Resplendent models of o－minimal expansions of RCOF

Yu－ichi Tanaka
Doctoral Program in Mathematics， Graduate School of Pure and Applied Sciences， University of Tsukuba

Abstract

In this paper，the author gives a characterization of resplendent models of the axioms，formulated by van den Dries，of restricted analytic real fields．

1 Introduction．

In classical model theory，we usually investigate properties of first order theories T ，using their models．The properties that we are interested in are，for example，those concerning the existence of special types of models of T ，such as prime models，saturated models and compact models，and so on．Of course，such models as listed above do not always exist． A saturated model of a complete T exists under the assumption of G．C．H．，but it does not exist in general without such assumptions．However，if we replace the definition of saturation by a weaker version，we can sometimes show its existence without set theoretic assumptions．Especially，every theory has a recursively saturated model．J．P．Ressayre shows the following important fact on recursive saturation，which states that resplendence and recursively saturation coincide for countable structures．

1 Fact．（J．P．Ressayre（1972）［5］）For each countable structure M of finite language， M is resplendent if and only if M is recursively saturated．

It is not hard to show the existence of a recursively saturated model．From the fact above， we know that a resplendent model also exists for any countable theory．Resplendence seems a useful property to be studied．In Ressayer＇s proof of the only if part of the fact above，he finds some consistent sentence $\varphi(P)$ with a new unary predicate P such that if a structure has a solution of P ，then the structure is recursively saturated．There are some works aiming to get a more concrete $\varphi(P)$ ，when the axioms are specified．For example，P． D＇Aquino，J．F．Knight and S．Starchenko find a characterization of recursively saturated model in the theory of real closed field（［1］）．Moreover，the author and A．Tsuboi found a characterization of recursively saturation in an o－minimal effectively model complete theory of real closed fields with a finite number of functions．This can be applied to A．J． Wilkie＇s exponential fields（［8］）．However，we cannot apply this result to van den Dries＇s restricted analytic field because the restricted analytic field is not a constructive object． The author considered a constructive fragment of theories for restricted analytic fields and find a characterization of recursive saturation for models of such theories．

2 Preliminaries and basic facts.

Let L be a finite language, M an L-structure, T an L-theory(not necessarily complete). Let $L_{\text {or }}$ be the language $\{+, \cdot, 0,1,<\}$ of ordered rings, $R C O F$ the theory of real closed fields, $P A$ the theory of first order arithmetic. Let $T h(M):=\{\phi: \phi$ is an L-sentence, $M \models \phi\}$ be a theory of $M, \operatorname{Diag}_{e l}(M):=\{\phi: \phi$ is an $L(M)$-sentence, $M \models \phi\}$ an elementary diagram of M.

2 Definition. (1). We say that M is resplendent if for any new relational symbol $R \notin L$ and any $L(M) \cup\{R\}$-sentence $\phi(R)$ if $\operatorname{Diag}_{e l}(M) \cup\{\phi(R)\}$ is consistent, then there is an interpretation R^{M} on M such that $\left(M, R^{M}\right) \models \phi(R)$.
(2).We say that M is recursively saturated if every recursive type(with finite parameters) is realized in M.

3 Fact. (J.P. Ressayre(1972)[5]) For each countable structure M of finite language, M is resplendent if and only if M is recursively saturated.

In Ressayer's proof of the only if part of the fact above, he finds some consistent sentence $\varphi(P)$ with a new unary predicate P such that if a structure has a solution of P, then the structure is recursively saturated. By the meaning of $\varphi(P)$ in Ressayer's proof, we can construct a model of arithmetic from a solution of $\varphi(P)$.

4 Question. If a theory T naturally involves some arithmetic structure, then $\varphi(P)$ can be taken as a natural form under T.

Next fact is an answer in the case of $T=R C O F$ for this question.
5 Definition. Let K be an orderd filed. We call an ordered subring $Z \subset K$ an integer part if it satisfies $\forall x \in K, \exists!n \in Z$ s.t. $n \leq x<n+1$.

