\alpha/\beta$ is the chemical
potential associated with the quasi-particles.2 The factor $e^{-\alpha\mu}$ in $f_{\alpha}$ yields

$2We$ can also derive (9) by an energy-Casimir function. With a Casimir element $\mu,$

we can transform the Hamiltonian as $H_{c}\mapsto H_{\alpha}$ $:=H_{c}+\alpha\mu$ ( $\alpha$ is an arbitrary constant)
without changing the macroscopic dynamic. The Boltzmann distribution with respect to
$H_{\alpha}$ is equivalent to (9).
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a direct $\omega_{c}$ dependence of the coordinate-space density:

$\rho=\int f_{\alpha}\frac{2\pi\omega_{c}}{m}d\mu dv_{d}dv_{\Vert}\propto\frac{\omega_{c}(x)}{\sqrt{}\omega_{c}(x)+\alpha}$, (10)

which demonstrates the creation of a density clump near the dipole magnetic
field [18].

4 Canonization atop Casimir leaves

The aim of this section is to formulate a systematic method of “canoniza-
tion” of a noncanonical system by embedding the system into a higher-
dimension phase space; Casimir elements become “adiabatic invariants” as-
sociated with a symmetry (at a macro-scale hierarchy) of a Hamiltonian.

4.1 Extension of the phase space and canonization

Let $J$ be a Poisson matrix on an $n$-dimensional phase space $X=\mathbb{R}^{n}$ pa-
rameterized by $z=(z_{1}, \cdots, z_{n})$ . We assume that $Ker(J)$ has a dimension
$\nu$ and $n-v$ is an even number. We also assume that $Ker(J)$ is spanned by
Casimir invariants $C_{1},$ $\cdots,$

$C_{\nu}$ , i.e.

$Ker(J)=\{\nabla C_{1}, \cdots, \nabla C_{\nu}\}$ . (11)

Our mission is to find the “minimum” extension of the phase space and a
canonical Poisson matrix $\tilde{J}$ by which the Casimir invariants are re-interpreted
as adiabatic invariants –an appropriate perturbation of the Hamiltonian
will then give a near-integrable system in the vicinity of the original Casimir
leaves. The target phase space must be of dimension $\tilde{n}$ $:=n+\nu$ (even num-
ber) consisting of $z_{1},$ $\cdots,$ $z_{n}$ and additional $\theta_{1},$

$\cdots,$
$\theta_{\nu}.$

Before formulating such a minimum system, we note that we may for-
mally produce a “larger” system; the simplest method of extension and can-
onization is to double the phase space: let $z_{\cross 2}$ $:=(z_{1}, \cdots, z_{n}, \chi_{1}, \cdots, \chi_{n})$,
and

$J_{\cross 2}:=(---t^{-}LJ_{1}^{I} \overline{(}\overline{\chi})_{\iota}’--L\frac{(}{0}\chi\underline{)}-)$ , (12)

where $L(\chi)$ is a certain regular $n\cross n$ matrix. To satisfy the Jacobi identity,
$L(\chi)$ must satisfy the Maurer-Cartan equation; see Eq. (292) of [8].
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4.2 “Minimum” canonization invoking Casimir invariants
It is generally difficult to reduce $J_{\cross 2}$ to $\tilde{J}$ of dimension $\tilde{n}\cross\tilde{n}$ ; to separate
$2n-\tilde{n}$ variables from $z_{\cross 2}$ , these variables and the remaining $\tilde{n}$ variables
must be independent, implying a “separation of variables.”

Our strategy is to use the Casimir foliation (11) of the phase space. We
first canonize $J$ on $X/Ker(J)$ . Let

$z’=(\zeta_{1}, \cdots, \zeta_{n-\nu}, C_{1}, \cdots, C_{\nu})\in \mathbb{R}^{n},$

by which $J$ is transformed into a Darboux standard form:

$J’=(\begin{array}{lll} l | | | | -- ------ | J_{c}0_{\nu} l\end{array})$ , (13)

We can extend $J’$ to an $\tilde{n}\cross\tilde{n}$ canonical matrix such that

$J_{ex}=(\begin{array}{lll}\prime | | | | ------\tau_{\overline{0}_{\nu^{-}}^{---}I_{\nu}^{--}}| | J_{c}I_{\nu} \mathfrak{l} 0_{\nu}\end{array})$ (14)

The corresponding variables are denoted by

$z_{ex}=(\zeta_{1}, \cdots, \zeta_{n-\nu}, C_{1}, \cdots, C_{\nu}, \theta_{1}, \cdots, \theta_{\nu})\in \mathbb{R}^{\tilde{n}}.$

An interesting property of this extended, canonized Poisson matrix $J_{ex}$

is that the elements are independent of the additional variables $\theta$ , which is
in marked contrast to the simple extension $J_{\cross 2}$ defined in (12).

