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Abstract
In this paper, the author gives a characterization of resplendent models of the

axioms, formulated by van den Dries, of restricted analytic real fields,

1 Introduction.
In classical model theory, we usually investigate properties of first order theories $T$ , using
their models. The properties that we are interested in are, for example, those concerning
the existence of special types of models of $T$ , such as prime models, saturated models and
compact models, and so on. Of course, such models as listed above do not always exist.
A saturated model of a complete $T$ exists under the assumption of G.C.H., but it does
not exist in general without such assumptions. However, if we replace the definition of
saturation by a weaker version, we can sometimes show its existence without set theoretic
assumptions. Especially, every theory has a recursively saturated model. J.P. Ressayre
shows the following important fact on recursive saturation, which states that resplendence
and recursively saturation coincide for countable structures.

1 Fact. (J.P. Ressayre(1972)[5]) For each countable structure $M$ of finite language,
$M$ is resplendent if and only if $M$ is recursively saturated.

It is not hard to show the existence of a recursively saturated model. From the fact above,
we know that a resplendent model also exists for any countable theory. Resplendence
seems a useful property to be studied. In Ressayer’s proof of the only if part of the fact
above, he finds some consistent sentence $\varphi(P)$ with a new unary predicate $P$ such that if a
structure has a solution of $P$ , then the structure is recursively saturated. There are some
works aiming to get a more concrete $\varphi(P)$ , when the axioms are specified. For example, P.
$D$

’ Aquino, J.F. Knight and S. Starchenko find a characterization of recursively saturated
model in the theory of real closed field([l]). Moreover, the author and A. Tsuboi found
a characterization of recursively saturation in an -minimal effectively model complete
theory of real closed fields with a finite number of functions. This can be applied to A. J.
Wilkie’s exponential fields([8]). However, we cannot apply this result to van den Dries’s
restricted analytic field because the restricted analytic field is not a constructive object.
The author considered a constructive fragment of theories for restricted analytic fields
and find a characterization of recursive saturation for models of such theories.
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2 Preliminaries and basic facts.
Let $L$ be a finite language, $M$ an $L$-structure, $T$ an $L$-theory(not necessarily complete).
Let $L_{or}$ be the language $\{+, \cdot, 0,1, <\}$ of ordered rings, RCOF the theory of real closed
fields, $PA$ the theory of first order arithmetic. Let Th$(M)$ $:=\{\phi$ : $\phi$ is an $L$-sentence,
$M\models\phi\}$ be a theory of $M,$ $Diag_{el}(M)$ $:=$ { $\phi$ : $\phi$ is an $L(M)$-sentence, $M\models\phi$ } an
elementary diagram of $M.$

2 Definition. (1). We say that $M$ is resplendent if for any new relational symbol $R\not\in L$

and any $L(M)\cup\{R\}$-sentence $\phi(R)$ if $Diag_{el}(M)\cup\{\phi(R)\}$ is consistent, then there is an
interpretation $R^{M}$ on $M$ such that $(M, R^{M})\models\phi(R)$ .

(2).We say that $M$ is recursively saturated if every recursive type(with finite pa-
rameters) is realized in $M.$

3 Fact. (J.P. Ressayre(1972)[5]) For each countable structure $M$ of finite language,
$M$ is resplendent if and only if $M$ is recursively saturated.

In Ressayer’s proof of the only if part of the fact above, he finds some consistent sentence
$\varphi(P)$ with a new unary predicate $P$ such that if a structure has a solution of $P$ , then the
structure is recursively saturated. By the meaning of $\varphi(P)$ in Ressayer’s proof, we can
construct a model of arithmetic from a solution of $\varphi(P)$ .

4 Question. If a theory $T$ naturally involves some arithmetic structure, then $\varphi(P)$ can
be taken as a natural form under $T.$

Next fact is an answer in the case of $T=RCOF$ for this question.

