Dividing and Forking – A Proof of the Equivalence –

Akito Tsuboi

Institute of Mathematics, University of Tsukuba

1 Introduction and Preliminaries

Let T be a simple complete theory. Then the two notions forking and dividing are equivalent. (See [1].) The usual proof of this fact needs Erdös-Rado theorem, a basic result in combinatorial set theory. Erdös-Rado theorem is a theorem on uncountable cardinals, extending Ramsey's theorem. So it is somewhat strange to use such a theorem for proving the fact when the language is countable. In this article, we present a new proof that will only use compactness and a Ramsey-type argument.

We explain the notations in this article and recall some basic definitions. L is a language and T is a complete theory formulated in L. Although the countability of L is not necessary, we assume that L is countable for simplicity. We fix a big saturated model \mathcal{M} of T and we work in \mathcal{M} . Small subsets of \mathcal{M} are denoted by A, B, \ldots . Finite tuples in \mathcal{M} are denoted by a, b, \ldots . Variables are x, y, \ldots . Formulas are denoted by φ, ψ, \ldots . If all the free variables of φ are contained in x, φ is sometimes written as $\varphi(x)$. For a set A, L(A) is the language L augmented by the names (constants) for $a \in A$. For simplicity of the notation, we write $\varphi \in L(A)$, if φ is a formula in L(A). In general, a formula $\varphi \in L(A)$ has the form $\psi(x, a)$, where $\psi(x, y)$ is an L-formula with xy free and a is the list of parameters (from A) appearing in φ . a will be called the parameters of φ .

A sequence $\{a_i : i \in \omega\}$ is called an indiscernible sequence over A, if for any strictly increasing $f : \omega \to \omega$, there is an automorphism σ of \mathcal{M} that extends the mapping $id_A \cup \{\langle a_i, a_{f(i)} \rangle\}_{i \in \omega}$. We say that $\{a_i : i \in \omega\}$ starts with a, if $a_0 = a$.

Definition 1. A formula $\varphi(x, a)$ divides over A if there is an indiscernible sequence $\{a_i : i \in \omega\}$ starting with a such that $\{\varphi(x, a_i) : i \in \omega\}$ is inconsistent.

A set Φ of formulas is said to be k-inconsistent, if every subset $\Psi_0 \subset \Phi$ of size k is inconsistent. If $\varphi(x, a)$ divides over A, by the indiscernibility of $\{a_i : i \in \omega\}$, there is some $k \in \omega$ such that $\{\varphi(x, a_i) : i \in \omega\}$ is k-inconsistent. In this case we say that $\varphi(x, a)$ k-divides over A.

Definition 2. A formula $\varphi(x, a)$ forks over A if it is covered by a finite number of dividing formulas, more precisely, if there is a finite number of formulas $\psi_i(x, b_i)$ (i = 1, ..., n) with the following properties:

- 1. $\mathcal{M} \models \forall x [\varphi(x, a) \rightarrow \bigvee_{i=1,\dots,n} \psi_i(x, b_i)];$
- 2. Each $\psi_i(x, b_i)$ divides over A.

T is called simple if there is a bound for the length of a dividing sequence of complete types. The simplicity of T is equivalent to the finiteness of the rank defined below:

Definition 3. Let $\Sigma(x)$ be a set of formulas with parameters (with x free). Let $\Phi(x, y)$ be a finite set of L-formulas and let $k \in \omega$. The rank $D(\Sigma(x), \Phi(x, y), k)$ is defined by:

- 1. $D(\Sigma(x), \Phi(x, y), k) \ge 0$ if $\Sigma(x)$ is consistent;
- 2. $D(\Sigma(x), \Phi(x, y), k) \ge \alpha + 1$ if there is a and $\varphi \in \Phi$ such that $D(\Sigma(x) \cup \{\varphi(x, a)\}, \Phi(x, y), k) \ge \alpha$ and such that $\varphi(x, a)$ k-divides over the parameter set of Σ ;
- 3. $D(\Sigma(x), \Phi(x, y), k) \ge \delta$ (a limit ordinal) if $D(\Sigma(x), \Phi(x, y), k) \ge \alpha$ for any $\alpha < \delta$.

In the same manner,

2 Simple theories

In what follows, T is a simple complete theory. Let us begin with the following lemma. A proof here is essentially the same as the one presented in Ziegler's book [3].

Lemma 4. Let $\varphi(x) \in L(A)$. Then $\varphi(x)$ does not fork over A.

Proof. For simplicity we assume $A = \emptyset$. Suppose otherwise and choose $\psi_i(x, b)$ (i = 1, ..., n) and $k \in \omega$ such that

- 1. each $\psi_i(x, b)$ k-divides over \emptyset ;
- 2. $\forall x(\varphi(x) \to \bigvee_{i=1,\dots,n} \psi_i(x,b))$ holds.