6 Fact. (P. D ' Aquino, J.F. Knight and S. Starchenko (2010)[1]) For a countable ordered field K, the followings are equivalent:

- K is a recursively saturated model of $R C O F$;
- K has a non-archimedean integer part whose the non-negative part satisfies $P A$.

3 Background.

In this section, we introduce the previous investigation(A. Tsuboi and T.(2013)[8]). Firstly, we show a characterization of recursively saturated model of o-minimal expansion of the theory $R C O F$ as like Fact 6 . Secondly, we will construct recursively saturated models by using nonstandard analysis.

3.1 o-minimal analogue

In the proof of Fact 6, we use o-minimality and quantifier elimination of the theory $R C O F$.
7 Question. Are there any analogue for o-minimal expantion of RCOF?
To answer the question above, we introduce definitions of o-minimality and weak form of quantifier elimination.

8 Definition. (o-minimal) We say that a theory T is o-minimal if for any model M of T and any definable set $A \subset M$ (with parameters from M), A can be described some finite union of open intervals and points.

9 Example. The following theories are o-minimal.

- The theory of real closed field: $R C O F$.
- $T_{\text {exp }}=\operatorname{Th}(\mathbb{R},+, \cdot, 0,1,<, \exp)$.
- $T_{a n}=T h\left(\mathbb{R},+, \cdot, 0,1,<,\left(f_{i}\right)_{i}\right)$.

Where $\left(f_{i}\right)_{i}$ is an enumeration of all analytic functions defined on closed box.
Next definition is a weak form of quantifier elimination.
10 Definition. We say that a theory T is model complete if every L-formula $\phi(\bar{x})$ is equivalent to some existential L-formula $\psi(\bar{x})$ modulo T :

$$
\forall \phi(\bar{x}) \exists \psi(\bar{x}), T \models \forall \bar{x}(\phi(\bar{x}) \leftrightarrow \psi(\bar{x}))
$$

11 Example. $R C O F, T_{e x p}$ and $T_{a n}$ are model complete.
This definition is not sufficient to prove Fact. 6. We need an effective version of model completeness. Since $R C O F$ is recursively axiomatized, we can effectively obtain an equivalent existential formula $\psi(\bar{x})$) for above setting. In general, a decidable and model complete theory has same property.

12 Definition. We say that a theory T is effectively model complete if there is a effective procedure finding an existential L-formula $\psi(\bar{x})$ which equivalent to any given L-formula $\phi(\bar{x})$ modulo T.
A. Macintyre and A. J. Wilkie defined the effectively model completeness for finding a decidability result of $T_{\text {exp }}$.

13 Fact. (A. Macintyre and A. J. Wilkie (1996)[4]) $T_{\text {exp }}$ is effectively model complete.

Lastly we will define a notion of definably approximation which means a relevance of an integer part and additional functions, e.g. an exponential function.

14 Definition. Let R be a real closed ordered field with an integer part Z and let $Q \subset R$ be the quotient field of Z. Suppose that N (the nonnegative part of Z) satisfies $P A$. Finally, let $E: R^{n} \rightarrow R$ be a continuous function. We say that E is Z-definably approximated if there exists a continuous function $F: N \times Q^{n} \rightarrow Q$ such that

- F is definable in the ordered field Q;
- $\{F(m, \bar{x}): m \in N\}$ converges uniformly to $E(\bar{x})$ on closed bounded subsets of Q. More precisely, for all closed bounded boxes $B \subset Q^{n}$ and $\varepsilon>0$, there exists $n_{0} \in N$ such that, for all $n \in N$ with $n \geq n_{0}$ and all $\bar{x} \in B, R \models|E(\bar{x})-F(n, \bar{x})|<\varepsilon$.

Then we can state an answer of the question above.
15 Theorem. (A. Tsuboi(2013)[8]) Let L be a language $L_{o r} \cup\left\{f_{1}, \ldots, f_{k}\right\}, T$ an o minimal and effectively model complete L-theory extended from $R C O F$. Let R be a model of $T . R$ is a recursively saturated if there is an integer part $Z \subset R$ such that

- the non-negative part of Z satisfies $P A, Z \neq \mathbb{Z}$ and
- each f_{i} is Z-definably approximated.