5 Definition. Let $K$ be an orderd filed. We call an ordered subring $Z\subset K$ an integer
part if it satisfies $\forall x\in K,$ $\exists!n\in Zs.t.$ $n\leq x<n+1.$

6 Fact. $(P. D ‘$ Aquino, $J.F.$ Knight $and S.$ Starchenko $(2010)$ [1]) For a countable
ordered field $K$ , the followings are equivalent:

$\bullet$ $K$ is a recursively saturated model of RCOF;. $K$ has a non-archimedean integer part whose the non-negative part satisfies $PA.$

3 Background.
In this section, we introduce the previous investigation(A. Tsuboi and $T.(2013)[8]$ ). Firstly,
we show a characterization of recursively saturated model of -minimal expansion of the
theory RCOF as like Fact 6. Secondly, we will construct recursively saturated models by
using nonstandard analysis.
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3.1 -minimal analogue
In the proof of Fact 6, we use -minimality and quantifier elimination of the theory RCOF.

7 Question. Are there any analogue for $0$-minimal expantion of RCOF?

To answer the question above, we introduce definitions of $0$-minimality and weak form of
quantifier elimination.

8 Definition. ( $0$-minimal) We say that a theory $T$ is $0$-minimal if for any model $M$

of $T$ and any definable set $A\subset M$ (with parameters from $M$), $A$ can be described some
finite union of open intervals and points.

9 Example. The following theories are $0$-minimal.. The theory of real closed $field:RCOF.$. $T_{exp}=Th(\mathbb{R}, +, \cdot, 0,1, <, \exp)$ .

$\bullet T_{an}=Th(\mathbb{R}, +, \cdot, 0,1, <, (f_{i})_{i})$ .
Where $(f_{i})_{i}$ is an enumeration of all analytic functions defined on closed box.

Next definition is a weak form of quantifier elimination.

10 Definition. We say that a theory $T$ is model complete if every $L$-formula $\phi(\overline{x})$ is
equivalent to some existential $L$-formula $\psi(x)$ modulo $T$ :

$\forall\phi(\overline{x})\exists\psi(\overline{x}), T\models\forall\overline{x}(\phi(\overline{x})rightarrow\psi(\overline{x}))$ .

11 Example. RCOF, $T_{exp}$ and $T_{an}$ are model complete.

This definition is not sufficient to prove Fact. 6. We need an effective version of model
completeness. Since RCOF is recursively axiomatized, we can effectively obtain an equiv-
alent existential formula $\psi(x))$ for above setting. In general, a decidable and model com-
plete theory has same property.

12 Definition. We say that a theory $T$ is effectively model complete if there is a
effective procedure finding an existential $L$-formula $\psi(x)$ which equivalent to any given
$L$-formula $\phi(\overline{x})$ modulo $T.$

A. Macintyre and A. J. Wilkie defined the effectively model completeness for finding a
decidability result of $T_{exp}.$

13 Fact. (A. Macintyre and A. J. Wilkie (1996)[4]) $T_{exp}$ is effectively model com-
plete.

Lastly we will define a notion of definably approximation which means a relevance of
an integer part and additional functions, e.g. an exponential function.

14 Definition. Let $R$ be a real closed ordered field with an integer part $Z$ and let $Q\subset R$

be the quotient field of $Z$ . Suppose that $N$ (the nonnegative part of $Z$ ) satisfies $PA.$

Finally, let $E$ : $R^{n}arrow R$ be a continuous function. We say that $E$ is $Z$-definably
approximated if there exists a continuous function $F:N\cross Q^{n}arrow Q$ such that
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$\bullet$ $F$ is definable in the ordered field $Q$ ;

$\bullet$ $\{F(m,\overline{x}) : m\in N\}$ converges uniformly to $E(\overline{x})$ on closed bounded subsets of $Q.$

More precisely, for all closed bounded boxes $B\subset Q^{n}$ and $\epsilon>0$ , there exists $n_{0}\in N$

such that, for all $n\in N$ with $n\geq n_{0}$ and all $\overline{\prime lj}\in B,$ $R\models|E(\overline{x})-F(n,\overline{x})|<\epsilon.$

Then we can state an answer of the question above.