Then we choose $n_1, ..., n_m \leq n$ and $b_1, ..., b_m$ (copies of b) such that

- 3. $\psi_{n_i}(x, b_i)$ k-divides over $\{b_j : j < i\}$, for each i = 1, ..., n;
- 4. $\varphi(x) \wedge \bigwedge_{i=1,...,m} \psi_{n_i}(x, b_i)$ is consistent, and its $D(*, \{\psi_i : i = 1, ..., n\}, k)$ -rank is minimum among such.

By moving the b_i 's, we can assume that each $\psi_{n_i}(x, b_i)$ k-divides over $\{b\} \cup \{b_j : j < i\}$. By conditions 2 and 4, there is $n_{m+1} \leq n$ such that

$$\varphi(x) \wedge \bigwedge_{i=1,\dots,m} \psi_{n_i}(x,b_i) \wedge \psi_{n_{m+1}}(x,b)$$
 is consistent.

Since $\psi_{n_{m+1}}(x, b)$ divides, by letting $b_{m+1} = b$, we have

$$D\big(\varphi(x) \wedge \bigwedge_{i=1,\dots,m} \psi_{n_i}(x,b_i), \Psi, k\big) > D\big(\varphi(x) \wedge \bigwedge_{i=1,\dots,m+1} \psi_{n_i}(x,b_i), \Psi, k\big)$$

where $\Psi = \{\psi_i : i = 1, ..., n\}$. This contradicts our choice of $n_i \ (i \leq m)$ and $b_i \ (i \leq m)$ (condition 4).

- Remark 5. 1. Let $A \subset B$ and $p(x) \in S(A)$. Then there is an extension $q(x) \in S(B)$ of p(x) such that q(x) does not divide over A. This can be shown as follows: Let $\Gamma(x) = p(x) \cup \{\neg \varphi(x) \in L(B) : \varphi(x) \text{ does not divide over } A\}$. Then $\Gamma(x)$ is consistent, since otherwise we would have $p(x) \vdash \varphi_1(x) \lor \cdots \lor \varphi_n(x)$, for some φ_i dividing over A. So $p(x) \in S(A)$ forks over A, contradicting the above lemma. Choose $a \models \Gamma$, and let $q(x) = \operatorname{tp}(a/B)$. Then, clearly q(x) does not divide over A.
- Suppose that tp(a/Abc) does not divide over A and that tp(b/Ac) does not divide over A. Then tp(ab/Ac) does not divide over A: Let φ(x, y, c) ∈ tp(ab/Ac). Let I = {c_i : i ∈ ω} be an arbitrary indiscernible sequence with c₀ = c. Since tp(b/Ac) does not divide over A, there is b' (a copy of b over Ac) such that I is Ab'-indiscernible. For an A-automorphism σ : b' → b, σ(I) is an Ab-indiscernible sequence. Notice then that J = {bσ(c_i) : i ∈ ω} is an A-indiscernible sequence with bσ(c₀) = bc. Since tp(a/Abc) does not divide over A, there is a' (a copy of a over A) such that a' ⊨ Λ_{d∈J} φ(x, d). So σ⁻¹(a') ⊨ Λ_{i∈ω} φ(x, b', c_i). In particular, {φ(x, y, c_i) : i ∈ ω} is satisfiable.

Lemma 6. For each non-algebraic type $p(x) \in S(A)$, there is an A-indiscernible sequence $J = \{b_i : i \in \omega\}$ in p such that $tp(J \setminus \{b_0\}/Ab_0)$ does not divide over A.

Proof. First we inductively choose a_i 's realizing p such that, for each $i \in \omega$,

 $tp(a_i/A_i)$ does not divide over A,

where $A_i = A \cup \{a_j\}_{j < i}$. Then, by an iterative use of Remark above, $\operatorname{tp}(\{a_j\}_{j>0}/Aa_0)$ does not divide over A. Similarly we can show that $\operatorname{tp}(\{a_j\}_{j>i}/Aa_i)$ does not divide over A, for each i.

Now let $\Gamma(\{x_i : i \in \omega\})$ be the following set of L(A)-formulas:

$$\bigcup_{i\in\omega} p(x_i) \cup \bigcup_{i\in\omega, F\subset\omega\smallsetminus i} \{\neg\varphi(x_F, x_i) : \varphi(x_F, a_0) \text{ divides over } A\},\$$

where $x_F = x_{i_0}, ..., x_{i_k}$ if $F = \{i_0 < \cdots < i_k\}$. Clearly Γ is realized by $I = \{a_i : i \in \omega\}$. Moreover, since each a_i realizes p, any infinite subsequence of I realizes Γ . In other words, Γ has the subsequence property. So there is an A-indiscernible sequence $J = \{b_i : i \in \omega\}$ realizing Γ . It is clear that $tp(J \setminus \{b_0\}/Ab_0)$ does not divide over A. \Box

Lemma 7. Suppose that $\varphi(x, a)$ divides over A. Let $p(x) = \operatorname{tp}(a/A)$ and choose an Aindiscernible sequence $J = \{b_i : i \in \omega\}$ in p having the property described in Lemma 6. Then $\{\varphi(x, b_i) : i \in \omega\}$ is inconsistent.

