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Abstract. A new geometric flow describing the motion of a closed surface is intro-
duced. We characterize a continuous family of quadrature surfaces by the geometric
flow. This characterization reduces the uniqueness of quadrature surfaces to the
unique solvability of the geometric flow. In fact, we prove the uniqueness under the
geometric condition that each surface has positive mean curvature.

1 Introduction
A classical quadrature formula is an identity of the form

(1.1) $\int x^{k}d\mu=\int_{\Omega}x^{k}dx (k=0,1, \ldots, d)$ ,

where $\Omega\subset \mathbb{R}$ is a bounded open interval and $\mu=\sum_{j=1}^{l}\alpha_{j}\delta_{x_{j}}$ with $\delta_{x_{j}}$ being the Dirac
measure supported at $x_{j}$ . Here, $d\in \mathbb{N},$ $\alpha_{j}>0$ and $x_{j}\in\Omega$ are called respectively
the degree, weights and nodes of the formula. Such a formula is practically useful
for the numerical computation of the integral of a polynomial, since the formula
reduces the hard computation to simple point evaluations of the polynomial.

One may desire the construction of a quadrature formula of degree $\infty$ , i.e., a pair
$(\Omega, \mu)$ such that the identity (1.1) holds for all $k=0,1,$ $\ldots$ . However, Weierstrass’
polynomial approximation theorem implies that no such formulas exist for a bounded
interval $\Omega\subset \mathbb{R}$ . Interestingly, if we allow $\Omega$ to be a two-dimensional bounded
domain, then the situation becomes different. In fact, we can prove that, for a given
measure $\mu=\sum_{j=1}^{l}\alpha_{j}\delta_{x_{j}}$ with sufficiently large $\alpha_{j}$ , there exists a unique bounded
domain $\Omega\subset \mathbb{R}^{2}\simeq \mathbb{C}$ such that

(1.2) $\int z^{k}d\mu=\int_{\Omega}z^{k}dxdy (k=0,1, \ldots)$ ,

where $z=x+iy,$ $i:=\sqrt{-1}$ . Note that the left-hand side of (1.2) is the same value
as that of (1.1) if $x_{j}\in \mathbb{R}$ for $j=1,2,$ $\ldots,$

$l$ . Furthermore, if $\Omega$ is assumed to be
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smooth and simply-connected, then (1.2) is equivalent to

$\int f(z)d\mu=\int_{\Omega}f(z)dxdy$

for all holomorphic functions $f$ defined in a neighborhood of St, or equivalently,

$\int h(x, y)d\mu=\int_{\Omega}h(x, y)dxdy$

for all harmonic functions $h$ defined in a neighborhood of St. This observation
motivates us to define the so-called quadrature domain of a general positive finite
measure $\mu$ with compact support in $\mathbb{R}^{N}$ as follows. Note that, here and in what
follows, we will denote by $x$ a vector in $\mathbb{R}^{N}.$

Definition 1.1. We call a domain $\Omega\subset \mathbb{R}^{N}$ a quadrature domain of a measure $\mu$

(for harmonic functions) if

(1.3) $\int hd\mu=\int_{\Omega}hdx$

holds for all harmonic functions $h$ defined in a neighborhood of $\overline{\Omega}.$

Remark 1.2. $A$ direct generalization of quadrature formula (1.1) to the higher-
dimensional space $\mathbb{R}^{N}(N\geq 3)$ , called a cubature formula, is an identity of the
form

(1.4) $\int pd\mu=\int_{\Omega}pdx (p\in \mathcal{P}_{d}^{N})$ ,

where $\mathcal{P}_{d}^{N}$ is the vector space of all real-valued polynomials of degree at most $d$

in $\mathbb{R}^{N}$ . Note that the cubature formula (1.4) concerns all polynomials, while the
generalized quadrature formula (1.3) concerns only harmonic polynomials, but of all
the degrees.