15 Theorem. (A. Tsuboi(2013)[8]) Let $L$ be a language $L_{or}\cup\{f_{1}, \ldots, f_{k}\},$ $T$ an 0-

minimal and effectively model complete $L$-theory extended from RCOF. Let $R$ be a
model of $T.$ $R$ is a recursively saturated if there is an integer part $Z\subset R$ such that

$\bullet$ the non-negative part of $Z$ satisfies $PA,$ $Z\neq \mathbb{Z}$ and

$\bullet$ each $f_{i}$ is $Z$-definably approximated.

16 Corollary. Let $R$ be a countable model of $T_{exp}.$ $R$ is recursively saturated if and only
if there is an integer part $Z\subset R$ such that

$\bullet$ the non-negative part of $Z$ satisfies $PA,$ $Z\neq \mathbb{Z}$ and

$\bullet$ $\exp(x)$ is $Z$-definably approximated.

Since $T_{an}$ is a non-constructive object, we can not consider effective model completeness
of $T_{an}$ . For application, we need to consider a constructive sub-theory of $T_{an}.$

3.2 natural construction of recursively saturated real closed fields

In previous arguments, we give a characterization of recursively saturated model of a fixed
theory. We do not consider applications of a given characterization. In this subsection, we
will construct a recursively saturated models by using nonstandard analysis. We can easily
construct a recursively saturated model by adding ideal elements, but our construction,
showed below, is adding elements simultaneously.

17 Question. Is there a”natural” construction of recursively saturated model of RCOF?

Next theorem is an answer of the question above.

18 Definition. Let $K$ be an ordered field and $K^{*}$ an elementary extension of $K$ . We
call following sets finite part and infinitismal part respectively:

$\bullet$ $F_{K}:=\{x\in K^{*} : \exists q\in K s.t. |x|<|q|\}$

$\bullet$ $I_{K}:=\{x\in K^{*} : \forall q\in K^{\cross} s.t. |x|<|q|\}.$

19 Theorem. (A. Tsuboi and $T.(2013)[8]$ ) Let $K$ be an ordered field with an integer
part $Z$ satisfying $PA$ . If $F_{K}\neq K^{*}$ , the quotient field $R$ $:=F_{K}/I_{K}$ satisfies RCOF.
Moreover, if $Z\neq \mathbb{Z}$ ,then $R$ is recursively saturated.
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Similarly, we can construct a recursively saturated model of $T_{exp}$ . Let $\mathbb{Q}^{*}$ be an
$\omega_{1}$ -saturated elementary extension of $\mathbb{Q}$ . Let $(Q^{*}, Q)\equiv(\mathbb{Q}^{*}, \mathbb{Q})$ where $Q\neq \mathbb{Q}$ . Then
$\mathbb{R}\cong F_{\mathbb{Q}}/I_{\mathbb{Q}}\equiv F_{Q}/I_{Q}$ . Let $\phi_{\mathbb{Z}}(x)$ be a defining formula of $\mathbb{Z}$ in $\mathbb{Q}.$ (by J.Robinson) Let
$Z:=\phi_{\mathbb{Z}}(Q)$ and $Z^{*}$ $:=\phi_{\mathbb{Z}}(Q^{*})$ . Fix $n^{*}\in Z^{*}-Z$ and define $e(x)$ $:= \sum_{k=0}^{n^{*}}\frac{1}{k!}x^{k}$ . Define
$\exp*:F_{Q}/I_{Q}arrow F_{Q}/I_{Q}$ by $\exp^{*}(x+I_{Q})$ $:=e(x)+I_{Q}$ . Then $(\mathbb{R}, \exp)\cong(F_{\mathbb{Q}}/I_{\mathbb{Q}}, \exp^{*})\equiv$

$(F_{Q}/I_{Q}, \exp^{*})$ holds. In $(F_{Q}/I_{Q}, \exp^{*}),$ $\exp*$ is approximated in its integer part $\cong Z.$

20 Example. $(F_{Q}/I_{Q}, \exp^{*})$ is a recursively saturated model of $T_{exp}.$

4 Results.
We will review a definition of the restricted analytic field.

21 Definition. Let $L_{an}=L_{or}\cup\{f_{i}\}_{i}$ where $f_{i}$ is a function symbol, $\mathbb{R}_{an}=(\mathbb{R},$ $+,$
$\cdot,$

$0,1,$ $<$

, $(f_{i})_{i})$ where $(f_{i})_{i}$ is an enumeration of all analytic functions defined on closed box, and
$T_{an}=Th(\mathbb{R}_{an})$ .