16 Corollary. Let R be a countable model of $T_{\text {exp. }}$. R is recursively saturated if and only if there is an integer part $Z \subset R$ such that

- the non-negative part of Z satisfies $P A, Z \neq \mathbb{Z}$ and
- $\exp (x)$ is Z-definably approximated.

Since $T_{a n}$ is a non-constructive object, we can not consider effective model completeness of $T_{a n}$. For application, we need to consider a constructive sub-theory of $T_{a n}$.

3.2 natural construction of recursively saturated real closed fields

In previous arguments, we give a characterization of recursively saturated model of a fixed theory. We do not consider applications of a given characterization. In this subsection, we will construct a recursively saturated models by using nonstandard analysis. We can easily construct a recursively saturated model by adding ideal elements, but our construction, showed below, is adding elements simultaneously.

17 Question. Is there a "natural" construction of recursively saturated model of $R C O F$?
Next theorem is an answer of the question above.
18 Definition. Let K be an ordered field and K^{*} an elementary extension of K. We call following sets finite part and infinitismal part respectively:

- $F_{K}:=\left\{x \in K^{*}: \exists q \in K\right.$ s.t. $\left.|x|<|q|\right\}$
- $I_{K}:=\left\{x \in K^{*}: \forall q \in K^{\times}\right.$s.t. $\left.|x|<|q|\right\}$.

19 Theorem. (A. Tsuboi and T.(2013)[8]) Let K be an ordered field with an integer part Z satisfying $P A$. If $F_{K} \neq K^{*}$, the quotient field $R:=F_{K} / I_{K}$ satisfies $R C O F$. Moreover, if $Z \neq \mathbb{Z}$, then R is recursively saturated.

Similarly, we can construct a recursively saturated model of $T_{\text {exp }}$. Let \mathbb{Q}^{*} be an ω_{1}-saturated elementary extension of \mathbb{Q}. Let $\left(Q^{*}, Q\right) \equiv\left(\mathbb{Q}^{*}, \mathbb{Q}\right)$ where $Q \neq \mathbb{Q}$. Then $\mathbb{R} \cong F_{\mathbb{Q}} / I_{\mathbb{Q}} \equiv F_{Q} / I_{Q}$. Let $\phi_{\mathbb{Z}}(x)$ be a defining formula of \mathbb{Z} in \mathbb{Q}.(by J.Robinson) Let $Z:=\phi_{\mathbb{Z}}(Q)$ and $Z^{*}:=\phi_{\mathbb{Z}}\left(Q^{*}\right)$. Fix $n^{*} \in Z^{*}-Z$ and define $e(x):=\sum_{k=0}^{n^{*}} \frac{1}{k!} x^{k}$. Define $\exp ^{*}: F_{Q} / I_{Q} \rightarrow F_{Q} / I_{Q}$ by $\exp ^{*}\left(x+I_{Q}\right):=e(x)+I_{Q}$. Then $(\mathbb{R}, \exp) \cong\left(F_{\mathbb{Q}} / I_{\mathbb{Q}}, \exp ^{*}\right) \equiv$ $\left(F_{Q} / I_{Q}, \exp ^{*}\right)$ holds. In $\left(F_{Q} / I_{Q}, \exp ^{*}\right)$, $\exp ^{*}$ is approximated in its integer part $\cong Z$.

20 Example. $\left(F_{Q} / I_{Q}, \exp ^{*}\right)$ is a recursively saturated model of $T_{\text {exp }}$.

4 Results.

We will review a definition of the restricted analytic field.
21 Definition. Let $L_{a n}=L_{o r} \cup\left\{f_{i}\right\}_{i}$ where f_{i} is a function symbol, $\mathbb{R}_{a n}=(\mathbb{R},+, \cdot, 0,1,<$, $\left.\left(f_{i}\right)_{i}\right)$ where $\left(f_{i}\right)_{i}$ is an enumeration of all analytic functions defined on closed box, and $T_{a n}=\operatorname{Th}\left(\mathbb{R}_{a n}\right)$.

