Equivariant definable homotopy extensions

Tomohiro Kawakami

Department of Mathematics, Wakayama University Partially supported by Kakenhi(23540101).

Abstract

Let G be a definably compact definable group, X a definable G set and Y a definable closed G subset of X. We prove that a pair (X, Y)admits an equivariant definable homotopy extension.

1 Introduction

In this paper we consider equivaraint definable homotopy extensions in an o-minimal expansion $\mathcal{N} = (R, +, \cdot, <, ...)$ of a real closed field R. It is known that there exist uncountably many o-minimal expansions of the field \mathbb{R} of real numbers([8]).

Definable set and definable maps are studied in [3], [4], and see also [9]. Everything is considered in $\mathcal{N} = (R, +, \cdot, <, ...)$ and definable maps are assumed to be continuous unless otherwise stated.

2 Preliminaries

Let R be a real closed field.

A structure \mathcal{N} is given by the following data.

2010 Mathematics Subject Classification. 14P10, 57S99, 03C64.

Key Words and Phrases. O-minimal structures, real closed fields, Equivariant definable homotopy extensions.

- 1. A set R is called the *universe* or *underlying set* of \mathcal{N} .
- 2. A collection of functions $\{f_i | i \in I\}$, where $f_i : \mathbb{R}^{n_i} \to \mathbb{R}$ for some $n_i \ge 1$.
- 3. A collection of relations $\{R_j | j \in J\}$, where $R_j \subset \mathbb{R}^{m_j}$ for some $m_j \geq 1$.
- 4. A collection of distinguished elements $\{c_k | k \in K\} \subset R$, and each c_k is called a *constant*.

Any (or all) of the sets I, J, K may be empty.

We say that f (resp. L) is *m*-place function (resp. *m*-place relation) if $f: \mathbb{R}^m \to \mathbb{R}$ (resp. $L \subset \mathbb{R}^m$).

A *term* is a finite string of symbols obtained by repeated applications of the following three rules:

- 1. Constants are terms.
- 2. Variables are terms.
- 3. If f is an *m*-place function of \mathcal{N} and t_1, \ldots, t_m are terms, then the concatenated string $f(t_1, \ldots, t_m)$ is a term.

A formula is a finite string of symbols $s_1 \ldots s_k$, where each s_i is either a variable, a function, a relation, one of the logical symbols $=, \neg, \lor, \land, \exists, \forall$, one of the brackets (,), or comma ,. Arbitrary formulas are generated inductively by the following three rules:

- 1. For any two terms t_1 and t_2 , $t_1 = t_2$ and $t_1 < t_2$ are formulas.
- 2. If R is an *m*-place relation and t_1, \ldots, t_m are terms, then $R(t_1, \ldots, t_m)$ is a formula.
- 3. If ϕ and ψ are formulas, then the negation $\neg \phi$, the disjunction $\phi \lor \psi$, and the conjunction $\phi \land \psi$ are formulas. If ϕ is a formula and v is a variable, then $(\exists v)\phi$ and $(\forall v)\phi$ are formulas.

A subset X of \mathbb{R}^n is definable (in \mathcal{N}) if it is defined by a formula (with parameters). Namely, there exist a formula $\phi(x_1, \ldots, x_n, y_1, \ldots, y_m)$ and elements $b_1, \ldots, b_m \in \mathbb{R}$ such that $X = \{(a_1, \ldots, a_n) \in \mathbb{R}^n | \phi(a_1, \ldots, a_n, b_1, \ldots, b_m) \text{ is true in } \mathcal{N}\}.$ For any $-\infty \leq a < b \leq \infty$, an open interval $(a, b)_R$ means $\{x \in R | a < x < b\}$, for any $a, b \in R$ with a < b, a closed interval $[a, b]_R$ means $\{x \in R | a \leq x \leq b\}$. We call \mathcal{N} o-minimal (order-minimal) if every definable subset of R is a finite union of points and open intervals.

A real closed field $(R, +, \cdot, <)$ is an o-minimal structure and every definable set is a semialgebraic set [10], and a definable map is a semialgebraic map [10]. In particular, the semialgebraic category is a special case of the definable one.

The topology of R is the interval topology and the topology of R^n is the product topology. Note that R^n is a Hausdorff space.

