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Abstract
Let $G$ be a definably compact definable group, $X$ a definable $G$ set

and $Y$ a definable closed $G$ subset of $X$ . We prove that a pair $(X, Y)$

admits an equivariant definable homotopy extension.

1 Introduction
In this paper we consider equivaraint definable homotopy extensions in an
$0$-minimal expansion $\mathcal{N}=(R, +, \cdot, <, \ldots)$ of a real closed field $R$ . It is known
that there exist uncountably many $0$-minimal expansions of the field $\mathbb{R}$ of
real numbers([8]).

Definable set and definable maps are studied in [3], [4], and see also
[9]. Everything is considered in $\mathcal{N}=(R, +, \cdot, <, \ldots)$ and definable maps are
assumed to be continuous unless otherwise stated.

2 Preliminaries
Let $R$ be a real closed field.

A structure $\mathcal{N}$ is given by the following data.
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1. $A$ set. $R$ is called the universe or underlying set of $\mathcal{N}.$

2. $A$ collection of functions $\{f_{i}|i\in I\}$ , where $f_{i}$ : $R^{n_{i}}arrow R$ for some
$n_{i}\geq 1.$

3. $A$ collection of relations $\{R_{j}|j\in J\}$ , where $R_{j}\subset R^{m_{j}}$ for some $m_{j}\geq 1.$

4. $A$ collection of distinguished elements $\{c_{k}|k\in K\}\subset R$ , and each $c_{k}$ is
called a constant.

Any (or all) of the sets $I,$ $J,$ $K$ may be empty.
We say that $f$ (resp. $L$ ) is $m$-place function (resp. $m$-place relation) if

$f:R^{m}arrow R$ (resp. $L\subset R^{m}$ ).
A term is a finite string of symbols obtained by repeated applications of

the following three rules:

1. Constants are terms.

2. Variables are terms.

3. If $f$ is an $m$-place function of $\mathcal{N}$ and $t_{1},$
$\ldots,$

$t_{m}$ are terms, then the
concatenated string $f(t_{1}, \backslash . . , t_{m})$ is a term.

A formula is a finite string of symbols $s_{1}\ldots s_{k}$ , where each $s_{i}$ is either a
variable, ,a function, a relation, one of the logical symbols $=,$ $\neg,$ $\vee,$ $\wedge,$ $\exists,\forall$ , one
of the brackets $(,$ $)$ , or comma,. Arbitrary formulas are generated inductively
by the following three rules:

1. For any two terms $t_{1}$ and $t_{2},$ $t_{1}=t_{2}$ and $t_{1}<t_{2}$ are formulas.

2. If $R$ is an $m$-place relation and $t_{1},$
$\ldots,$

$t_{m}$ are terms, then $R(t_{1}, \ldots, t_{m})$

is a formula.

3. If $\phi$ and $\psi$ are formulas, then the negation $\neg\phi$ , the disjunction $\phi\vee\psi,$

and the conjunction $\phi\wedge\psi$ are formulas. If $\phi$ is a formula and $v$ is a
variable, then $(\exists v)\phi$ and $(\forall v)\phi$ are formulas.

A subset $X$ of $R^{n}$ is definable (in $\mathcal{N}$) if it is defined by a formula
(with parameters). Namely, there exist a formula $\phi(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m})$

and elements $b_{1},$
$\ldots,$

$b_{m}$ $\in$ $R$ such that $X$ $=$ $\{(a_{1}, \ldots, a_{n})$ $\in$

$R^{n}|\phi(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m})$ is true in $\mathcal{N}$ }.
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For any $-\infty\leqq a<b\leqq\infty$ , an open interval $(a, b)_{R}$ means $\{x\in R|a<$

$x<b\}$ , for any $a,$ $b\in R$ with $a<b$ , a closed interval $[a, b]_{R}$ means $\{x\in R|a\leqq$

$x\leqq b\}$ . We call $\mathcal{N}$
$0$ -minimal (order-minimal) if every definable subset of $R$

is a finite union of points and open intervals.
A real closed field $(R, +, \cdot, <)$ is an $0$-minimal structure and every defin-

able set is a semialgebraic set [10], and a definable map is a semialgebraic
map [10]. In particular, the semialgebraic category is a special case of the
definable one.

The topology of $R$ is the interval topology and the topology of $R^{n}$ is the
product topology. Note that $R^{n}$ is a Hausdorff space.

The field $\mathbb{R}$ of real nubmers, $\mathbb{R}_{alg}=$ { $x\in \mathbb{R}|x$ is algeraic over $\mathbb{Q}$ } are
Archimedean real closed fields.