22 Theorem. $T_{an}$ is model complete and $0$-minimal.

For application of our theorem15, we need a good fragment of $T_{an}$ . Let $F$ be a class of
restricted analytic functions. Then $L_{an}|F$ is $L_{or}\cup F$ and $T_{an}|F$ is restriction of $T_{an}$ to
$L_{an}|F$ . It is easy to show that every complete subtheory of $0$-minimal theory is $0$-minimal,
i.e. $T_{an}|F$ is $0$-minimal(for any $F$). For a subtheory of $T_{an}$ , A. Gabri\‘elov finds a condition
of $F$ whether $T_{an}|F$ is model complete.

23 Theorem. (A. Gabri\‘elov(1996)[3]) Let $F$ be a class of restricted analytic func-
tions closed under derivation. Then $T_{an}|F$ is model complete.

This proof is not prefer an effective version because it is a geometric. Since a proof of
J.Denef and L.van den Dries (1988)[2] is algorithmic, we based on it. This proof of the
model completeness of $T_{an}$ depends on following two basic facts for analytic functions.

$\bullet$ Wierstrass’s preparation theorem,. van den Dries’s preparation theorem

In the first subsection, we will give an outline of effective proofs. We will give a coding of
restricted analytic functions and statements of an effective form of facts above. Moreover,
we give a condition of a set $F$ such that $T_{an}|F$ is eventually effective model complete. In
the second subsection, we will give a characterization of recursively saturated model of
$T_{an}|F$ for some $F$ and a construction of recursively saturated model of it,

4.1 effective proof of basic facts
We fix notations.

$\bullet$ $O_{n}$ : a ring of $n$-ary analytic functions on neighborhood of $0$ ;
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. $R[Y]$ : a polynomial ring of a new variable $Y$ with coefficients from a ring $R$ ;. We use multi-index notations: if $\overline{i}=(i_{1}, \ldots, i_{n})$ , then $\overline{x}^{\overline{i}}=x_{1}^{i_{1}}x_{2}^{i_{2}}\ldots x_{n}^{i_{n}}$ ;

$\bullet$ For a function $f( \overline{x})=\sum_{\overline{i}}a_{\overline{i}}\overline{x}^{\overline{i}}\in O_{n}$ and a tuple of positive reals $\overline{e},$

$||f||_{\overline{e}}:=\{\begin{array}{l}\sum_{\overline{i}}|a_{\overline{i}}\overline{e}^{\overline{\iota}}| if it convergences ;\infty otherwise\end{array}$

. $|\overline{x}|\leq|\overline{e}|$ means $\bigwedge_{i}|x_{i}|\leq|e_{i}|.$

We will define a coding of restricted analytic functions to prove effective results.

24 Definition. (coding of real) Let $(a^{n})^{n}$ be a recursive sequence of rational numbers.
We say that a real $\alpha\in \mathbb{R}$ is coded by $(a^{n})^{n}$ if $\forall n,$ $|\alpha-a^{n}|<2^{-n}.$

25 Definition. (coding of restricted analytic function) Let $(a \frac{n}{i})_{\overline{i}}^{n}$ be a recursive multi-
indexed sequence of rational numbers and $\overline{e},$ $b,$ $M$ are positive rational numbers. We
say that a restricted analytic function $f( \overline{x})=\sum_{\overline{i}}\alpha_{\overline{i}}\overline{x}^{i}\in O_{n}$ is coded by a code $C=$

