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Abstract

Let G be a definably compact definable group, X a definable G set
and Y a definable closed G subset of X. We prove that a pair (X,Y)
admits an equivariant definable homotopy extension.

1 Introduction

- In this paper we consider equivaraint definable homotopy extensions in an
o-minimal expansion N = (R, +, -, <, ...) of a real closed field R. It is known
that there exist uncountably many o-minimal expansions of the field R of
real numbers([8]). ~

Definable set and definable maps are studied in [3], [4], and see also
9]. Everything is considered in N = (R,+, -, <, ...) and definable maps are
assumed to be continuous unless otherwise stated.

2 Preliminaries

Let R be a real closed field.
A structure N is given by the following data.
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1. A set. R is called the universe or underlying set of N.

2. A collection of functions {f;|i € I}, where f; : R — R for some

3. A collection of relations {R;|j € J}, where R; C R™ for some m; > 1.

4. A collection of distinguished elements {cx|k € K} C R, and each ¢y is
called a constant.

Any (or all) of the sets I, J, K may be empty.

We say that f (resp. L) is m-place function (resp. m-place relation) if
f:R™— R (resp. L C R™).

A term is a finite string of symbols obtained by repeated applications of
the following three rules:

1. Constants are terms.
2. Variables are terms.

3. If f is an m-place function of A and t¢i,...,t, are terms, then the |
concatenated string f(t1,:..,%,) is a term.

A formula is a finite string of symbols s; ... sk, where each s; is either a
variable, a function, a relation, one of the logical symbols =, -, V, A, 3,V, one
of the brackets (, ), or comma ,. Arbitrary formulas are generated inductively
by the following three rules:

1. For any two terms t; and t2, t; = t; and ¢, < t are formulas.

2. If R is an m-place relation and ti, ..., t,, are terms, then R(ty,...,tm)
is a formula.

3. If ¢ and ¢ are formulas, then the negation —¢, the disjunction ¢ V 9,
and the conjunction ¢ A ¢ are formulas. If ¢ is a formula and v is a
variable, then (Jv)¢ and (VYv)¢ are formulas.

A subset X of R" is definable (in N) if it is defined by a formula
(with parameters). Namely, there exist a formula ¢(z1,...,Zn,y1,---,Ym)
~and elements b;,...,b, € R such that X = {(a1,...,a,) €
R*|é(ai1,...,0n,b1,...,by) is true in N'}.



For any —oo < a < b £ oo, an open interval (a,b)g means {z € R|a <
x < b}, for any a,b € R with a < b, a closed interval [a, b]r means {z € R|a <
z = b}. We call N o-minimal (order-minimal) if every definable subset of R
is a finite union of points and open intervals.

A real closed field (R, +,-, <) is an o-minimal structure and every defin-
able set is a semialgebraic set [10], and a definable map is a semialgebraic
map [10]. In particular, the semialgebraic category is a special case of the
definable one.

The topology of R is the interval topology and the topology of R™ is the
product topology. Note that R" is a Hausdorff space.

The field R of real nubmers, Ry, = {z € R|z is algeraic over Q} are
Archimedean real closed fields. , .

The Puiseux series R[X]", namely > 2, a; X1,k €Z geN,a; e Risa
non-Archimedean real closed field.

Fact 2.1. (1) The characteristic of a real closed field is 0.

(2) For any cardinality & = No, there exist 25 many non-isomorphic real
closed fields whose cardinality are k.

(3) In a general real closed field, even for a C*™ function, the interme-
diate value theorem, ezistence theorem of mazimum and minimum, Rolle’s
theorem, the mean value theorem do not hold. Even for a C* function f in
one varianble, the result that f’ > 0 implies f is increasing does not hold.

Definition 2.2. Let X C R", Y C R™ be definable sets.

(1) A continuous map f : X — Y is a definable map if the graph of f
(C R™ x R™) is definable.

(2) A definable mapf : X — Y is a definable homeomorphism if there
exists a definable map f': Y — X such that fo f' =idy, f' o f = idx.

Definition 2.3. A group G is a definable group if G is definable and the
group operations G X G — G,G — G are definable.