22 Theorem. $T_{a n}$ is model complete and o-minimal.
For application of our theorem15, we need a good fragment of $T_{a n}$. Let F be a class of restricted analytic functions. Then $L_{a n} \mid F$ is $L_{o r} \cup F$ and $T_{a n} \mid F$ is restriction of $T_{a n}$ to $L_{a n} \mid F$. It is easy to show that every complete subtheory of o-minimal theory is o-minimal, i.e. $T_{a n} \mid F$ is o-minimal(for any F). For a subtheory of $T_{a n}$, A. Gabrièlov finds a condition of F whether $T_{a n} \mid F$ is model complete.

23 Theorem. (A. Gabrièlov(1996)[3]) Let F be a class of restricted analytic functions closed under derivation. Then $T_{a n} \mid F$ is model complete.
This proof is not prefer an effective version because it is a geometric. Since a proof of J.Denef and L.van den Dries (1988)[2] is algorithmic, we based on it. This proof of the model completeness of $T_{a n}$ depends on following two basic facts for analytic functions.

- Wierstrass's preparation theorem,
- van den Dries's preparation theorem

In the first subsection, we will give an outline of effective proofs. We will give a coding of restricted analytic functions and statements of an effective form of facts above. Moreover, we give a condition of a set F such that $T_{a n} \mid F$ is eventually effective model complete. In the second subsection, we will give a characterization of recursively saturated model of $T_{a n} \mid F$ for some F and a construction of recursively saturated model of it.

4.1 effective proof of basic facts

We fix notations.

- O_{n} : a ring of n-ary analytic functions on neighborhood of 0 ;
- $R[Y]$: a polynomial ring of a new variable' Y with coefficients from a ring R;
- We use multi-index notations: if $\bar{i}=\left(i_{1}, \ldots, i_{n}\right)$, then $\bar{x} \bar{i}=x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{n}^{i_{n}}$;
- For a function $f(\bar{x})=\sum_{\bar{i}} a_{\bar{i}} \bar{x}^{\bar{i}} \in O_{n}$ and a tuple of positive reals \bar{e},

$$
\|f\|_{\bar{e}}:=\left\{\begin{array}{cc}
\sum_{\bar{i}}\left|a_{\bar{i}} \overline{e^{-}}\right| & \text {if it convergences } \\
\infty & \text { otherwise }
\end{array} ;\right.
$$

- $|\bar{x}| \leq|\bar{e}|$ means $\wedge_{i}\left|x_{i}\right| \leq\left|e_{i}\right|$.

We will define a coding of restricted analytic functions to prove effective results.
24 Definition. (coding of real) Let $\left(a^{n}\right)^{n}$ be a recursive sequence of rational numbers. We say that a real $\alpha \in \mathbb{R}$ is coded by $\left(a^{n}\right)^{n}$ if $\forall n,\left|\alpha-a^{n}\right|<2^{-n}$.

25 Definition. (coding of restricted analytic function) Let ($\left.a_{i}^{n}\right)_{i}^{n}$ be a recursive multiindexed sequence of rational numbers and \bar{e}, b, M are positive rational numbers. We say that a restricted analytic function $f(\bar{x})=\sum_{\bar{i}} \alpha_{\bar{i}} \bar{x}^{\bar{i}} \in O_{n}$ is coded by a code $C=$ $\left(\left(a_{\bar{i}}^{n}\right)_{\bar{i}}^{n} ; \bar{e}, b ; M\right)$ if $\|f\|_{b \bar{e}}<M, \alpha_{\bar{i}}$ is coded by $\left(a_{\bar{i}}^{n}\right)^{n}, b>1$ and $\operatorname{dom}(f)=\{\bar{x}:|\bar{x}| \leq|\bar{e}|\}$.
For a code $C=\left(\left(a_{\bar{i}}^{n}\right)_{i}^{n} ; \bar{e}, b ; M\right)$, let $a_{i}^{n},(C) \bar{e}(C), b(C)$ and $M(C)$ denote components a_{i}^{n}, \bar{e}, b and M of C respectively.