$((a \frac{n}{i})\frac{n}{i};\overline{e}, b;M)$ if $||f||_{b\overline{e}}<M,$ $\alpha_{\overline{i}}$ is coded by $(a_{\overline{i}}^{n})^{n},$ $b>1$ and $dom(f)=\{\overline{x}:|\overline{x}|\leq|\overline{e}|\}.$

For a code $C=((a_{\overline{i}}^{n})_{\overline{i}}^{n}\rangle\overline{e}, b;M)$, let $a_{\overline{i}}^{n},$ $(C)\overline{e}(C),$ $b(C)$ and $M(C)$ denote components $a_{\overline{i}}^{n},\overline{e},$
$b$

and $\Lambda l$ of $C$ respectively.

26 Example. Let $\pi_{n}$ be $n$ decimal digits of $\pi$ and $M$ a sufficiently large poditivr number.
Then the restricted sine function $\sin(\pi x)|[-1,1]$ can be coded by $(( \frac{1-(-1)^{i+1}}{2\cdot(2i+1)!}\cdot\pi_{n}^{i})_{i}^{n}, 1,2, M)$ .

Remark: Let $f\in O_{n}$ and $g_{1},$
$\ldots,$

$g_{n}\in O_{m}$ be $co$ded by $C,$ $D_{1},$
$\ldots,$

$D_{n}$ respectively. If
$M(D_{i})\leq\overline{e}(C)_{i}(i<n)$ , then $f(g_{1}, \ldots, g_{n})$ can be coded by some $G=C_{corn}(C, D_{1}, \ldots, D_{n})$ .

To state the Wierstarss’s preparation, we define the regularity of an analytic function.

27 Definition. (regularity) We say that a restricted analytic function $f(x_{1}, \ldots, x_{n})\in$

$O_{n}$ is regular of order $p$ with respect to $x_{n}$ if $f(0,0, \ldots, x_{n})=c\cdot x_{n}^{p}+o(x_{n}^{p})$ where
$c\neq 0.$

28 Fact. (Wierstarss’s preparation) Let $\Phi\in O_{n}$ be regular of order $p$ with respect
to $x_{n}$ . There exists unique unit $Q\in O_{n}$ and unique $R\in O_{n-1}[x_{n}]$ regular of order $p$ with
respect to $x_{n}$ such that $R=\Phi Q.$

29 Lemma. (Effective Wierstarss’s preparation) There exist recursive functions
$C_{WQ}(C, n),$ $C_{WR}(C, n)$ which map from pairs of a code and a natural number to $co$des
such that the followings holds: for any given $\Phi\in O_{n}$ which is regular of order $p$ with
respect to $x_{n}$ and coded by $C,$ $Q\in O_{n}$ and $R\in O_{n-1}[x_{n}]$ are obtained by the Wierstarss’s
preparation; then for any sufficiently large $n\in \mathbb{N},$ $Q,$ $R$ are coded by$C_{WQ}(C, n),$ $C_{WR}(C, n)$

respectively.

Unfortunately, there is no effective procedure finding sufficiently large $n$ . This problem
deduce to check $\forall X,$ $R(X)=\Phi(X)Q(X)$ . Next, we will state the van den Dries’s prepa-
ration and an effective form of this.
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30 Fact. (van den Dries’s preparation) Let $X=(X_{1}, \ldots, X_{n}),$ $Y=(Y_{1}, \ldots, Y_{m}),$ $m>$

$0$ and $\Phi(X, Y)\in O_{n+m}$ . There exist $d\in \mathbb{N},$ $a_{\overline{i}}(X)\in O_{n}$ and units $u_{\overline{i}}(X, Y)\in O_{n+m}$

$(|\overline{i}|<d)$ such that:

$\Phi(X, Y)=\sum_{|\overline{i}|<d}a_{\overline{i}}(X)Y^{\overline{i}}u_{\overline{i}}(X, Y)$
.