5 Application to tearing-mode theory

In this section, we put the method of unfreezing Casimir elements to the
test by studying the tearing-mode instability from the perspective of the
noncanonical Hamiltonian formalism. The system is of infinite dimension,
hence the formulation needs an appropriate functional analytical setting.
Here we invoke a simple incompressible ideal MHD model.
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5.1 Helicity and Beltrami equilibria

5.1.1 Magnetohydrodynamics (MHD) system

Let $V$ and $B$ denote the fluid velocity and magnetic field of a plasma. Here
we consider an incompressible flow, $\nabla\cdot V=0$ , hence both $V$ and $B$ are
solenoidal vector fields. The governing equations are (in the so-called Alfv\’en
units)

$\partial_{t}V-V\cross(\nabla\cross V)=-\nabla p+(\nabla\cross B)\cross B,$

(15)
$\partial_{t}B=\nabla\cross(V\cross B)$ . ,

where $p$ denotes the fluid pressure. We consider a three-dimensional bounded
domain $\Omega$ surrounded by a perfectly conducting boundary $\partial\Omega$ ; the boundary
conditions are (denoting by $n$ the normal trace onto $\partial\Omega$)

$n\cdot V=0, n\cdot B=0, (on\partial\Omega)$ . (16)

The state vector $u=t(V, B)$ belongs to the phase space $X=L_{\sigma}^{2}(\Omega)\cross$

$L_{\sigma}^{2}(\Omega)$ , where

$L_{\sigma}^{2}(\Omega):=\{u\in L^{2}(\Omega);\nabla\cdot u=0, n\cdot u=0\}$, (17)

which is a closed subspace of $L^{2}(\Omega)$ (we endow the Hilbert space $X$ with the
standard $L^{2}$ inner product $\langle u,$ $v\rangle$ and the norm $\Vert u\Vert)$ . We denote by $\mathcal{P}_{\sigma}$ the
projector onto $L_{\sigma}^{2}(\Omega)$ . Defining a Hamiltonian and a Poisson operator by

$H(u) := \frac{1}{2}(\Vert V\Vert^{2}+\Vert B\Vert^{2})$ . (18)

$\mathcal{J}(u) ;= (-\mathcal{P}_{\sigma}(\nabla\cross V)\cross\nabla\cross[\circ\cross B] \mathcal{P}_{\sigma}(\nabla\cross)\cross B0^{O})$ , (19)

the MHD system (15) is cast into the following Hamiltonian form:

$\partial_{t}u=\mathcal{J}(u)\partial_{u}H(u)$ , (20)

(cf. [7, 8]) where $\partial_{u}$ is the gradient (of Lipschitz continuous functionals [2])
in the Hilbert space $X$ . Here, we define $\mathcal{J}(u)$ on a subdomain of $C^{\infty}-$

functions in the phase space $X$ , which suffices to find regular equilibrium
points (cf. [16] for more precise definitions).

5.1.2 Beltrami eigenfunctions

The Poisson operator $\mathcal{J}(u)$ has two independent Casimir elements (denoting
by $A$ the vector potential of $B$)

$C_{1}(u):= \frac{1}{2}\int_{\Omega}A\cdot Bd^{3}x, C_{2}(u):=\int_{\Omega}V\cdot Bd^{3}x$ , (21)
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which, respectively, represent the magnetic helicity and the cross hehc-
ity. They impose topological constraints on the field lines [6]. The “Bel-
trami equilibrium” is an equilibrium point of the energy-Casimir functional
$H(u)-\mu_{1}C_{1}(u)-\mu_{2}C_{2}(u)$ . Here we consider a subclass of equilibrium points
assuming $\mu_{2}=0$ . Then, $V=0$ (invoking $\mu_{2}\neq 0$ , we obtain a larger set
of equilibria with a finite $V$). The determining equation for $B$ is (denoting
$\mu_{1}=\mu)$

$\nabla\cross B-\mu B=0$ , (22)

which reads as an eigenvalue problem of the curl operator [13]. The solution
(to be denoted by $B_{\mu}$ ) is often called a Taylor relaxed state [10, 11].