Proof. Choose k such that $\varphi(x, a)$ k-divides over A, and choose an A-indiscernible sequence $I = \{a_i : i \in \omega\}$ such that $\{\varphi(x, a_i) : i \in \omega\}$ is k-inconsistent. By moving J by an A-automorphism, we may assume that $b_0 = a_0$. Since $\operatorname{tp}(J \setminus \{b_0\}/b_0)$ does not divide, there is $\{b'_i : i > 0\}$ (a copy of $J \setminus \{b_0\}$ over Ab_0) such that

$$a_i\{b'_i: i > 0\} \equiv_A a_i\{b'_i: i > 0\} \equiv_A J$$

holds for any i, j. Moreover, by Ramsey's theorem, we can assume that I is indiscernible over $A\{b'_i : i > 0\}$.

Claim A. $\Phi(x) = \{\varphi(x, b_i) : i \in \omega\}$ is k-inconsistent.

Suppose otherwise and let $\alpha = D(\Phi(x), \varphi(x, y), k)$. Since J is an indiscernible sequence, we have $J \equiv_A J \smallsetminus \{b_0\} \equiv_A \{b'_i : i > 0\}$. So we have

$$\alpha = D(\{\varphi(x, b_i) : i > 0\}, \varphi(x, y), k).$$

However, $\varphi(x, a_0)$ divides over $A\{b'_i : i > 0\}$, so we must have $D(\{\varphi(x, a_0)\} \cup \{\varphi(x, b_i) : i > 0\}, \varphi(x, y), k) < \alpha$. This is a contradiction.

Proposition 8. For i = 1, ..., m, let $\varphi_i(x, a)$ be a formula that divides over A. Then $\bigvee_{i=1,...,m} \varphi_i(x, a)$ divides over A.

Proof. Choose J as in Lemma 7, then for each *i* there is k_i such that $\{\varphi_i(x,b) : b \in J\}$ is k_i -inconsistent. Let $k = \max\{k_1, \dots, k_m\}$. Then $\{\bigvee_{i=1,\dots,m} \varphi_i(x,b) : b \in J\}$ is *mk*-inconsistent. Hence $\bigvee_{i=1,\dots,m} \varphi_i(x,a)$ divides over A.

Lemma 9. Suppose that $p(x) \in S(A)$ does not divide (fork) over $A_0 \subset A$. For any $B \supset A$, there is $a \models p$ such that tp(a/B) does not divide over A_0 .

Proof. Let $\Psi(x)$ be the following set of L(B)-formulas:

$$p(x) \cup \{\neg \varphi(x) \in L(B) : \varphi(x) \text{ divides over } A_0\}.$$

 $\Psi(x)$ is consistent, since otherwise we would have that p(x) forks over A_0 . Let $a \models \Psi(x)$. Then it follows that tp(a/B) does not divide over A_0 .

Proposition 10 (Symmetry). tp(a/Ab) does not divide over $A \Rightarrow tp(b/Aa)$ does not divide over A.

Proof. First we inductively choose a_i 's such that

•
$$a_i \models \operatorname{tp}(a/Ab);$$

• $\operatorname{tp}(a_i/A \cup \{a_j : j < i\})$ does not divide over A.

This process can be done by an iterative use of Lemma 9. As in the proof of Lemma 7, by compactness, we can assume that $I = \{a_i : i \in \omega\}$ is an A-indiscernible sequence satisfying the conditions

- 1. $\operatorname{tp}(\{a_i : i > 0\} / Aa_0)$ does not divide over $A \ (i \in \omega);$
- 2. By letting $q_a(x) = \operatorname{tp}(b/Aa)$, b is a common solution of $q_{a_i}(x)$ $(i \in \omega)$.

Thus $q_a(x)$ does not divide over A, by Lemma 7.

References

- [1] Byunghan Kim, Forking in simple unstable theories, Journal of the London Mathematical Society, vol. 57, 257-267 (1998).
- [2] Byunghan Kim and Anand Pillay, Simple theories, Annals of Pure and Applied Logic, vol 88, 149-164 (1997).
- [3] Martin Ziegler, "A Course in Model Theory", Cambridge University Press (2012).
- [4] Frank O. Wagner, "Simple Theories", Springer Netherlands; Softcover reprint of hardcover 1st ed. (2010).