31 Lemma. (Effective van den Dries’s preparation) Let $X=(X_{1}, \ldots, X_{n}),$ $Y=$
$(Y_{1}, \ldots, Y_{m}),$ $m>0$ . There exist recursive functions $C_{vA}(C, d, n,\overline{i}),$ $C_{vU}(C, d, n,\overline{i})$ such
that the followings holds: for any given $\Phi(X, Y)\in O_{n+m}$ be coded by $C$ , for any suf-
ficiently large $d\in \mathbb{N}$ , there exists $n\in \mathbb{N}$ such that $\Phi(X, Y)=\sum_{|\overline{i}|<d}a_{\overline{i}}(X)Y^{\overline{i}}u_{\overline{i}}(X, Y)$ ,
where $a_{\overline{i}}(X),$ $u_{\overline{i}}(X, Y)$ are coded by $C_{vA}(C, d, n, \overline{i}),$ $C_{vU}(C, d, n,\overline{i})$ respectively and each $u_{\overline{i}}$

is a unit.

There is a problem how to find $d,$ $n$ effectively. This problem deduce to check $\forall XY,$ $\Phi(X, Y)=$

$\sum_{|\overline{i}|<d}a_{\overline{i}}(X)Y^{\overline{i}}u_{l}^{-\prime}(X, Y)$ . Then we will give a condition of a set $F$ such that $T_{an}|F$ is even-
tually effective model complete and a definition of eventually effective model complete.

32 Definition. We say that a set $S$ of codes closed if it is closed under $C_{com},$ $C_{vA},$ $C_{vU},$

$C_{WQ},$ $C_{WR}$ and contains codes of bounded polynomial functions. Let $F_{S}= \{f\in\bigcup_{n}O_{n}$ : $f$

is coded by some element of $S$ }.

33 Definition. We say that an $L$-theory $T$ is eventually effectively nearly model
complete if there is an effective procedure, for any given formula $L$-formula $\phi(x)$ , finding
recursive enumeration of boolean combinations of existential $L$-formulas $\{\psi_{n}(x)\}_{n\in\omega}$ such
that $T\models\phi(x)arrow\psi_{m}(x)$ for any $m$ and $T \models\phi(x)arrow\bigwedge_{m<n}\psi_{m}(x)$ for any sufficiently
large $n.$

We obtain a weak form of the effective model completeness for some fragment of $T_{an}.$

34 Theorem. ( $T$ . 2013) Let $S$ be a r.e. closed set of codes, $L=L_{an}|F_{S}$ . Then $T_{an}|F_{S}=$

Th $(\mathbb{R}_{an}|F_{S})$ is eventually effectively nearly model complete.

4.2 main results
Similarly to a proof of Theorem 15, we will show the main theorem.

35 Theorem. (revisited A. Tsuboi(2013); modified by $T$ .) Let $L$ be a language
$L_{or}\cup\{f_{i}\}_{i\in \mathbb{N}},$ $T$ an -minimal and eventually effectively nearly model complete $L$-theory
extended from RCOF. Let $R$ be a model of $T$ . Then $R$ is a recursively saturated if there
is an integer part $Z\subset R$ such that:. the non-negative part of $Z$ satisfies $PA,$ $Z\neq \mathbb{Z}$ and

$\bullet$ each $f_{i}$ is $Z$-definably approximated by a $\Sigma_{k_{0}}$ -formula where $k_{0}$ does not depend on
$i.$

We fix $L,$ $T,$ $R$ and $Z$ as in Theorem 35, and prove a series of lemmas before proving
the theorem. Let $N$ be the non-negative part of $Z,$ $Q$ the quotient field of $Z$ in $R$ . Choose
$k_{0}$ such that every $f_{i}(\overline{x})(i\in\omega)$ is $Z$-definably approximated by a $\Sigma_{k_{0}}$ -formula. To prove
Theorem 35, we need following lemmas proved in [8].
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36 Lemma. ([8]) Every $L$-term $(i.e.,$ every $term$ constructed $from +, \cdot and the f_{i}’ s)$ is
$Z$-definably approximated by $\Sigma_{k_{0}}$ -formulas.