While the Beltrami equation (22) together with the homogeneous bound-
ary conditions (16) are seemingly homogeneous equations, there is a “hidden
inhomogeneity” when $\Omega$ is multiply connected [then, the boundary condi-
tions (16) are insufficient to determine a unique solution]. To delineate the
“topological inhomogeneity” of the Beltrami equation, we first make $\Omega$ into
a simply connected domain $\Omega_{S}$ by inserting cuts $\Sigma_{\ell}$ across each handle of $\Omega$ :
$\Omega_{S}$ $:= \Omega\backslash (\bigcup_{\ell=1}^{\nu}\Sigma_{\ell})$ (where $\nu$ is the genus of $\Omega$). The fluxes of $B$ are given by
(denoting by $d\sigma$ is the surface element on $\Sigma_{\ell}$ ) $\Phi_{\ell}(B)$ $:= \int_{\Sigma_{\ell}}B\cdot d\sigma$ , which
are constants of motion. To separate these fixed degrees of freedom, we
invoke the Hodge-Kodaira decomposition $L_{\sigma}^{2}(\Omega)=L_{\Sigma}^{2}(\Omega)\oplus L_{H}^{2}(\Omega)$ , where

$L_{\Sigma}^{2}(\Omega):=\{u\in L^{2}(\Omega);\nabla\cdot u=0, n\cdot u=0, \Phi_{\ell}(u)=0(\forall\ell)\}$ . (23a)
$L_{H}^{2}(\Omega):=\{u\in L^{2}(\Omega);\nabla\cross u=0, \nabla\cdot u=0, n\cdot u=0\}$ . (23b)

The dimension of $L_{H}^{2}(\Omega)$ , the space of harmonic fields (or cohomologies), is
equal to the genus $\nu$ of $\Omega$ . We decompose the total $B\in L_{\sigma}^{2}(\Omega)$ into the
fixed harmonic “vacuum” field $B_{H}\in L_{H}^{2}(\Omega)$ (which carries the given fluxes
$\Phi_{1},$

$\cdots,$ $\Phi_{\nu})$ and a residual component $B_{\Sigma}$ driven by currents within the
plasma volume $\Omega,$

$B=B_{\Sigma}+B_{H}, [B_{\Sigma}:=\mathcal{P}_{\Sigma}B\in L_{\Sigma}^{2}(\Omega), B_{H}\in L_{H}^{2}(\Omega)]$, (24)

where $\mathcal{P}_{\Sigma}$ denotes the orthogonal projector from $L^{2}(\Omega)$ onto $L_{\Sigma}^{2}(\Omega)$ .
Now the Beltrami equation (22) reads as an inhomogeneous equation

(denoting $\nabla\cross$ by curl):

$(cur1-\mu)B_{\Sigma}=\mu B_{H}$ , (25)

where the harmonic field $B_{H}$ is uniquely determined by the fluxes $\Phi_{1},$
$\cdots,$

$\Phi_{\nu}.$

When $B_{H}$ and $\mu$ are given, we solve (25) for $B_{\Sigma}$ to obtain the Beltrami mag-
netic field $B_{\mu}=B_{\Sigma}+B_{H}$ . If $B_{H}=0,$ (25) has solutions only for discrete
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eigenvalues $\mu\in\{\lambda_{1}, \lambda_{2}, \cdots\}=:\sigma_{p}(S)$ of the self-adjoint curl operator $S$

defined on the operator domain [13]

$D(S)=H_{\Sigma\Sigma}^{1}(\Omega):=\{u\in L_{\Sigma}^{2}(\Omega)\cap H^{1}(\Omega);\nabla\cross u\in L_{\Sigma}^{2}(\Omega)\}$ . (26)