26 Example. Let π_{n} be n decimal digits of π and M a sufficiently large poditivr number. Then the restricted sine function $\sin (\pi x) \mid[-1,1]$ can be coded by $\left(\left(\frac{1-(-1)^{i+1}}{2 \cdot(2 i+1)!} \cdot \pi_{n}^{i}\right)_{i}^{n}, 1,2, M\right)$.
Remark: Let $f \in O_{n}$ and $g_{1}, \ldots, g_{n} \in O_{m}$ be coded by C, D_{1}, \ldots, D_{n} respectively. If $M\left(D_{i}\right) \leq \bar{e}(C)_{i}(i<n)$, then $f\left(g_{1}, \ldots, g_{n}\right)$ can be coded by some $G=C_{c o m}\left(C, D_{1}, \ldots, D_{n}\right)$.

To state the Wierstarss's preparation, we define the regularity of an analytic function.
27 Definition. (regularity) We say that a restricted analytic function $f\left(x_{1}, \ldots, x_{n}\right) \in$ O_{n} is regular of order p with respect to x_{n} if $f\left(0,0, \ldots, x_{n}\right)=c \cdot x_{n}^{p}+o\left(x_{n}^{p}\right)$ where $c \neq 0$.

28 Fact. (Wierstarss's preparation) Let $\Phi \in O_{n}$ be regular of order p with respect to x_{n}. There exists unique unit $Q \in O_{n}$ and unique $R \in O_{n-1}\left[x_{n}\right]$ regular of order p with respect to x_{n} such that $R=\Phi Q$.

29 Lemma. (Effective Wierstarss's preparation) There exist recursive functions $C_{W Q}(C, n), C_{W R}(C, n)$ which map from pairs of a code and a natural number to codes such that the followings holds: for any given $\Phi \in O_{n}$ which is regular of order p with respect to x_{n} and coded by $C, Q \in O_{n}$ and $R \in O_{n-1}\left[x_{n}\right]$ are obtained by the Wierstarss's preparation; then for any sufficiently large $n \in \mathbb{N}, Q, R$ are coded by $C_{W Q}(C, n), C_{W R}(C, n)$ respectively.

Unfortunately, there is no effective procedure finding sufficiently large n. This problem deduce to check $\forall X, R(X)=\Phi(X) Q(X)$. Next, we will state the van den Dries's preparation and an effective form of this.

30 Fact. (van den Dries's preparation) Let $X=\left(X_{1}, \ldots, X_{n}\right), Y=\left(Y_{1}, \ldots, Y_{m}\right), m>$ 0 and $\Phi(X, Y) \in O_{n+m}$. There exist $d \in \mathbb{N}, a_{\bar{i}}(X) \in O_{n}$ and units $u_{\bar{i}}(X, Y) \in O_{n+m}$ $(|\bar{i}|<d)$ such that:

$$
\Phi(X, Y)=\sum_{|\bar{i}|<d} a_{\bar{i}}(X) Y^{\bar{i}} u_{\bar{i}}(X, Y) .
$$

31 Lemma. (Effective van den Dries's preparation) Let $X=\left(X_{1}, \ldots, X_{n}\right), Y=$ $\left(Y_{1}, \ldots, Y_{m}\right), m>0$. There exist recursive functions $C_{v A}(C, d, n, \bar{i}), C_{v U}(C, d, n, \bar{i})$ such that the followings holds: for any given $\Phi(X, Y) \in O_{n+m}$ be coded by C, for any sufficiently large $d \in \mathbb{N}$, there exists $n \in \mathbb{N}$ such that $\Phi(X, Y)=\sum_{|\bar{i}|<d} a_{\bar{i}}(X) Y^{i} u_{\bar{i}}(X, Y)$, where $a_{\bar{i}}(X), u_{\bar{i}}(X, Y)$ are coded by $C_{v A}(C, d, n, \bar{i}), C_{v U}(C, d, n, \bar{i})$ respectively and each $u_{\bar{i}}$ is a unit.

There is a problem how to find d, n effectively. This problem deduce to check $\forall X Y, \Phi(X, Y)=$ $\sum_{\mid \bar{i}<d} a_{\bar{i}}(X) Y^{\bar{i}} u_{\bar{i}}(X, Y)$. Then we will give a condition of a set F such that $T_{a n} \mid F$ is eventually effective model complete and a definition of eventually effective model complete.