The Puiseux series $\mathbb{R}[X]^{\wedge}$ , namely $\sum_{i=k}^{\infty}a_{i}X^{\frac{i}{q}},$ $k\in \mathbb{Z},$ $q\in \mathbb{N},$ $a_{i}\in \mathbb{R}$ is a
non-Archimedean real closed field.

Fact 2.1. (1) The characteristic of a real closed field is $0.$

(2) For any cardinality $\kappa\geqq\aleph_{0}$ , there exist $2^{\kappa}$ many non-isomorphic real
closed fields whose cardinality are $\kappa.$

(3) In a general real closed field, even for a $C^{\infty}$ function, the interme-
diate value theorem, existence theorem of maximum and minimum, Rolle’s
theorem, the mean value theorem do not hold. Even for a $C^{\infty}$functionf in
one varianble, the result that $f’>0$ implies $f$ is increasing does not hold.

Definition 2.2. Let $X\subset R^{n},$ $Y\subset R^{m}$ be definable sets.
(1) $A$ continuous map $f$ : $Xarrow Y$ is a definable map if the graph of $f$

$(\subset R^{n}\cross R^{m})$ is definable.
(2) $A$ definable map$f$ : $Xarrow Y$ is a definable homeomorphism if there

exists a definable map $f’$ : $Yarrow X$ such that $fof’=id_{Y},$ $f’of=id_{X}.$

Definition 2.3. $A$ group $G$ is a definable group if $G$ is definable and the
group operations $G\cross Garrow G,$ $Garrow G$ are definable.

As in the field $\mathbb{R}$ , for any real closed field $R$ , we can define the n-th general
linear $G(n, R)$ , the n-th orthogonal group $O(n)$ .

Let $G,$ $G’$ be definable groups. $A$ group homomorphism $f$ : $Garrow G’$ is a
definable group homomorphism if $f$ is definable. $A$ definable group homo-
morphism $f$ : $Garrow GL(n, R)$ is called a definable $G$ representation. $A$ de-
finable group homomorphism $f$ : $Garrow O(n)$ is called a definable orthogonal
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$G$ representation and $R^{n}$ with the orthogonal action induced from an or-
thogonal $G$ representation is called a definable orthogonal $G$ representation
space.

Definition 2.4. (1) $AG$ invariant definable subset of a definable orthogonal
$G$ representation space is a definable $G$ set.

Let $X,$ $Y$ be definable $G$ sets.
(2) $A$ definable map $f$ : $Xarrow Y$ is a definable $G$ map if for any $x\in$

$X,$ $g\in G,$ $f(gx)=gf(x)$ .
(3) $A$ definable $G$ map $f:Xarrow Y$ is a definable $G$ homeomorphism if

there exists a definable $G$ map $h$ : $Yarrow X$ such that $foh=id_{Y},$ $hof=id_{X}.$

Definition 2.5. (1) $A$ definable set $X$ $\subset$ $R^{n}$ is definably compact
if for any definable map $f$ : $(a, b)_{R}$ $arrow$ $X$ , there exist the limits
$\lim_{xarrow a+0}f(x),$ $\lim_{xarrow b-0}f(x)$ in $X.$

(2) $A$ definable set $X\subset R^{n}$ is definably connected if $the\grave{r}\theta$ exist no
definable open subsets $U,$ $V$ of $X$ such that $X=U\cup V,$ $U\cap V=\emptyset,$ $U\neq$

$\emptyset,$ $V\neq\emptyset.$

A compact (resp. $A$ connected) definable set is definably compact (resp.
definably connected). But a definably compact (resp. a definably connected)
definable set is not always compact (resp. connected). For example, if $R=$

$\mathbb{R}_{alg}$ , then $[0,1]_{\mathbb{R}_{alg}}=\{x\in \mathbb{R}_{alg}|0\leqq x\leqq 1\}$ is definably compact and
definably connected, but it is neither compact nor connected.

Theorem 2.6 ([7]). For a definable set $X\subset R^{n},$ $X$ is definably compact if
and only if $X$ is closed and bounded.

The following is a definable version of the fact that the image of a compact
(resp. a connected) set by a continuous map is compact (resp. connected).

Proposition 2.7. Let $X\subset R^{n},$ $Y\subset R^{m}$ be definable set, $f$ : $Xarrow Y$ a
definable map. If $X$ is definably compact (resp. definably connected), then
$f(X)$ is definably compact (resp. definably connected).

