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ABSTRACT. We discuss some preliminary results on equiangular lines in $\mathbb{R}^{d}$ whose Seidel
matrix has three different eigenvalues.
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1. INTRODUCTION AND MAIN RESULTS

This paper is based on a talk given at RIMS, and describes some preliminary results from
a forthcoming paper jointly with Gary Greaves and Akihiro Munemasa [3].

A set of $n\geq 1$ lines, represented by the unit vectors $v_{1},$ $\ldots,$
$v_{n}\in \mathbb{R}^{d}$ , is called equiangular

if there exists a constant $\alpha>0$ for which $|\langle v_{i},$ $v_{j}\rangle|=\pm\alpha$ holds for every $1\leq i<j\leq n.$

Such lines arise in many applications [5]. The fundamental problem in this area is the
determination of the maximum number of equiangular lines $N(d)$ in $\mathbb{R}^{d}$ . In the following
table, which is essentially the same as in [6], we display lower and upper bounds on $N(d)$

for the first few values of $d.$

$d$ 2
$N(d)3$
$1/\alpha 2$

34567-13 14 15 16 17 18 19 20 212223
661016 28 $28-303640-4248-5148-6172-7690-96126176276$

$\sqrt{5}\sqrt{5},33$ 3 3 3, $5$ 5 5 5 5 5 5 5 5 5

TABLE 1. The maximum number of equiangular lines for $d\leq 23.$

We remark that there exist several incorrectly revised tables in the current literature (e.g.
the one in [1, p. 884] $)$ which might suggest to the uninitiated that $N(d)$ is known for small
$d$ . This is, however, not the case as $d=14$ is already undecided. Table 1 shows that despite
of considerable amount of research in the past 40 years, determining $N(d)$ even for relatively
small values of $d$ is still out of reach. Methods, obtaining configurations with the above
indicated number of lines are fairly standard and are discussed in details throughout the
scattered literature [1], [6], [11], [12] and [13].

Remark 1.1. Seidel seems to claim in [1, p. 884] that the lower bounds indicated above
cannot be improved unless $d=19$ or 20. We tend to believe that this is not the case, but it
is unclear whether or not his statement follows implicitly from the cited literature.

The Gram matrix of the equiangular line system $[G]_{i,j}$ $:=\langle v_{i},$ $v_{j}\rangle,$ $1\leq i,j\leq n$ , is of funda-
mental interest, since it contains $aJ1$ the relevant information and thus study of equiangular
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lines via matrix theoretical and linear algebraic tools is possible. It is, however, more conve-
nient to consider the Seidel matrix $S:=(G-I)/\alpha$ instead, which is a symmetric matrix with
zero diagonal and $\pm 1$ entries otherwise. The algebraic multiplicity of the smallest eigenvalue
$\lambda_{0}$ of $S$ describes the smallest possible dimension $d$ where the line system fits in with common
angle $\alpha=-1/\lambda_{0}$ . Seidel matrices are the central objects of this work. We remark here that
there is an ambient graph $\Gamma(S)$ associated with each Seidel matrix, whose adjacency matrix
$A$ can be obtained from the formula $A:=(J-S-I)/2.$
In the following we review equiangular line systems with common angle 1/3 and 1/5 in
$\mathbb{R}^{d}$ , or, equivalently, Seidel matrices with smallest eigenvalue $-3$ and $-5$ . The goal is to
get some insight into the size of maximal equiangular line systems with prescribed common
angle $\alpha$ in $\mathbb{R}^{d}$ , which we denote by $N_{1/\alpha}(d)$ . The case $N_{3}(d)$ is completely understood and
was determined by Lemmens and Seidel in [6].

Theorem 1.2 (See [4], [6], [7]). The maximum number of equiangular lines in $\mathbb{R}^{d}$ with
common angle $\alpha=1/3$ is described in Table 2 below.

$N_{3}(d)d|_{2}^{2} 43 64 105 166 7-1528 2(d-1)16-$

TABLE 2. The maximum number of equiangular lines with $\alpha=1/3.$

It is easy to see that the Seidel matrix of any maximal set of equiangular lines with common
angle 1/3 must contain an $I_{4}-J_{4}$ principal submatrix. This leads to the concept of pillars,
which is a nontrivial geometric interpretation of equiangular line systems [6]. If the same
principle, that is, the existence of a $I_{6}-J_{6}$ principal submatrix, would hold for $\alpha=1/5$

as well, then the following result would describe the size of such maximal equiangular line
systems.

Theorem 1.3 (See [6]). Any set of unit vectors with common angle 1/5 in $\mathbb{R}^{d}$ , which con-
tains a $I_{6}-J_{6}$ principal submatrix, has maximum cardinality 276 for $23\leq d\leq 185$ , and
$\lfloor 3(d-1)/2\rfloor$ for $d\geq 186.$

We remark here that the Seidel matrix with spectrum $\{[-5]^{3}, [-1]^{2}, [1]^{3}, [3]^{3}, [5]^{1}\}$ describing
one of the four maximal equiangular line systems in $\mathbb{R}^{9}$ with common angle 1/5 does not
contain (up to switching) any $I_{6}-J_{6}$ principal submatrices.
Theorem 1.3 was subsequently improved by Neumaier, who determined the maximum num-
ber of equiangular lines with common angle 1/5 in $\mathbb{R}^{d}$ for large $d$ . It turns out that the
Seidel matrix of all such line systems is switching equivalent to one whose ambient graph
has largest eigenvalue at most 2. Such graphs are called Dynkin graphs.

Theorem 1.4 (Neumaier, [8]). Assume that $S$ is a Seidel matrix of order $n\geq 45374$ with
smallest eigenvalue $-5$ . Then $S$ is switching equivalent to some Seidel matrix $S’$ such that
the ambient graph $\Gamma’=(J-S’-I)/2$ is a Dynkin graph.