37 Lemma. ([8] modified by $T$ .) Let $\varphi(x)$ be a boolean combination of existential L-
formulas. Then we can effectively find an $L$-formula $\varphi_{0}(\overline{x})$ and an $L_{or}$-formula $\varphi’(\overline{x})$ such
that

$\bullet R\models\forall\overline{x}(\varphi(\overline{x})rightarrow\varphi_{0}(\overline{x}))$ ;. $R\models\varphi_{0}(\overline{b})\Leftrightarrow Q\models\varphi’(\overline{b})$ , for all $\overline{b}\in Q.$

The formula $\varphi’$ obtained in Lemma 37 is a $\Sigma_{k_{0}+5}$-formula.

38 Lemma. ([8] modified by $T$ .) Let $\varphi(\overline{x})$ and $\psi(x)$ be boolean combinations of ex-
istential L–formulas such that $R\models\forall\overline{x}(\varphiarrow\psi)$ . Let $\varphi’$ and $\psi’$ be the formulas obtained
in Lemma 37. Then $Q\models\forall x(\varphi’arrow\psi’)$ .

39 Lemma. ([8]) For any $\overline{a}\in R$ , dcl $(\overline{a})$ is a bounded subset of $R.$

Proof. (Proof of Theorem35) Let $\Sigma(x,\overline{a})=\{\varphi_{i}(x,\overline{a}) : i\in\omega\}$ be $a$ (non-algebraic)
recursive type with $\overline{a}\in R$ . We can assume that $\varphi_{i+1}(x,\overline{a})arrow\varphi_{i}(x,\overline{a})$ holds in $R.$

Since other cases can be treated similarly, we assume that $\overline{a}\in R\backslash$ dcl $(\emptyset)$ and that
elements in $\overline{a}$ are mutually non-algebraic. For each $\varphi_{i}(x,\overline{a})\in\Sigma$ , let $\theta_{i}(u_{0}, u_{1},\overline{v}_{0},\overline{v}_{1})=$

$\theta_{i}(u_{0}, u_{1}, v_{00}, \ldots, v_{0,k-1}, v_{1k}, \ldots, v_{1,k-1})$ be the formula

$\forall x\overline{y}(u_{0}<x<u_{1}\wedge\bigwedge_{j<k}v_{0j}<y_{j}<v_{1j}arrow\varphi_{i}(x,\overline{y}))$ ,

where $k$ is the length of $\overline{a}$ . Notice that $\exists u_{0}u_{1}(u_{0}<u_{1}\wedge\bigwedge_{j<k}v_{0j}<a_{j}<v_{1j}\wedge$

$\theta_{i}(u_{0}, u_{1},\overline{v}_{0},\overline{v}_{1}))$ is satisfiable in $R$ . (We can use the cell decomposition theorem to see
this.) We can assume that $\theta_{i}$ is an boolean combination of existential formulae by the
eventually effective nearly model completeness assumption.

By the -minimality, there exist minimum $\overline{b}_{0}$ and maximum $\overline{b}_{1}$ (in the lexicographic
ordering) such that $\exists u_{0}u_{1}(u_{0}<u_{1}\wedge\bigwedge_{j<k}b_{0j}<a_{j}<b_{1j}\wedge\theta_{i}(u_{0}, u_{1}, \overline{b}_{0},\overline{b}_{1}))$ holds in $R.$

Therefore, $\overline{b}_{0},\overline{b}_{1}\in$ dcl $(\overline{a})\cup\{\pm\infty\}$ . Using Lemma 39, choose a sufficiently large integer
$n^{*}$ such that dcl $(\overline{a})<n^{*}$ We can choose $\overline{c}_{0},\overline{c}_{1}\in Q$ with $\sum_{j<k}|c_{0j}-c_{1j}|<1/n^{*}$ such
that $b_{0j}<c_{0j}<a_{j}<c_{1j}<b_{1j}(j<k)$ . Then $\exists u_{0}u_{1}(u_{0}<u_{1}\wedge\theta_{i}(u_{0}, u_{1},\overline{c}_{0},\overline{c}_{1}))$ holds in
$R$ regardless of the choice of $i\in\omega.$