Theorem 2.8. (1) (The intermediate value theorem) For a definable function
$f$ on a definably connected set $X$ , if $a,$ $b\in X_{f}f(a)\neq f(b)$ then $f$ takes all
values between $f(a)$ and $f(b)$ .

(2) (Existence theorem of maximum and minimum) Every definable func-
tion on a definably compact set attains maximum and minimum.
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(3) (Rolle’s theorem) Let $f$ : $[a, b]_{R}arrow R$ be a definable function such that
$f$ is differentiable on $(a, b)_{R}$ and $f(a)=f(b)$ . Then there exists $c$ between a
and $c$ with $f’(c)=0.$

(4) (The mean value theorem) Let $f$ : $[a, b]_{R}arrow R$ be a definable function
which is differentiable on $(a, b)_{R}$ . Then there exists $c$ between $a$ and $c$ with
$f’(c)= \frac{f(b)-f(a)}{b-a}.$

(5) Let $f$ : $(a, b)_{R}arrow R$ be a differentiable definable function. If $f’>0$
on $(a, b)_{R}$ , then $f$ is $increa\mathcal{S}ing.$

Example 2.9. (1) $Let\mathcal{N}$ be $(\mathbb{R}_{alg}, +, \cdot, <)$ . Then $f:\mathbb{R}_{alg}arrow \mathbb{R}_{alg},$ $f(x)=2^{x}$

is not defined$([11J)_{0}$

(2) Let $\mathcal{N}$ be $(\mathbb{R}, +, \cdot, <)$ . Then $f$ : $\mathbb{R}arrow \mathbb{R},$ $f(x)=2^{x}$ is defined but not
definable, and $h:\mathbb{R}arrow \mathbb{R},$ $h(x)=\sin x$ is defined but not definable.

3 Equivariant definable homotopy extensions
Let $X,$ $Y$ be definable set and $f:Xarrow Y$ a definable map. We say that $f$

is definably proper if for any definably compact subset $C$ of $Y,$ $f^{-1}(C)$ is a
definably compact subset of $X.$

Let $A\subset R^{n},$ $S\subset R^{m}$ be definable sets, and let $f$ : $Sarrow A$ be a definable
map. We say that $f$ is definably trivial if there exist a definable set $F\subset R^{N}$

for some $N\in \mathbb{N}$ , and a definable map $h$ : $Sarrow F$ such that $(f, h)$ : $Sarrow A\cross F$

is a definable homeomorphism. In this case, each fiber $f^{-1}(a)$ of $f$ over $a$ is
definably homeomorphic to $F.$

In -minimal expansions of real closed fields, the following five theorems
are known.

Theorem 3.1. (1) $($Monotonicity theorem $(e.g. 3.1.2, 3.1.6. [3J))$ . Let
$f$ : $(a, b)_{R}arrow R$ be a function with the definable graph. Then there exist
finitely many points $a=a_{0}<a_{1}<\cdots<a_{k}=b$ such that on each subinterval
$(a_{j}, a_{j+1})_{R}$ , the function is either constant, or strictly monotone and contin-
uous. Moreover for any $c\in(a, b)_{R}$ , the limits $\lim_{xarrow c+0}f(x),$ $\lim_{xarrow c-0}f(x)$

exist in $R\cup\{\infty\}\cup\{-\infty\}.$

(2) (Cell decomposition theorem $(e.g$ . 3.2.11. $[3J$)$)$ . For any definable
$subset_{\mathcal{S}}A_{1},$

$\ldots,$
$A_{k}$ of $R^{n}$ , there exists a cell decomposition of $R^{n}$ partitioning

each $A_{1},$ $\ldots A_{k}.$
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Let $A$ be a definable subset of $R^{n}$ and $f$ : $Aarrow R$ a function with the
definable graph. Then there exists a cell decomposition $\mathcal{D}$ of $R^{n}$ partitioning
$A$ such that each $B\subset A,$ $B\in \mathcal{D},$ $f|B$ : $Barrow R$ is continuous.

(3) $(\tau r_{i}$angulation theorem $(e.g. 8.2.9. [3J))$. Let $S\subset R^{n}$ be a definable
set and let $S_{1},$ $S_{2},$

$\ldots,$
$S_{k}$ be definable subsets of S. Then $S$ has a triangulation

in $R^{n}$ compatible with $S_{1},$
$\ldots,$

$S_{k}.$

(4) (Piecewise trivialization theorem $(e.g. 8.2.9. [3J))$ . Let $f$ : $Sarrow A$

be a definable map between definable sets $S$ and A. Then there is a finite
partition $A_{1},$

$\ldots,$
$A_{k}$ of $A$ into definable sets $A_{i}$ such that each $f|f^{-1}(A_{i})$ :

$f^{-1}(A_{i})arrow A_{i}$ is definably trivial.
(5) (Existence of definable quotients $(e.g$. 10.2.18 $[3J$)$)$ . Let $G$ be a defin-

ably compact definable group and $X$ a definable $G$ set. Then the orbit space
$X/G$ exists as a definable set and the orbit map $\pi$ : $Xarrow X/G$ is surjective,
definable and definably proper.