32 Definition. We say that a set S of codes closed if it is closed under $C_{c o m}, C_{v A}, C_{v U}$, $C_{W Q}, C_{W R}$ and contains codes of bounded polynomial functions. Let $F_{S}=\left\{f \in \cup_{n} O_{n}: f\right.$ is coded by some element of $S\}$.

33 Definition. We say that an L-theory T is eventually effectively nearly model complete if there is an effective procedure, for any given formula L-formula $\phi(x)$, finding recursive enumeration of boolean combinations of existential L-formulas $\left\{\psi_{n}(x)\right\}_{n \in \omega}$ such that $T \models \phi(x) \rightarrow \psi_{m}(x)$ for any m and $T \models \phi(x) \leftarrow \bigwedge_{m<n} \psi_{m}(x)$ for any sufficiently large n.

We obtain a weak form of the effective model completeness for some fragment of $T_{a n}$.
34 Theorem. (T. 2013) Let S be a r.e. closed set of codes, $L=L_{a n} \mid F_{S}$. Then $T_{a n} \mid F_{S}=$ $T h\left(\mathbb{R}_{a n} \mid F_{S}\right)$ is eventually effectively nearly model complete.

4.2 main results

Similarly to a proof of Theorem 15, we will show the main theorem.
35 Theorem. (revisited A. Tsuboi(2013) : modified by T.) Let L be a language $L_{o r} \cup\left\{f_{i}\right\}_{i \in \mathbb{N}}, T$ an o-minimal and eventually effectively nearly model complete L-theory extended from $R C O F$. Let R be a model of T. Then R is a recursively saturated if there is an integer part $Z \subset R$ such that:

- the non-negative part of Z satisfies $P A, Z \neq \mathbb{Z}$ and
- each f_{i} is Z-definably approximated by a $\Sigma_{k_{0}}$-formula where k_{0} does not depend on i.

We fix L, T, R and Z as in Theorem 35, and prove a series of lemmas before proving the theorem. Let N be the non-negative part of Z, Q the quotient field of Z in R. Choose k_{0} such that every $f_{i}(\bar{x})(i \in \omega)$ is Z-definably approximated by a $\Sigma_{k_{0}}$-formula. To prove Theorem 35, we need following lemmas proved in [8].

36 Lemma. ([8]) Every L-term (i.e., every term constructed from,$+ \cdot$ and the f_{i} 's) is Z-definably approximated by $\Sigma_{k_{0}}$-formulas.

37 Lemma. ([8] modified by T.) Let $\varphi(\bar{x})$ be a boolean combination of existential L formulas. Then we can effectively find an L-formula $\varphi_{0}(\bar{x})$ and an $L_{o r}$-formula $\varphi^{\prime}(\bar{x})$ such that

- $R \models \forall \bar{x}\left(\varphi(\bar{x}) \leftrightarrow \varphi_{0}(\bar{x})\right) ;$
- $R \models \varphi_{0}(\bar{b}) \Longleftrightarrow Q \models \varphi^{\prime}(\bar{b})$, for all $\bar{b} \in Q$.

The formula φ^{\prime} obtained in Lemma 37 is a $\Sigma_{k_{0}+5}$-formula.
38 Lemma. ([8] modified by T.) Let $\varphi(\bar{x})$ and $\psi(\bar{x})$ be boolean combinations of existential L-formulas such that $R \models \forall \bar{x}(\varphi \rightarrow \psi)$. Let φ^{\prime} and ψ^{\prime} be the formulas obtained in Lemma 37. Then $Q \vDash \forall x\left(\varphi^{\prime} \rightarrow \psi^{\prime}\right)$.