For each $\theta_{i}$ , choose a formula $\theta_{i}’$ having the property described in Lemma 37. Namely,
choose $\theta_{i}’$ such that

1. $R\models\forall u_{0}u_{1}\overline{v}(\theta_{i}rightarrow\theta_{i,0})$ ;

2. $R\models\theta_{i,0}(q_{0}, q_{1},\overline{r},\overline{s})\Leftrightarrow Q\models\theta_{i}’(q_{0}, q_{1},\overline{r},\overline{s})$ , for any $q_{0},$ $q_{1},\overline{r},\overline{s}\in Q.$

In the present situation, $\exists u_{0}u_{1}(u_{0}<u_{1}\wedge\theta_{i,0}(u_{0}, u_{1},\overline{c}_{0},\overline{c}_{1}))$ holds in $R$ . Since $u_{0},$ $u_{1}$ can
be chosen from $Q,$ $\exists u_{0}u_{1}(u_{0}<u_{1}\wedge\theta_{i}’(u_{0}, u_{1},\overline{c}_{0},\overline{c}_{1}))$ holds in $Q$ . Then, by Lemma 38,
$\{\theta_{i}’(u_{0}, u_{1},\overline{c}_{0},\overline{c}_{1}) : i\in\omega\}$ is a recursive $\Sigma_{k_{0}+5}$-type in $Q$ . So, by the $\Sigma_{k_{0}+5}$-recursive
saturation of $Q$ , there exists $(d_{1}, d_{2})\in Q^{2}$ such that $Q \models\bigwedge_{i\in\omega}\theta_{i}’(d_{0}, d_{1},\overline{c}_{0},\overline{c}_{1})$ . Hence,
$\Sigma(x,\overline{a})$ is realized in $R$ by any $e$ between $d_{0}$ and $d_{1}.$ $\square$
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40 Example. Let $F_{sin}$ be a closed r.e. set contains a code of $sin(\pi x)|[-1,1]$ . Let $T_{sin}=$

$T_{an}|F_{sin}.$

41 Corollary. Let $R$ be a model of $T_{sin}.$ $R$ is a recursively saturated if there is an integer
part $Z\subset R$ such that :

$\bullet$ the non negative part of $Z$ satisfies $PA,$ $Z\neq \mathbb{Z}$ and

$\bullet$ each $f\in F_{sin}$ is $Z$-definably approximated by a $\Sigma_{k_{0}}$ -formula where $k_{0}$ does not
depend on $f.$

Finally, we will construct a recursive saturated model of $T_{sin}$ by using nonstandard analy-
sis. Let $\mathbb{Q},$ $\mathbb{Q}^{*},$ $Q,$ $Q^{*},$ $Z,$ $Z^{*},$ $n^{*}$ be in a construction of Example 20. For any $f\in F_{sin_{-}}coded$

by $((a \frac{n}{i})_{\overline{i}}^{n}; \overline{e}, b;M)$ , define $f^{*}:F_{Q}/I_{Q}arrow F_{Q}/I_{Q}$ by $f^{*}(x+I_{Q})$ $:= \sum_{|\overline{i}|<n}.(\lim_{n}a\frac{n}{i})x^{i}+I_{Q}.$

Then $(\mathbb{R}, F_{sin})\cong(F_{\mathbb{Q}}/I_{\mathbb{Q}}, \{f^{*}:f\in F_{sin}\})\equiv(F_{Q}/I_{Q}, \{f^{*}:f\in F_{sin}\})$ . In $(F_{Q}/I_{Q},$ $\{f^{*}$ :
$f\in F_{sin}\}),$ $f^{*}$ is approximated in its integer part $\cong Z.$

42 Example. $(F_{Q}/I_{Q}, \{f^{*}:f\in F_{sin}\})$ is a recursively saturated model of $T_{sin}.$
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