If $B_{H}\neq 0,$ (25) has a nontrivial solution for every $\mu\not\in\sigma_{p}(S)[13]$ . Moreover,
if the vector potential $A_{H}$ of $B_{H}$ and the eigenfunction $\omega_{j}$ of $S$ belonging
to an eigenvalue $\lambda_{j}$ are orthogonal (i.e. $\langle A_{H},\omega_{j}\rangle=0$ , the inhomogeneous
equation (25) hae a solution $G_{j}$ at $\mu=\lambda_{j}$ even with $B_{H}\neq 0$ . Then, $\mu=\lambda_{j}$

is a bifurcation point of two branches of Beltrami fields, $B_{\mu}$ with $\mu>\lambda_{j}\sim$ and
$B_{\lambda_{j},\alpha}=G_{j}+\alpha\omega_{j}(\alpha\in \mathbb{R})$ , and the latter has a smaller energy for a given
helicity $C_{1}$ and $B_{H}[17].$

5.1.3 Linearization near the Beltrami equilibrium and tearing
mode

In the neighborhood of a Beltrami equilibrium, we find an infinite number
of Casimir elements stemming from the resonant singularity of the Poisson
operator, which foliate the phase space and separate the bifurcated Beltrami
equilibria on a common helicity leaf.

We linearize the MHD equations. Since the Beltrami equilibrium $u_{\mu}=$

$t(0, B_{\mu})$ is a stationary point of the energy-Caeimir functional $H_{\mu}=H-\mu C_{1},$

the linearization of Hamilton’s equation is rather simple: Denoting by $\tilde{u}=$

$t(\tilde{V},\tilde{B})$ the perturbed state vector, we define linearized Hamiltonian and
Poisson operators by

$\mathcal{H}_{\mu} = (\begin{array}{lll}1 00 1- \mu S^{-1}\end{array})$ , (27)

$\mathcal{J}_{\mu}$ $=$ $($

curl
$(\circ\cross 0B_{\mu})$

$\mathcal{P}_{\sigma}$ (curl
$0^{\circ)\cross B_{\mu}}$ ) (28)

Evidently, $\mathcal{H}_{\mu}$ is a self-adjoint operator for every $\mu\in \mathbb{R}$. The linearized
Hamiltonian equation reads

$\partial_{t}\tilde{u}=\mathcal{J}_{\mu}\mathcal{H}_{\mu}\tilde{u}$ . (29)

In what follows, we assume $\mu>0$ . Then, the positive side of the spec-
trum $\sigma_{p}(S)$ plays an essential role; for $\mu<0$ , we switch to the negative side
of $\sigma_{p}(S)$ . Evidently, $\mu\geq\lambda_{1}$ destroys the coercivity of $\langle \mathcal{H}_{\mu}\tilde{u},\tilde{u}\rangle$ with re-
spect to the norm $\Vert\tilde{u}\Vert^{2}$ , violating the sufficient condition of stability [14].In
fact, a perturbation $\tilde{B}\propto\omega_{1}$ (the eigenfunction corresponding to $\lambda_{1}$ ) yields
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$\langle \mathcal{H}_{\mu}\tilde{u},\tilde{u}\rangle\leq 0$ . However, the negative energy of a perturbation $\tilde{B}\propto\omega_{1}$ does
not necessarily cause an ideal-MHD instability, since motion including $\omega_{1}$

may be “inhibited” in the Hamiltonian mechanics.
Let us see $hoW$ Casimir elements foliate the phase space of perturbations:

$Ker(\mathcal{J}_{\mu})$ consists of two classes of elements: $t(v, 0)$ and $t(0, b)$ with $v$ and
$b$ satisfying, respectively,

$\nabla\cross(B_{\mu}\cross v)=0, \nabla\cdot v=0$ , (30a)
$B_{\mu}\cross(\nabla\cross b)=0$ . (30b)

The Casimir elements are, in terms of such $v$ and $b,$

$C_{v}( \tilde{u});=\int\tilde{V}\cdot vd^{3}x, C_{b}(\tilde{u});=\int\tilde{B}\cdot bd^{3}x$ . (31)

Obviously, we can choose $v=B_{\mu}$ and $b=B_{\mu}$ . However, far richer solutions
stem from the singularity of $\mathcal{J}_{\mu}.$