The field \mathbb{R} of real nubmers, $\mathbb{R}_{alg} = \{x \in \mathbb{R} | x \text{ is algeraic over } \mathbb{Q}\}$ are Archimedean real closed fields.

The Puiseux series $\mathbb{R}[X]^{\wedge}$, namely $\sum_{i=k}^{\infty} a_i X^{\frac{i}{q}}, k \in \mathbb{Z}, q \in \mathbb{N}, a_i \in \mathbb{R}$ is a non-Archimedean real closed field.

Fact 2.1. (1) The characteristic of a real closed field is 0.

(2) For any cardinality $\kappa \geq \aleph_0$, there exist 2^{κ} many non-isomorphic real closed fields whose cardinality are κ .

(3) In a general real closed field, even for a C^{∞} function, the intermediate value theorem, existence theorem of maximum and minimum, Rolle's theorem, the mean value theorem do not hold. Even for a C^{∞} function f in one varianble, the result that f' > 0 implies f is increasing does not hold.

Definition 2.2. Let $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$ be definable sets.

(1) A continuous map $f: X \to Y$ is a definable map if the graph of $f (\subset \mathbb{R}^n \times \mathbb{R}^m)$ is definable.

(2) A definable map $f: X \to Y$ is a definable homeomorphism if there exists a definable map $f': Y \to X$ such that $f \circ f' = id_Y, f' \circ f = id_X$.

Definition 2.3. A group G is a *definable group* if G is definable and the group operations $G \times G \to G, G \to G$ are definable.

As in the field \mathbb{R} , for any real closed field R, we can define the *n*-th general linear G(n, R), the *n*-th orthogonal group O(n).

Let G, G' be definable groups. A group homomorphism $f: G \to G'$ is a definable group homomorphism if f is definable. A definable group homomorphism $f: G \to GL(n, R)$ is called a definable G representation. A definable group homomorphism $f: G \to O(n)$ is called a definable orthogonal

G representation and \mathbb{R}^n with the orthogonal action induced from an orthogonal G representation is called a *definable orthogonal G representation space*.

Definition 2.4. (1) A G invariant definable subset of a definable orthogonal G representation space is a *definable* G set.

Let X, Y be definable G sets.

(2) A definable map $f : X \to Y$ is a definable G map if for any $x \in X, g \in G, f(gx) = gf(x)$.

(3) A definable G map $f: X \to Y$ is a definable G homeomorphism if there exists a definable G map $h: Y \to X$ such that $f \circ h = id_Y$, $h \circ f = id_X$.

Definition 2.5. (1) A definable set $X \subset \mathbb{R}^n$ is definably compact if for any definable map $f : (a,b)_R \to X$, there exist the limits $\lim_{x\to a+0} f(x), \lim_{x\to b-0} f(x)$ in X.

(2) A definable set $X \subset \mathbb{R}^n$ is definably connected if there exist no definable open subsets U, V of X such that $X = U \cup V, U \cap V = \emptyset, U \neq \emptyset, V \neq \emptyset$.

A compact (resp. A connected) definable set is definably compact (resp. definably connected). But a definably compact (resp. a definably connected) definable set is not always compact (resp. connected). For example, if $R = \mathbb{R}_{alg}$, then $[0,1]_{\mathbb{R}_{alg}} = \{x \in \mathbb{R}_{alg} | 0 \leq x \leq 1\}$ is definably compact and definably connected, but it is neither compact nor connected.

Theorem 2.6 ([7]). For a definable set $X \subset \mathbb{R}^n$, X is definably compact if and only if X is closed and bounded.

The following is a definable version of the fact that the image of a compact (resp. a connected) set by a continuous map is compact (resp. connected).

Proposition 2.7. Let $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$ be definable set, $f : X \to Y$ a definable map. If X is definably compact (resp. definably connected), then f(X) is definably compact (resp. definably connected).

Theorem 2.8. (1) (The intermediate value theorem) For a definable function f on a definably connected set X, if $a, b \in X$, $f(a) \neq f(b)$ then f takes all values between f(a) and f(b).

(2) (Existence theorem of maximum and minimum) Every definable function on a definably compact set attains maximum and minimum. (3) (Rolle's theorem) Let $f : [a,b]_R \to R$ be a definable function such that f is differentiable on $(a,b)_R$ and f(a) = f(b). Then there exists c between a and c with f'(c) = 0.