Quadrature domains arise in various physical contexts, and they are closely re-
lated to complex analysis and potential analysis. The simplest example of a quadra-
ture domain is the unit ball $B(O, 1)$ in $\mathbb{R}^{N}$ with the corresponding measure being a
point mass $\omega_{N}\delta_{0}$ :

$\omega_{N}h(0)=\int_{B(0,1)}hdx$

for harmonic functions $h$ , where $\omega_{N}$ is the volume of $B(0,1)$ . This is nothing but
the mean value property of harmonic functions. Thus, the identity (1.3) can be seen
as a generalization of the mean value formula for harmonic functions. From this
point of view, we are naturally lead to the notion of a variant of quadrature domain,
called quadrature surface, as follows.
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Definition 1.3. We call $a(N-1)$ -dimensional closed surface $\Gamma\subset \mathbb{R}^{N_{f}}$ enclosing a
bounded domain $\Omega$ , a quadrature surface of a measure $\mu$ (for harmonic functions) if

(1.5) $\int hd\mu=\int_{\Gamma}hd\mathcal{H}^{N-1}$

holds for all harmonic functions $h$ defined in a neighborhood of $\overline{\Omega}$ , where $\mathcal{H}^{N-1}$

denotes the $(N-1)$ -dimensional Hausdorff measure.

In the following section, we will see that quadrature surfaces have a physical
interpretation, and this is one of the reasons why many efforts have been devoted
to the investigation of these quadrature identities. Nevertheless, the uniqueness
of quadrature surfaces is not clear, as compared with quadrature domains. The
purpose of this paper is to establish a qualitative result on this uniqueness issue by
using a geometric flow, which will be introduced later. For our main results, see
Theorems 4.1 and 4.3 in section 4.

2 Physical interpretation of quadrature identities

In this section we mainly focus on quadrature surfaces, since we can analogously
give a physical interpretation of quadrature domains.

One of the classical problems in potential theory is to specify a closed surface $\Gamma$ for
a prescribed electric charge density $\mu$ in such a way that the uniform electric charge
distribution on $\Gamma$ induces the same potential in a neighborhood of the infinity as $\mu$

does. To formulate the problem mathematically, let $F$ be the fundamental solution
$of-\triangle$ in $\mathbb{R}^{N}$ , i.e.,

(2.1) $F(x)$ $:=\{\begin{array}{ll}-\frac{1}{2\pi}\log|x| (N=2) ,\frac{1}{N(N-2)\omega_{N}|x|^{N-2}} (N\geq 3) ,\end{array}$

and let $\mathcal{H}^{N-1}\lfloor\Gamma$ denote the Hausdorff measure restricted to the surface $\Gamma$ . Then,
the problem can be stated as follows: For a prescribed finite positive measure $\mu$

with compact support in $\mathbb{R}^{N}$ , find $a(N-1)$-dimensional closed surface $\Gamma$ enclosing
a bounded domain $\Omega$ such that $F*\mu=F*\mathcal{H}^{N-1}\lfloor\Gamma$ in $\mathbb{R}^{N}\backslash \overline{\Omega}$, i.e.,

(2.2) $\int F(x-y)d\mu(y)=\int_{\Gamma}F(x-y)d\mathcal{H}^{N-1}(y) (x\in \mathbb{R}^{N}\backslash \overline{\Omega})$ .

As a matter of fact, (2.2) is equivalent to the identity (1.5), i.e., that $\Gamma$ is a
quadrature surface of $\mu$ . Indeed, it is obvious that (1.5) implies (2.2). Conversely,
if $\Gamma$ satisfies (2.2), then by extending each harmonic function $h$ to be smooth and
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have compact support in $\mathbb{R}^{N}$ , we see that

$\int h(y)d\mu(y)=\int_{\mathbb{R}^{N}}\Delta h(x)(\int F(y-x)d\mu(y))dx$

$= \int_{\mathbb{R}^{N}}\Delta h(x)(\int_{\Gamma}F(y-x)d\mathcal{H}^{N-1}(y))dx$

$= \int_{\Gamma}h(y)d\mathcal{H}^{N-1}(y)$ .

Thus, (1.5) follows from (2.2). Therefore, a quadrature surface is a surface which
produces the same electric potential as a given electric charge density $\mu.$

As we have seen as an example of a quadrature domain, the mean value property
of harmonic functions also implies that (1.5) holds when $\mu=N\omega_{N}\delta_{0}$

. and $\Gamma=$

$\partial B(0,1)$ . An inverse problem, referred to as the “Potato Kugel” problem especially
for quadrature domains, asks if there is no other domain or surface which produces
the same potential as the one point mass. In other words, the problem asks if it is
possible to determine the shape of potato only from its potential. This problem, both
for domains and surfaces with a point mass, were affirmatively solved. However, if a
general measure $\mu$ is concerned, then an example in the paper of Henrot [12] shows
that the uniqueness of a quadrature surface does not hold in general, even for simple
measures such as two point masses. On the other hand, there is a general result on
the uniqueness of a quadrature domain as shown in the next section.