39 Lemma. ([8]) For any $\bar{a} \in R, \operatorname{dcl}(\bar{a})$ is a bounded subset of R.
Proof. (Proof of Theorem35) Let $\Sigma(x, \bar{a})=\left\{\varphi_{i}(x, \bar{a}): i \in \omega\right\}$ be a (non-algebraic) recursive type with $\bar{a} \in R$. We can assume that $\varphi_{i+1}(x, \bar{a}) \rightarrow \varphi_{i}(x, \bar{a})$ holds in R. Since other cases can be treated similarly, we assume that $\bar{a} \in R \backslash \operatorname{dcl}(\emptyset)$ and that elements in \bar{a} are mutually non-algebraic. For each $\varphi_{i}(x, \bar{a}) \in \Sigma$, let $\theta_{i}\left(u_{0}, u_{1}, \bar{v}_{0}, \bar{v}_{1}\right)=$ $\theta_{i}\left(u_{0}, u_{1}, v_{00}, \ldots, v_{0, k-1}, v_{1 k}, \ldots, v_{1, k-1}\right)$ be the formula

$$
\forall x \bar{y}\left(u_{0}<x<u_{1} \wedge \bigwedge_{j<k} v_{0 j}<y_{j}<v_{1 j} \rightarrow \varphi_{i}(x, \bar{y})\right)
$$

where k is the length of \bar{a}. Notice that $\exists u_{0} u_{1}\left(u_{0}<u_{1} \wedge \bigwedge_{j<k} v_{0 j}<a_{j}<v_{1 j} \wedge\right.$ $\theta_{i}\left(u_{0}, u_{1}, \bar{v}_{0}, \bar{v}_{1}\right)$) is satisfiable in R. (We can use the cell decomposition theorem to see this.) We can assume that θ_{i} is an boolean combination of existential formulas by the eventually effective nearly model completeness assumption.

By the o-minimality, there exist minimum \bar{b}_{0} and maximum \bar{b}_{1} (in the lexicographic ordering) such that $\exists u_{0} u_{1}\left(u_{0}<u_{1} \wedge \bigwedge_{j<k} b_{0 j}<a_{j}<b_{1 j} \wedge \theta_{i}\left(u_{0}, u_{1}, \bar{b}_{0}, \bar{b}_{1}\right)\right)$ holds in R. Therefore, $\bar{b}_{0}, \bar{b}_{1} \in \operatorname{dcl}(\bar{a}) \cup\{ \pm \infty\}$. Using Lemma 39 , choose a sufficiently large integer n^{*} such that $\operatorname{dcl}(\bar{a})<n^{*}$. We can choose $\bar{c}_{0}, \bar{c}_{1} \in Q$ with $\sum_{j<k}\left|c_{0 j}-c_{1 j}\right|<1 / n^{*}$ such that $b_{0 j}<c_{0 j}<a_{j}<c_{1 j}<b_{1 j}(j<k)$. Then $\exists u_{0} u_{1}\left(u_{0}<u_{1} \wedge \theta_{i}\left(u_{0}, u_{1}, \bar{c}_{0}, \bar{c}_{1}\right)\right)$ holds in R regardless of the choice of $i \in \omega$.

For each θ_{i}, choose a formula θ_{i}^{\prime} having the property described in Lemma 37. Namely, choose θ_{i}^{\prime} such that

1. $R \models \forall u_{0} u_{1} \bar{v}\left(\theta_{i} \leftrightarrow \theta_{i, 0}\right)$;
2. $R \models \theta_{i, 0}\left(q_{0}, q_{1}, \bar{r}, \bar{s}\right) \Longleftrightarrow Q \models \theta_{i}^{\prime}\left(q_{0}, q_{1}, \bar{r}, \bar{s}\right)$, for any $q_{0}, q_{1}, \bar{r}, \bar{s} \in Q$.