(4) (The mean value theorem) Let $f : [a, b]_R \to R$ be a definable function which is differentiable on $(a, b)_R$. Then there exists c between a and c with $f'(c) = \frac{f(b) - f(a)}{b - a}$.

(5) Let $f : (a,b)_R \to R$ be a differentiable definable function. If f' > 0 on $(a,b)_R$, then f is increasing.

Example 2.9. (1) Let \mathcal{N} be $(\mathbb{R}_{alg}, +, \cdot, <)$. Then $f : \mathbb{R}_{alg} \to \mathbb{R}_{alg}, f(x) = 2^x$ is not defined([11]).

(2) Let \mathcal{N} be $(\mathbb{R}, +, \cdot, <)$. Then $f : \mathbb{R} \to \mathbb{R}$, $f(x) = 2^x$ is defined but not definable, and $h : \mathbb{R} \to \mathbb{R}$, $h(x) = \sin x$ is defined but not definable.

3 Equivariant definable homotopy extensions

Let X, Y be definable set and $f: X \to Y$ a definable map. We say that f is *definably proper* if for any definably compact subset C of Y, $f^{-1}(C)$ is a definably compact subset of X.

Let $A \subset \mathbb{R}^n$, $S \subset \mathbb{R}^m$ be definable sets, and let $f: S \to A$ be a definable map. We say that f is *definably trivial* if there exist a definable set $F \subset \mathbb{R}^N$ for some $N \in \mathbb{N}$, and a definable map $h: S \to F$ such that $(f, h): S \to A \times F$ is a definable homeomorphism. In this case, each fiber $f^{-1}(a)$ of f over a is definably homeomorphic to F.

In o-minimal expansions of real closed fields, the following five theorems are known.

Theorem 3.1. (1) (Monotonicity theorem (e.g. 3.1.2, 3.1.6. [3])). Let $f : (a,b)_R \to R$ be a function with the definable graph. Then there exist finitely many points $a = a_0 < a_1 < \cdots < a_k = b$ such that on each subinterval $(a_j, a_{j+1})_R$, the function is either constant, or strictly monotone and continuous. Moreover for any $c \in (a, b)_R$, the limits $\lim_{x\to c+0} f(x)$, $\lim_{x\to c-0} f(x)$ exist in $R \cup \{\infty\} \cup \{-\infty\}$.

(2) (Cell decomposition theorem (e.g. 3.2.11. [3])). For any definable subsets A_1, \ldots, A_k of \mathbb{R}^n , there exists a cell decomposition of \mathbb{R}^n partitioning each A_1, \ldots, A_k .

Let A be a definable subset of \mathbb{R}^n and $f : A \to \mathbb{R}$ a function with the definable graph. Then there exists a cell decomposition \mathcal{D} of \mathbb{R}^n partitioning A such that each $B \subset A, B \in \mathcal{D}, f | B : B \to \mathbb{R}$ is continuous.

(3) (Triangulation theorem (e.g. 8.2.9. [3])). Let $S \subset \mathbb{R}^n$ be a definable set and let S_1, S_2, \ldots, S_k be definable subsets of S. Then S has a triangulation in \mathbb{R}^n compatible with S_1, \ldots, S_k .

(4) (Piecewise trivialization theorem (e.g. 8.2.9. [3])). Let $f: S \to A$ be a definable map between definable sets S and A. Then there is a finite partition A_1, \ldots, A_k of A into definable sets A_i such that each $f|f^{-1}(A_i) :$ $f^{-1}(A_i) \to A_i$ is definably trivial.

(5) (Existence of definable quotients (e.g. 10.2.18 [3])). Let G be a definably compact definable group and X a definable G set. Then the orbit space X/G exists as a definable set and the orbit map $\pi : X \to X/G$ is surjective, definable and definably proper.

Question 3.2. Let X, Y be definable sets and A a definable subset of X.

(1) (Extensions of definable maps) Let $f : A \to Y$ be a definable map. When does $f : A \to Y$ extend a definable map $F : X \to Y$?

(2) (Definable homotopy extensions) Let $f : X \to Y$ be a definable map and a definable homotopy $F : A \times [0,1]_R \to Y$ such that F(x,0) = f(x) for any $x \in A$. When does a definable homotopy $H : X \times [0,1]_R \to Y$ exist such that H(x,0) = f(x) for any $x \in X$ and $H|A \times [0,1]_R = F$?