3 Previous studies on quadrature identities

The existence of a quadrature surface $\Gamma$ of a prescribed $\mu$ has been studied by several
authors with different approaches. Developing the idea of super/subsolutions of
Beurling [4], Henrot [12] was able to prove that the existence of $\Gamma$ is guaranteed
when a supersolution and a subsolution are available. Gustafsson & Shahgholian
[11] followed a variational approach developed by Alt & Caffarelli [1], namely, they
consider the minimization problem for the functional

$J(u):= \int_{\mathbb{R}^{N}}(|\nabla u|^{2}-2fu+\chi_{\{u>0\}})dx,$

and proved the existence and regularity of a minimizer $u$ . Then, $u$ is shown to satisfy
the Euler-Lagrange equation

$-\triangle u=f\lfloor\Omega-\mathcal{H}^{N-1}\lfloor\partial\Omega, \Omega=\{u>0\},$

and thus $\Gamma=\partial\Omega$ is a quadrature surface of $\mu$ with $d\mu=fdx.$

Similarly, a quadrature domain has a variational characterization and can be
obtained by solving an obstacle problem (see Sakai [18] and Gustafsson [10] for the
detail). Moreover, the uniqueness of a quadrature domain follows from an argument
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based on the maximum principle. Indeed, it was shown by Sakai [17] that, if a
quadrature domain $\Omega$ satisfies

$F*(\mu-\chi_{\Omega})>0$

everywhere in $\Omega$ , then there is no quadrature domain other than $\Omega$ . The above
condition can be verified, in particular, when $\mu$ concentrates, relative to $\Omega.$

However, as pointed out by Henrot [12], the uniqueness of a quadrature surface
cannot be expected in general. He showed an example that the number of connected
quadrature surfaces of $\mu(t)$ $:=t\delta_{(1,0)}+t\delta_{(-1,0)}$ in $\mathbb{R}^{2}$ changes according to the value of
$t>0$ . The collapse of the uniqueness seems to indicate a bifurcation phenomenon of
solutions to (1.5) with a parametrized measure $\mu=\mu(t)$ . Hence, toward understand-
ing of the uniqueness issue, we need to consider the corresponding family of surfaces
$\Gamma=\Gamma(t)$ . In this respect, it is natural to ask if there is a “flow” for surfaces $\{\Gamma(t)\}_{t>0}$

such that each $\Gamma(t)$ is a quadrature surface of a given parametrized measure $\mu(t)$ .
As a matter of fact, when $\mu(t)=t\delta_{0}+\chi_{\Omega(0)}$ and $\Omega(t)$ is the corresponding quadra-
ture domain, it is known that the Hele-Shaw flow, a model of interface dynamics
in fluid mechanics, plays the desired role. This surprising connection between the
two different physical problems was discovered by Richardson [16]. From this fact,
the investigation of the evolution of quadrature domains is reduced to that of the
Hele-Shaw flow, and the latter has been successfully proceeded by complex analysis
and several methods in partial differential equations.

4 Geometric flow for quadrature surfaces
We are thus motivated to derive a flow having the corresponding property for quadra-
ture surfaces, and eventually arrive at the following geometric flow:

$v_{n}=p$ for $x\in\partial\Omega(t)$ ,

(41)
where $\{\begin{array}{ll}-\triangle p=\mu for x\in\Omega(t) ,(N-1)Hp+\frac{\partial p}{\partial n}=0 for x\in\partial\Omega(t) ,\end{array}$

where $v_{n}$ is the growing speed of $\partial\Omega(t)$ in the outer normal direction and $H$ is the
mean curvature of $\partial\Omega(t)$ . Here and in what follows, $\mu$ denotes a finite positive
Radon measure with compact support in $\Omega(0)$ . Note that, for each fixed time $t>0,$
the maximum principle applied to the elliptic boundary problem in (4.1) yields
that $p>0$ everywhere on $\partial\Omega(t)$ if $H$ is positive. In other words, $\Omega(t)$ expands
monotonically as long as the mean curvature of $\partial\Omega(t)$ is positive.