As in the field R, for any real closed field R, we can define the n-th general
~ linear G(n, R), the n-th orthogonal group O(n).

Let G,G’ be definable groups. A group homomorphism f : G — G’ is a
de finable group homomorphism if f is definable. A definable group homo-
morphism f : G — GL(n, R) is called a definable G representation. A de-
finable group homomorphism f : G — O(n) is called a definable orthogonal



4

‘G representation and R with the orthogonal action induced from an or-
thogonal G representation is called a de finable orthogonal G representation
space.

Definition 2.4. (1) A G invariant definable subset of a definable orthogonal
G representation space is a definable G set.

Let X,Y be definable G sets.

(2) A definable map f : X — Y is a definable G map if for any = €
X,9€G, f(gz) = gf ().

(3) A definable G map f: X — Y is a definable G homeomorphism if
there exists a definable G map h : Y — X such that foh =idy, ho f =1idx.

Definition 2.5. (1) A definable set X C R" is definably compact
if for any definable map f : (a,b)g — X, there exist the limits
limz_,a+0 f(iL‘), limz_,b_o f(:l)) in X.

(2) A definable set X C R" is definably connected if there exist no
definable open subsets U,V of X such that X = UUV,UNV = 0, U #
0,V #0.

A compact (resp. A connected) definable set is definably compact (resp.
definably connected). But a definably compact (resp. a definably connected)
definable set is not always compact (resp. connected). For example, if R =
Raig, then [0,1]g,, = {z € Ry,l0 = z < 1} is definably compact and
definably connected, but it is neither compact nor connected.

Theorem 2.6 ([7]). For a definable set X C R", X is definably compact if
and only if X is closed and bounded.

The following is a definable version of the fact that the image of a compact
(resp. a connected) set by a continuous map is compact (resp. connected).

Proposition 2.7. Let X C R*, Y C R™ be definable set, f : X = Y a
definable map. If X is definably compact (resp. definably connected), then
f(X) is definably compact (resp. definably connected).

Theorem 2.8. (1) (The intermediate value theorem) For a definable function
f on a definably connected set X, if a,b € X, f(a) # f(b) then f takes all
values between f(a) and f(b).

(2) (Existence theorem of mazimum and minimum) Every definable func-
tion on a definably compact set attains marimum and minimum.
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(3) (Rolle’s theorem) Let f : [a,blr — R be a definable function such that
[ 1s differentiable on (a,b)g and f(a) = f(b). Then there exists c between a
and c with f'(c) = ‘

(4) (The mean value theorem) Let f : [a,blgr — R be a definable function
which 1s differentiable on (a,b)r. Then there exists c between a and ¢ with
Cf(e) = f(bz:i‘(a)' .

(5) Let f : (a,b)r — R be a differentiable definable function. If f' > 0

on (a,b)r, then f is increasing.

Example 2.9. (1) Let N be (Ralg,'—f—, -,<). Then f : Rag — Ry, f(z) =2°
is not defined([11]), |

(2) Let N be (R,+,-,<). Then f : R — R, f(x) = 2% is defined but not
definable, and h : R — R, h(z) = sinz is defined but not definable.

3 Equivariant definable homotopy extensions

Let X,Y be definable set and f : X — Y a definable map. We say that f
is de finably proper if for any definably compact subset C of Y, f~1(C) is a
definably compact subset of X.

Let A C R*, S C R™ be definable sets, and let f : S — A be a definable
map. We say that f is definably trivial if there exist a definable set F C RV
for some N € N, and a definable map h : S — F such that (f,h) : S — AxF
is a definable homeomorphism. In this case, each fiber f~'(a) of f over a is
definably homeomorphic to F.

In o-minimal expansions of real closed fields, the following five theorems
are known.

Theorem 3.1. (1) (Monotonicity theorem (e.g. 8.1.2, 3.1.6. [8])). Let
f : (a,b)r = R be a function with the definable graph. Then there ezist
finitely many points a = ag < a; < --- < ax = b such that on each subinterval
(aj,a;41)r, the function is either constant, or strictly monotone and contin-
uous. Moreover for any c € (a,b)r, the limits lim,; ..o f(z), limy_._o f(z)
exist in RU {oo} U {—o0}.