Theorem 3.3 (Definable Tietze extension theorem [1]). Let X, Y be definable sets, A a definable closed subset of X and $f : A \to R$ a definable function. Then there exists a definable function $F : X \to R$ such that F|A = f.

Theorem 3.4 (Definable homotopy extension theorem [2]). Let X, Y be definable sets and A a definable closed subset of X. For any definable map $f: X \to Y$ and for any definable homotopy $F: A \times [0,1]_R \to Y$ such that F(x,0) = f(x) for any $x \in A$, there exists a definable homotopy $H: X \times$ $[0,1]_R \to Y$ such that H(x,0) = f(x) for any $x \in X$ and $H|A \times [0,1]_R = F$.

To consider Question 3.2, we need to construct an obstruction theory in the definable category.

The following question is an equivariant version of Question 3.2.

Question 3.5. Let G be a definable group, X, Y a definable G sets and A a definable G subset of X.

(1) (Extensions of definable G maps) Let $f : A \to Y$ be a definable G map. When does $f : A \to Y$ extend a definable G map $F : X \to Y$?

(2) (Equivariant definable homotopy extensions) Let $f : X \to Y$ be a definable G map and an equivariant definable homotopy $F : A \times [0,1]_R \to Y$ such that F(x,0) = f(x) for any $x \in A$. When does an equivariant definable homotopy $H : X \times [0,1]_R \to Y$ exist such that H(x,0) = f(x) for any $x \in X$ and $H|A \times [0,1]_R = F$?

We have the following result.

Theorem 3.6 ([6]). Let G be a definably compact definable group, X a definable G set and A a definable closed G subset of X. For any definable G map $f: X \to Y$ and for any equivaraint definable homotopy $F: A \times [0,1]_R \to Y$ such that F(x,0) = f(x) for any $x \in A$, there exists an equivariant definable homotopy $H: X \times [0,1]_R \to Y$ such that H(x,0) = f(x) for any $x \in X$ and $H|A \times [0,1]_R = F$.

Theorem 3.6 is proved in the case where $R = \mathbb{R}$ ([5]). To prove Theorem 3.6, we need the following results.

Theorem 3.7 ([6]). Let G be a definably compact definable group and Y a definable closed G subset of a definable G set X. Then there exists a G invariant definable open neighborhood U of Y in X such that Y is a definable strong G deformation retract of both U and of the closure cl U of U in X.

Proposition 3.8 ([6]). Let G be a definably compact definable group and A, B disjoint definable closed G subsets of a definable G set X. Then there exists a G invariant definable map $f : X \to [0,1]_R$ with $A = f^{-1}(0)$ and $B = f^{-1}(1)$.

References

- [1] M. Aschenbrenner and A. Fischer, *Definable versions of theorems by Kirszbraun and Helly*, Proc. Lond. Math. Soc. (3) **102** (2011), 468–502.
- [2] E. Baro and M. Otero, On o-minimal homotopy groups, Q. J. Math. 61 (2010), 275–289.

- [3] L. van den Dries, *Tame topology and o-minimal structures*, Lecture notes series **248**, London Math. Soc. Cambridge Univ. Press (1998).
- [4] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
- [5] T. Kawakami, Definable G CW complex structures of definable G sets and their applications, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 54 (2004), 1–15.
- [6] T. Kawakami, Definable G homotopy extensions, to appear.
- [7] Y. Peterzil and C. Steinhorn, Definable compactness and definable subgroups of o-minimal groups, J. London Math. Soc. 59 (1999), 769–786.
- [8] J.P. Rolin, P. Speissegger and A.J. Wilkie, Quasianalytic Denjoy-Carleman classes and o-minimality, J. Amer. Math. Soc. 16 (2003), 751-777.
- M. Shiota, Geometry of subanalyitc and semialgebraic sets, Progress in Math. 150 (1997), Birkhäuser.
- [10] Tarski, A., A Decision Method for Elementary Algebra and Geometry, 2nd ed., University of California Press, Berkeley-Los Angeles, 1951.
- [11] R. Wencel, Weakly o-minimal expansions of ordered fields of finite transcendence degree, Bull. Lond. Math. Soc. 41 (2009), 109–116.