Here we concentrate on the “magnetic part” (30b), but a similar singular
solution $v$ can be constructed for the “flow part” (30a). The determining
equation (30b) of $b$ can be rewritten as

$\nabla\cross b=\eta B_{\mu}$ (32)

with some scalar function $\eta$ . We have already found a solution $b=B_{\mu}$ and
$\eta=\mu$ . Here we seek solutions with non-constant $\eta$ . However, $\eta$ is not a free
function; the divergence of both sides of (32) yields

$B_{\mu}\cdot\nabla\eta=0$ , (33)

which implies that $\eta$ is constant along the magnetic field lines. For the
integrability of $\eta$ , the equilibrium field $B_{\mu}$ must have integrable field lines;
a continuous spatial symmetry guarantees this. Here we consider a slab
geometry, in which we may write $B_{\mu}=t(0, B_{y}(x), B_{z}(x))$ . Denoting $b=$

$t(0, b_{y}(x), b_{z}(x)),$ $(30b)$ reads as

$B_{y}\partial_{x}b_{y}+B_{z}\partial_{x}b_{z}=0$ , (34)

which may be solved for $b_{y}(x)$ , given an arbitrary $b_{z}(x)$ . Furthermore, we
have $\mathcal{S}$ingular (hyper-function) solutions; let us consider

$b=t(0, b_{y}(x), b_{z}(x))e^{i(k_{y}y+k_{z}z)}$ . (35)

Putting $b_{y}(x)=ik_{y}\theta(x)$ and $b_{z}(x)=ik_{z}\theta(x),$ (34) reduces into

$[B_{y}(x)k_{y}+B_{z}(x)k_{z}]\partial_{x}\theta(x)=0$ , (36)
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which yields
$\theta(x)=c_{0}+c_{1}Y(x-x^{\uparrow})$ , (37)

where $c_{0},$ $c_{1}$ are complex constants, and $k_{y},$ $k_{z}$ and $x^{\uparrow}$ (real constants) are
chosen to satisfy the resonance condition

$B_{y}(x^{\uparrow})k_{y}+B_{z}(x^{\uparrow})k_{z}=0$ . (38)

Then, $\eta=i(k_{y}/B_{z})e^{i(k_{y}y+k_{z}z)}\delta(x-x^{\uparrow})$ . From (32) we see that this Dirac $\delta-$

function solution implies a current sheet on the resonant surface $\Gamma^{\uparrow}:$ $x=x^{\uparrow}.$

Physically, $\Gamma\dagger$ represents a thin layer of ideal-MHD plasma that supports a
sheet current.

In what follows, we normalize the kernel element $b$ so that $\Vert b\Vert^{2}=$

$\langle b,$ $b\rangle=1$ . The singular (hyper-function) solution $b$ of (35) created by
the resonance singularity (38), imposes an essential restriction on the range
of dynamics; any magnetic perturbation $\tilde{B}$ such that $\langle\tilde{B},$ $b\rangle\neq 0$ is forbidden
to change, because

$C_{b}(\tilde{u})=C_{b}(\tilde{B}) :=\langle\tilde{B}, b\rangle$ (39)

is an invariant. We call $C_{b}(\tilde{B})$ a “helical-flux Casimir invariant.” The
equilibrium point of the energy-Casimir functional

$\mathcal{F}_{\mu,\beta}(\tilde{u}) :=\frac{1}{2}\langle \mathcal{H}_{\mu}\tilde{u},\tilde{u}\rangle-\beta C_{b}(\tilde{u})$ (40)

gives the tearing mode.
Because of the linearity of the determining equation (35), the totality

of $t(0, b)\in Ker(\mathcal{J}_{\mu})$ is a linear subspace of the total phase space and it is
“integrable” -thus foliates the phase space in terms of the Casimir invariants
$C_{b}(\tilde{u})=\langle\tilde{B},$ $b\rangle$ . In the next subsection, we choose the “dominant helical-
flux Casimir” that has the common Fourier coefficients with the helical mode
$\omega_{1}$ of the bifurcated helical Beltrami equilibrium, and define the “minimum
extension” that canonizes the corresponding kernel of $\mathcal{J}_{\mu}.$