(2) (Cell decomposition theorem (e.g. 8.2.11. [9])). For any definable
subsets Ay, ..., Ay of R, there exists a cell decomposition of R™ partitioning

each Aq,. ..A .



Let A be a definable subset of R® and f : A — R a function with the
definable graph. Then there exists a cell decomposition D of R" partitioning
A such that each B C A,B € D, f|B: B — R is continuous.

" (8) (Triangulation theorem (e.g. 8.2.9. [3])). Let S C R" be a definable
set and let S1, 5o, . . ., Sk be definable subsets of S. Then S has a triangulation
in R™ compatible with Sy, ..., Sk.

(4) (Piecewise trivialization theorem (e.g. 8.2.9. [3])). Let f : S = A
be a definable map between definable sets S and A. Then there is a finite
partition Ai,...,Ax of A into definable sets A; such that each f|f7(A;) :

~1(A;) = A; is definably trivial. _ |

(5) (Ezistence of definable quotients (e.g. 10.2.18 [3])). Let G be a defin-
ably compact definable group and X a definable G set. Then the orbit space
X/G ezists as a definable set and the orbit map m: X — X/G is surjective,
definable and definably proper.

Question 3.2. Let X,Y be definable sets and A a definable subset of X.

(1) (Extensions of definable maps) Let f : A = Y be a definable map.
When does f : A =Y extend a definable map F: X - Y ?

(2) (Definable homotopy extensions) Let f : X — Y be a definable map
and a definable homotopy F : A x [0,1]gr = Y such that F(z,0) = f(z) for
any v € A. When does a definable homotopy H : X x [0,1]g = Y exist such
that H(z,0) = f(x) for anyz € X and H|A X [0,1]g = F?

Theorem 3.3 (Definable Tietze extension theorem [1]). Let X,Y be defin-
able sets, A a definable closed subset of X and f : A — R a definable function.
Then there exists a definable function F : X — R such that F|A = f.

Theorem 3.4 (Definable homotopy extension theorem [2]). Let X,Y be
definable sets and A a definable closed subset of X. For any definable map
f: X =Y and for any definable homotopy F : A x [0,1]g = Y such that
F(z,0) = f(z) for any x € A, there ezists a definable homotopy H : X X
[0,1]r = Y such that H(z,0) = f(z) for any x € X and HIAX [0,1]r=F

To consider Question 3.2, we need to construct an obstruction theory in

the definable category.
The following question is an equivariant version of Questlon 3.2.

Question 3.5. Let G be a definable group, X,Y a definable G sets and A a
definable G subset of X .



(1) (Extensions of definable G maps) Let f : A — Y be a definable G
map. When does f : A — Y extend a definable G map F: X - Y ?

(2) (Equivariant definable homotopy extensions) Let f : X — Y be a
definable G map and an equivaraint definable homotopy F : A x [0,1]g = Y
such that F(z,0) = f(z) for any x € A. When does an equivaraint definable
homotopy H : X x [0,1]g — Y exist such that H(z,0) = f(z) for any z € X
and HIAx [0,1]gp =F?

We have the following result.

Theorem 3.6 ([6]). Let G be a definably compact definable group, X a defin-
able G set and A a definable closed G subset of X. For any definable G map
[ X =Y and for any equivaraint definable homotopy F : A x [0,1]g = Y
such that F(z,0) = f(x) for any x € A, there exists an equivariant definable
homotopy H : X x [0,1]g = Y such that H(z,0) = f(z) for any x € X and
H'A X [0,1]R=F.

Theorem 3.6 is proved in the case where R = R ([5]).
To prove Theorem 3.6, we need the following results.

Theorem 3.7 ([6]). Let G be a definably compact definable group and Y
a definable closed G subset of a definable G set X. Then there exists a G
wnvariant definable open neighborhood U of Y in X such thatY is a definable
strong G deformation retract of both U and of the closure clU of U in X.

Proposition 3.8 ([6]). Let G be a definably compact definable group ‘and
A, B disjoint definable closed G subsets of a definable G set X. Then there
exists a G invariant definable map f : X — [0,1]g with A = f~1(0) and
B = f~1(1).
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