Question 3.2. Let $X,$ $Y$ be definable sets and $A$ a definable subset of $X.$

(1) (Extensions of definable maps) Let $f$ : $Aarrow Y$ be a definable map.
When does $f:Aarrow Y$ extend a definable map $F:Xarrow Y$ ?

(2) (Definable homotopy extensions) Let $f$ : $Xarrow Y$ be a definable map
and a definable homotopy $F:A\cross[O, 1]_{R}arrow Y$ such that $F(x, 0)=f(x)$ for
any $x\in A$ . When does a definable homotopy $H$ : $X\cross[O, 1]_{R}arrow Y$ exist such
that $H(x, 0)=f(x)$ for any $x\in X$ and $H|A\cross[O, 1]_{R}=F$ ?

Theorem 3.3 (Definable Tietze extension theorem [1]). Let $X,$ $Y$ be defin-
able sets, $A$ a definable closed subset $ofX$ and $f$ : $Aarrow R$ a definable function.
Then there exists a definable function $F:Xarrow R$ such that $F|A=f.$

Theorem 3.4 (Definable homotopy extension theorem [2]). Let $X,$ $Y$ be
definable sets and $A$ a definable closed subset of X. For any definable map
$f$ : $Xarrow Y$ and for any definable homotopy $F$ : $A\cross[O, 1]_{R}arrow Y$ such that
$F(x, 0)=f(x)$ for any $x\in A$ , there exists a definable homotopy $H$ : $X\cross$

$[0,1]_{R}arrow Y$ such that $H(x, 0)=f(x)$ for any $x\in X$ and $H|A\cross[0,1]_{R}=F.$

To consider Question 3.2, we need to construct an obstruction theory in
the definable category.

The following question is an equivariant version of Question 3.2.

Question 3.5. Let $G$ be a definable group, $X,$ $Y$ a definable $G$ sets and $A$ a
definable $G$ subset of $X.$
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(1) (Extensions of definable $G$ maps) Let $f$ : $Aarrow Y$ be a definable $G$

map. When does $f:Aarrow Y$ extend a definable $G$ map $F:Xarrow Y$ ?
(2) (Equivariant definable homotopy extensions) Let $f$ : $Xarrow Y$ be a

definable $G$ map and an equivaraint definable homotopy $F$ : $A\cross[O, 1]_{R}arrow Y$

such that $F(x, 0)=f(x)$ for any $x\in A$ . When does an equivaraint definable
homotopy $H:X\cross[O, 1]_{R}arrow Y$ exist such that $H(x, 0)=f(x)$ for any $x\in X$

and $H|A\cross[O, 1]_{R}=F$ ?

We have the following result.

Theorem 3.6 ([6]). Let $G$ be a definably compact definable group, $X$ a defin-
able $G$ set and $A$ a definable closed $G$ subset of X. For any definable $G$ map
$f$ : $Xarrow Y$ and for any equivaraint definable homotopy $F:A\cross[O, 1]_{R}arrow Y$

such that $F(x, 0)=f(x)$ for any $x\in A$ , there exists an equivariant definable
homotopy $H:X\cross[O, 1]_{R}arrow Y$ such that $H(x, 0)=f(x)$ for any $x\in X$ and
$H|A\cross[0,1]_{R}=F.$

Theorem 3.6 is proved in the case where $R=\mathbb{R}$ ([5]).
To prove Theorem 3.6, we. need the following results.

Theorem 3.7 ([6]). Let $G$ be a definably compact definable group and $Y$

a definable closed $G$ subset of a definable $G$ set X. Then there exists a $G$

invariant definable open neighborhood $U$ of $Y$ in $X$ such that $Y$ is a definable
strong $G$ deformation retract of both $U$ and of the closure $clU$ of $U$ in $X.$

Proposition 3.8 ([6]). Let $G$ be a definably compact definable group and
$A,$ $B$ disjoint definable closed $G$ subsets of a definable $G$ set X. Then there
exists a $G$ invariant definable map $f$ : $Xarrow[O, 1]_{R}$ with $A=f^{-1}(0)$ and
$B=f^{-1}(1)$ .
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