5.2 Tearing-mode instability

5.2.1 Canonization

Let $t(0, b)\in Ker(\mathcal{J}_{\mu})$ . We separate a one-dimensional subspace $\{pb;p\in \mathbb{R}\}$

from the phase space $L_{\Sigma}^{2}(\Omega)$ of magnetic perturbations $\tilde{B}$ , and denote by
$\wp_{||}$ the orthogonal projection onto the remaining space:

$\wp_{||}\tilde{B}:=\tilde{B}-\langle\tilde{B}, b\rangle b.$
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We also denote
$\wp\perp\tilde{B}:=\langle\tilde{B}, b\rangle b=C_{b}(\tilde{B})b,$

and decompose $\tilde{B}=\wp_{\Vert}\tilde{B}+\wp\perp\tilde{B}$ . Writing the state vector as $\tilde{u}’=t(\tilde{V}, \wp_{||}\tilde{B}, \wp\perp\tilde{B})$,
and denoting $\mathcal{K}_{\mu}$ $:=(1-\mu S^{-1})$ , the Hamiltonian and Poisson operators read

$\mathcal{H}_{\mu}’$ $=$ $(\begin{array}{ll} l10 |-\underline{0}--\wp-|\llcorner \mathcal{K}_{\underline{\mu}_{--}}^{\ovalbox{\tt\small REJECT}}|\wp_{\rfloor|_{-}}\mathcal{K}_{\underline{\mu}} \wp\perp \mathcal{K}_{\mu_{I}’}\wp\perp \mathcal{K}_{\mu} \end{array})$ , (41)

$\mathcal{J}_{\mu}’$ $=$ $(_{-}\wp_{1L}c\underline{u}\underline{r1}(\circ\cross B_{\underline{\mu}})_{------}0_{-----\underline{|}}|----0(cur1\wp_{\Vert}\circ)\cross B_{\mu_{\ovalbox{\tt\small REJECT}}^{1}}||\overline{0}^{-)}$ (42)

Notice that the kernel $t(0, b)$ has been separated from the upper left block
of the Poisson operator.

Now, we introduce an adjoint variable $q$ to extend the phase space:

$\tilde{u}_{ex}=t(\tilde{V}, \wp_{\Vert}\tilde{B}, \wp_{\Vert}\tilde{B}, q)$

and define

$\mathcal{J}_{\mu,ex}=(-----/\overline{0}-\overline{1}\underline{\wp}_{1\lfloor}c\underline{u}\underline{r1}(\circ\cross B_{\underline{\mu}})_{-----------+---1}0(cur1\wp_{\Vert_{o^{o_{1}}}|})\cross B_{\mu_{1}}^{1}|10’$ (43)

which is “canonized” by extending the variable $p$ . Since the original system
does not include $q$ as an variable, we may write

$\mathcal{H}_{\mu,ex}=(\begin{array}{lll} \prime 10 \ovalbox{\tt\small REJECT} --\underline{0}--\frac{\wp}{}|\llcorner \mathcal{K}_{\mu_{-\ovalbox{\tt\small REJECT}-}^{|}}\wp_{\lrcorner|}\mathcal{K}\wp\perp\overline{\mathcal{K}}_{\mu\ovalbox{\tt\small REJECT}}\wp\perp\overline{\mathcal{K}}^{\frac{\mu}{\mu}} --\overline{0}0 | 0 \prime \end{array})$ (44)

Evidently, $\wp\perp\tilde{B}=\langle\tilde{B},$ $b\rangle b$ is invariant, which is originally a Casimir element,
but is now an invariant due to the symmetry of $\mathcal{H}_{\mu,ex}$ with respect to the
new variable $q.$
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5.2.2 Singular perturbation

Perturbing the Hamiltonian with respect to $q$ , we can break the invariance
of $p:=\langle\tilde{B},$ $b\rangle=C_{b}(\tilde{B})$ . We consider a Hamiltonian

$\mathcal{H}_{\mu,E}x:=(--\underline{0}--\wp_{\lrcorner 1}\mathcal{K}^{1},\wp u_{0D}^{\mathcal{K}_{\mu_{---)}}}10_{1}^{1}\wp\perp\overline{\mathcal{K}}_{1}^{\frac{\mu}{\mu}\dashv}\overline{\wp}\perp\overline{\mathcal{K}}_{\mu}\overline{0}|,$ (45)

where $D$ is a parameter that is introduced to couple the original system to
the external variable $q$ . Note that the original energy $\langle \mathcal{H}_{\mu}\tilde{u},\tilde{u}\rangle/2$ is no longer
an invariant; instead, the new total energy $\langle \mathcal{H}_{\mu,EX}\tilde{u}_{ex},\tilde{u}_{ex}\rangle/2$ is conserved.