The following theorem shows that, as desired, for a given $\partial\Omega(0)$ as initial surface,
the solution to (4.1) turns out to be a one-parameter family of quadrature surfaces.
Moreover, we will see that (4.1) is the only possible flow having this property. Here,
we call $\{\partial\Omega(t)\}_{0\leq t<T}$ a $C^{3+\alpha}$ family of surfaces if each $\partial\Omega(t)$ is of $C^{3+\alpha}$ and its
time derivative is of $C^{2+\alpha}$ , namely, $\partial\Omega(t)$ can be locally represented as a graph of a
function in the H\"older space $C^{3+\alpha}$ and its time derivative is in $C^{2+\alpha}$ (see Section 3).
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Theorem 4.1. Let $\{\partial\Omega(t)\}_{0\leq t<T}$ be a $C^{3+\alpha}$ family of surfaces, and assume that
each $\partial\Omega(t)$ has positive mean curvature. Then, the following are equivalent:

(i) $\{\partial\Omega(t)\}_{0\leq t<T}$ is a solution to (4.1);

(ii) Each $\partial\Omega(t)$ is a quadrature surface of $\mu(t):=t\mu+\mathcal{H}^{N-1}\lfloor\partial\Omega(0)$ , i. e.,

(4.2) $\int_{\partial\Omega(0)}hd\mathcal{H}^{N-1}+t\int hd\mu=\int_{\partial\Omega(t)}hd\mathcal{H}^{N-1}$

holds for all harmonic functions $h$ defined in a neighborhood of $\overline{\Omega(t)}.$

Remark 4.2. The exponent $3+\alpha$ naturally arises in the context of the Schauder
theory for the oblique derivative problem (see Gilbarg & Trudinger [9]). Indeed,
the regularity $H\in C^{1+\alpha}$ of the coefficient function $H$ in the boundary condition
is required for the existence of a solution $p\in C^{2+\alpha}(\overline{\Omega(t)})$ to the elliptic equation
in (4.1). This implies that $\partial\Omega(t)$ is of $C^{3+\alpha}$ . It is worth noting that, by taking
appropriate coordinates, $v_{n}$ can be regarded as the time derivative of a local function
representation of $\partial\Omega(t)$ . Hence, it is natural to impose the same regularity as $v_{n}=$

$p\in C^{2+\alpha}$ on the time derivative of $\partial\Omega(t)$ .

Theorem 4.1 enables us to reduce the uniqueness of a continuous family of
quadrature surfaces $\Gamma(t)$ of $\mu(t)$ to the unique solvability of the geometric flow (4.1).
In fact, the latter is guaranteed by the following theorem. Here, $\{\partial\Omega(t)\}_{0\leq t<T}$ is
called a $h^{3+\alpha}$ solution if it is a $h^{3+\alpha}$ family of surfaces and satisfies (4.1), where $h^{3+\alpha}$

is the so-called little H\"older space and is defined as the closure of the Schwartz space
$\mathcal{S}$ of rapidly decreasing functions in the topology of the H\"older space $C^{3+\alpha}$ . Since
our argument relies on the theory of maximal regularity of Da Prato and Grisvard
[5], it is necessary to use $h^{3+\alpha}$ , characterized as a continuous interpolation space,
instead of $C^{3+\alpha}.$

Theorem 4.3. There exists a unique $h^{3+\alpha}$ solution $\{\partial\Omega(t)\}_{0\leq t<T}$ to (4.1) for any
$h^{3+\alpha}$ initial $\mathcal{S}$urface $\partial\Omega(0)$ with positive mean curvature.

Let us plot the points $(\Gamma, t)\in h^{3+\alpha}\cross \mathbb{R}$ if $\Gamma$ is a quadrature surface of $\mu(t)$ .
Theorem 4.3 shows that such points form a curve

$t\mapsto(\partial\Omega(t), t) (t\in[0, T))$

in $h^{3+\alpha}\cross \mathbb{R}$ starting from $(\partial\Omega(0), 0)$ , if $\partial\Omega(0)$ has positive mean curvature. Moreover,
as the parameter $t$ increases, the curve does not split into two curves from any point
$(\partial\Omega(t), t)$ unless $\partial\Omega(t)$ loses the positiveness of the mean curvature.

Corollary 4.4. There is no curve

$s\mapsto(\Gamma(s), t(s)) (s\in[0, \epsilon))$

of an $h^{3+\alpha}$ family of quadrature surfaces such that $(\Gamma(0), t(O))=(\partial\Omega(O), 0),$ $\Gamma(s)\neq$

$\partial\Omega(t(s))$ for $0<s<\epsilon$ , and $t’(O)\geq 0.$
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The proofs of Theorems 4.1, 4.3 and Corollary 4.4 relies on various theories in
analysis, and are beyond the scope of this paper. For the interested reader, we refer
to [15] for the detail.
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