Corollary 1.5. Assume that $d\geq 30251$ . Then $N_{5}(d)=\lfloor(3d-1)/2\rfloor.$

Proof. See [3]. $\square$

The main contribution of this manuscript is the description of the analogue of Table 2
corresponding to common angle $\alpha=1/5$ . This case is still far from being completely
understood.
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Proposition 1.6. Bounds on $N_{5}(d)$ :

$N_{5}(d)d|_{d}^{2-4}6567971081291610181120-2212261328-3014361540-421648-511748-611872-7619$

$N_{5}(d)d|_{90-96}^{20}126211762227623276-d(d+1)/224-185\lfloor 3(d-1)/2\rfloor-d(d+1)/2186-30250\lfloor 3(d-1)/2\rfloor 30251-$

TABLE 3. The maximum number of equiangular lines with $\alpha=1/5.$

Proof. The lower bounds come from direct constructions, while the upper bounds are avail-
able from the literature. The case $d>30250$ follows from Neumaier’s result. See [3] for more
details. $\square$

Some of the lower bounds in Table 3 above correspond to Seidel matrices with three eigen-
values. The known maximal set of equiangular lines in dimensions 19-23 all come from the
Witt-design. The examples in dimension 21, 22 and 23 are regular two-graphs; Taylor’s ex-
ample in dimension 20 has four distinct eigenvalues [12]; while the following construction,
discovered by Asche, leads to a Seidel matrix with three distinct eigenvalues in dimension
19.

Example 1.7 (See [12, p. 124]). Let $\mathcal{B}$ be the set of 759 blocks of the Witt-design, the
“octads“, defined on the ground set $X=\{1,2, \ldots, 24\}$ , let $e_{i}$ denote the standard basis in

$\mathbb{R}^{24}$ for $1\leq i\leq 24$ and for a subset $T\subseteq X$ let us denote $e_{T}:= \sum_{i\in T}e_{i}$ . Let $B_{1},$ $B_{2}\in \mathcal{B}$ such
that $1\not\in B_{1},$ $B_{2}$ and $B_{1}\cap B_{2}=\{2,3\}$ . The vectors $v_{B}$ $:=(4e_{B}-4e_{1}-e_{X})/\sqrt{80}$ for which
$1\in B\in \mathcal{B}$ are all orthogonal to $4e_{1}+e_{X}$ . Those, which in addition are orthogonal to all of
$e_{1}-e_{2},$ $e_{1}-e_{3},$ $v_{B_{1}}$ and $v_{B_{2}}$ form an equiangular line system of 72 lines in $\mathbb{R}^{19}$ . Moreover,
the corresponding Seidel matrix has spectrum $\{[-5]^{53}, [13]^{16}, [19]^{3}\}.$

Consult Appendix A for the parameter sets of some additional hypothetical Seidel matrices
of small orders. We remark here that for large $d$ maximal equiangular line systems can be
obtained in the cases $\alpha=1/3$ and $\alpha=1/5$ by the following easy construction.

Lemma 1.8. There exists $mn$ equiangular lines in $\mathbb{R}^{mn-m+1}$ with common angle $\alpha=1/(2n-$

1 $)$ for every $m,$ $n\geq 2$ . Moreover we can assume that the corresponding Seidel matrix has
spectrum $\{[1-2n]^{m-1}, [1]^{m(n-1)}, [n(m-2)+1]^{1}\}.$

Proof. It is easy to see, by using properties of the Kronecker product, that the $mn\cross mn$

matrix $S:=J_{n}\otimes(J_{m}-2I_{m})+I_{mn}$ has the desired spectrum. Under the assumptions on $m$

and $n$ its smallest eigenvalue is $1-2n$ , hence the result follows. $\square$

It would be nice to see a combinatorial interpretation of Seidel matrices with three distinct
eigenvalues. Such new perspective might shed some light on the existence of the hypothetical
Seidel matrices highlighted in the appendix. This will hopefully lead to improvements upon
the best known lower bounds on the number of equiangular lines in small dimensions.
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APPENDIX A. A SUPPLEMENTARY TABLE

Here we display a list of feasible spectrum of Seidel matrices whose existence might reach,
or improve upon the maximum number of equiangular lines in dimensions 14, 16-20.

$\frac{nd\lambda\mu\nu Exist?Remark}{2814[-5]^{14}[3]^{7}[7]^{7}Y[13]}$

30 14 $[$ -5$]^{}$ [5]9[7]5 $?$

40 16 $[$-5$]^{}$ [5]6 $[$9$]^{1}$ $?$

40 16 $[-5]^{24}$ [7]15[15]1 $Y$ [10]
42 16 $[-5]^{26}$ [7]7[9]9 $?$

48 17 $[-5]^{31}$ [7]8[11]9 $Y$ [6]
$49 17 [-5]^{32} [9 ]^{ 16} [16 ]^{ 1}$ $?$

48 18 $[-5]^{30}$ [3]6[11]12 $?$

48 18 $[-5]^{30}$ [7]16[19]2 $?$

54 $18$ $[$ -5$]^{}$ $[$ 7 $]^{}$ $[13]^{9}$ $?$

60 18 $[-5]^{42}$ $[$ 11 $]^{}$ [15]3 $?$

72 19 $[-5]^{53}$ [13]16[19]3Y Example 1.7
$75 19 [-5]^{56} [10 ]^{ 1} [15 ]^{ 18}$ $?$

90 20 $[$ -5$]^{}$ [13]5[19]15 $?$

$95 20 [-5]^{75} [14 ]^{ 1} [19 ]^{ 19}$ $?$

TABLE 4. Feasible parameter sets of Seidel matrices with 3 distinct eigenvalues.
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