The induced change in the Casimir element (helical flux, which is now
denoted by $p$) is estimated by the canonized block of Hamilton’s equations:

$\frac{d}{dt}p=-Dq, \frac{d}{dt}q=\langle \mathcal{K}_{\mu}\tilde{B}, b\rangle$ . (46)

For $\tilde{B}=p\omega_{1}$ (the eigenfunction determining the bifurcated fiducial-energy
equilibrium), we may estimate

$\langle \mathcal{K}_{\mu}\tilde{B}, b\rangle=\langle(1-\mu \mathcal{S}^{-1})\omega_{1}, b\rangle p=(1-\mu/\lambda_{1})\langle\omega_{1}, b\rangle p.$

Absorbing the $sign$ of $\langle\omega_{1},$ $b\rangle$ by $p$ , we assume $\gamma$ $:=(\omega_{1},$ $b\rangle>0$ . For sim-
plicity, let us assume that $D$ is a constant number. The system (46) has the
Hamiltonian

$H_{p}:=(1- \frac{\mu}{\lambda_{1}})\gamma\frac{p^{2}}{2}+D\frac{q^{2}}{2}$ . (47)

This sub-system Hamiltonian describes the coupling of the original (un-
perturbed) Hamiltonian system with an “external energy” $Dq^{2}/2$ . If this
external energy is positive $(i.e. D>0)$ , the “internal energy” of the original
system may “dissipate” through the coupling. The factor $(1-\mu/\lambda_{1})$ of
the “kinetic energy” part of the Hamiltonian $H_{p}$ may be interpreted as
an effective (reciprocal) mass of the tearing mode –beyond the bifurcation
point $\mu=\lambda_{1}$ , the effective mass becomes negative, and the “negative-energy
mode” can grow by absorbing energy from the positive energy source $Dq^{2}/2.$

6 Conclusion

The Poisson operator (field tensor) of a noncanonical Hamiltonian system
has a nontrivial kernel (and thus, a cokernel) which foliates the phase space,
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imposing topological constraints on dynamics. The Hamiltonian (energy) of
a weakly-coupled macroscopic system (such as a normal fluid or a plasma)
is usually rather simple –a convex functional (typically a quadratic form)
by which one can define an energy norm on the phase space. However, an
“effective energy” may have a considerably nontrivial distribution on the
actual phase space of constrained variables, which is a “distorted” manifold
(or, a leaf) immersed in the total space. Interesting structures created in a
fluid or a plasma may be delineated by unearthing leaves of the phase space
and analyzing their distortion with respect to the energy norm. When one
can “integrate” the kernel of the Poisson operator to construct Casimir ele-
ments, the Casimir leafs foliate the Poisson manifold, and then, the effective
energy is the energy-Casimir functional.

We have proposed a model of physical process that removes the con-
straints of Casimir elements and enable the system to seek for lower-energy
states on different Casimir leaves. Invoke an extended phase-space, we can
canonicalize the Poisson operator and introduce a coupling of the origi-
nal ideal system with an external energy source –the exchange of energy
between the original system and the connected external system may de-
scribe “dissipation” process. This formulation is based on the method of
“minimum canonicalization” that interprets Casimir elements as “adiabatic
invariants,” and “unfreezes” the Casimir elements to be dynamic by per-
turbing the Hamiltonian with respect to the new angle variable added to
the phase space; such perturbation that increases the degree of freedom is a
kind of singular perturbation.

The theory is applied to the tearing-mode instabilities. $A$ tearing mode
can be regarded as an equilibrium point on a helical-flux Casimir leaf. As
long as the helical-flux is constrained, the tearing mode cannot grow. By
a singular perturbation that allows the system to change the helical flux, a
tearing mode can grow if it has an excess energy with respect to a fiducial
energy of the Beltrami equilibrium at the bifurcation point.
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