In the present situation, $\exists u_{0} u_{1}\left(u_{0}<u_{1} \wedge \theta_{i, 0}\left(u_{0}, u_{1}, \bar{c}_{0}, \bar{c}_{1}\right)\right)$ holds in R. Since u_{0}, u_{1} can be chosen from $Q, \exists u_{0} u_{1}\left(u_{0}<u_{1} \wedge \theta_{i}^{\prime}\left(u_{0}, u_{1}, \bar{c}_{0}, \bar{c}_{1}\right)\right)$ holds in Q. Then, by Lemma 38, $\left\{\theta_{i}^{\prime}\left(u_{0}, u_{1}, \bar{c}_{0}, \bar{c}_{1}\right): i \in \omega\right\}$ is a recursive $\Sigma_{k_{0}+5}$-type in Q. So, by the $\Sigma_{k_{0}+5}$-recursive saturation of Q, there exists $\left(d_{1}, d_{2}\right) \in Q^{2}$ such that $Q \vDash \bigwedge_{i \in \omega} \theta_{i}^{\prime}\left(d_{0}, d_{1}, \bar{c}_{0}, \bar{c}_{1}\right)$. Hence, $\Sigma(x, \bar{a})$ is realized in R by any e between d_{0} and d_{1}.

40 Example. Let $F_{\text {sin }}$ be a closed r.e. set contains a code of $\sin (\pi x) \mid[-1,1]$. Let $T_{\text {sin }}=$ $T_{a n} \mid F_{s i n}$.

41 Corollary. Let R be a model of $T_{\text {sin }}$. R is a recursively saturated if there is an integer part $Z \subset R$ such that :

- the non negative part of Z satisfies $P A, Z \neq \mathbb{Z}$ and
- each $f \in F_{\text {sin }}$ is Z-definably approximated by a $\Sigma_{k_{0}}$-formula where k_{0} does not depend on f.

Finally, we will construct a recursive saturated model of $T_{\text {sin }}$ by using nonstandard analysis. Let $\mathbb{Q}, \mathbb{Q}^{*}, Q, Q^{*}, Z, Z^{*}, n^{*}$ be in a construction of Example 20. For any $f \in F_{\text {sin }}$ coded by $\left(\left(a_{\bar{i}}^{n}\right)_{i}^{n} ; \bar{e}, b ; M\right)$, define $f^{*}: F_{Q} / I_{Q} \rightarrow F_{Q} / I_{Q}$ by $f^{*}\left(x+I_{Q}\right):=\sum_{|\bar{i}|<n^{*}}\left(\lim _{n} a_{\bar{i}}^{n}\right) x^{\bar{i}}+I_{Q}$. Then $\left(\mathbb{R}, F_{\text {sin }}\right) \cong\left(F_{\mathbb{Q}} / I_{\mathbb{Q}},\left\{f^{*}: f \in F_{\text {sin }}\right\}\right) \equiv\left(F_{Q} / I_{Q},\left\{f^{*}: f \in F_{\text {sin }}\right\}\right)$. $\operatorname{In}\left(F_{Q} / I_{Q},\left\{f^{*}:\right.\right.$ $\left.\left.f \in F_{\text {sin }}\right\}\right), f^{*}$ is approximated in its integer part $\cong Z$.

42 Example. $\left(F_{Q} / I_{Q},\left\{f^{*}: f \in F_{s i n}\right\}\right)$ is a recursively saturated model of $T_{\text {sin }}$.

References

[1] P. D'Aquino, J. F. Knight and S. Starchenko, Real closed fields and models of Peano arithmetic, J. Symb. Log. 75(1), 1-11(2010).
[2] J. Denef, L. van den Dries, P-adic and real subanalytic sets. The Annals of Math., 128(1), 79-138(1988).
[3] A. Gabrièlov, Complements of subanalytic sets and existential formulas for analytic functions. Inventiones mathematicae, 125(1), 1-12(1996).
[4] A. Macintyre and A. J. Wilkie, On the decidability of the real exponential field, Kreiseliana: About and around Georg Kreisel (AK Peters, Wellesley, 1996), p. 441467.
[5] B. Poizat, A course in model theory: an introduction to contemporary mathematical logic. Springer (2000).
[6] J. Robinson, Definability and decision problems in arithmetic, J. Symb. Log. 14(2), 98-114(1949).
[7] A. Tarski, A decision method for elementary algebra and geometry (Springer, Vienna, 1988), p. 24-84.
[8] A. Tsuboi and Y.Tanaka, A construction of real closed fields, preprint(2013).
[9] A. J. Wilkie, Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function, J. Am. Math. Soc. 9(4), 1051-1094(1996).

